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Abstract: Position information is essential for an underwater vehicle that can affect the performance
of many other applications. Vehicle motion during the two-way travel time (TWTT) using an acoustic
positioning system can affect the localization accuracy of the estimators based on the traditional
static model. A new time measurement model for moving vehicle localization is presented, which
compensates for the vehicle motion. The Cramér–Rao lower bounds (CRLBs) of the proposed model
are derived for two different cases, where the depth of the underwater vehicle is unknown or known.
Then, closed-form solutions for the two cases using the proposed model are derived and the solutions
are shown analytically to reach the CRLBs. Simulations collaborate the theoretical performance
of the proposed estimators and the moving model significantly improves the localization accuracy
in comparison with the static model.

Keywords: underwater vehicle localization; closed-form solution; moving measurement model;
two-way travel time

1. Introduction

Accurate localization and navigation of autonomous underwater vehicle (AUV) is a critical focus
area to a number of applications, such as underwater search and rescue, seafloor mapping, shallow
water mine countermeasures, and oceanographic surveys [1–10]. Accurate localization is vital to ensure
the accuracy of navigation and other applications.

The techniques of AUV localization usually can be classified to two categories, i.e., inertial/dead
reckoning system and the acoustic transponders and modem system. The inertial/dead reckoning
system uses inertial measurement unit (IMU) or Doppler Velocity Logs (DVL) to estimate the vehicle
position [11]. However, all of the methods in this category have position error growth that is unbounded.
Since they have accumulated error, their localization error will continue to increase if it is not
corrected by other techniques for a long time. Therefore, location resets are necessary during some
long-duration mission scenarios and these position resets of AUV are typically obtained by Global
Positioning System (GPS) updates [12]. However, due to the strong attenuation of electromagnetic
waves by water, GPS signal is not practically feasible except for distances of a few meters. AUV has
to transit to the surface to access GPS satellites. This operation is always time consuming especially
for deep-ocean scenarios. Another technique is the use of the acoustic transponders and modem system
such as long baseline (LBL) system [1] and moving LBL system [13]. In this system, AUV is designed
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to measure the time of flight (TOF) of signals from acoustic beacons or transponders at known positions
to perform localization. These methods based on the acoustic positioning system can provide bounded,
long-term localization precision.

Many methods have been proposed in this area to find the position of an AUV using the acoustic
positioning system [14–22]. The simultaneous localization and mapping (SLAM) methods proposed
in [15,16] simultaneously estimate the position of an AUV and the positions of stationary beacons
using range-only data. In their experiments, an AUV would send out an interrogation signal, and the
beacons would reply in a predefined sequence. The two-way travel time (TWTT) of the acoustic signals
is usually used to determine the ranges. When enough measurements and samples are obtained during
the trajectory of the moving AUV, their proposed navigation filters will estimate all the unknown
positions. However, they assume the value of AUV speed is small and the vehicle motion during
interrogation and reception is ignored to simplify their algorithm. Actually, the travel times from AUV
to beacons and back are not the same. Some different AUV localization systems using one-way travel
time (OWTT) were proposed in [17–19] to avoid the problem of vehicle motion in TWTT. Refenence [17]
used a ship (precisely localized via GPS) and transponders to localize the AUV. In this system, the AUV
only sends out an interrogation signal and the ship receives all the signals: the direct propagation from
AUV and the reflections by all the transponders. The time difference of arrivals between the reflection
paths and the direct path along with depth measurements are used to locate the AUV. In [18,19],
the acoustic data packets containing the state information are broadcast from a single, moving reference
beacon and can be received by multiple AUVs within an acoustic range. The synchronous clocks enable
range measurements based on OWTT measurements between the beacon and the AUVs. Every AUV
can estimate its position when enough range measurements are obtained from the moving beacon.

The aforementioned localization methods mainly focus on Kalman filter (KF), which is a widely
used recursive, self-correcting model-based estimator. The KF requires range measurements at different
times, and an initial transient period is needed before it produces a good source location estimate [23].
In addition, an initial guess closed to the true value is also required to initialize the filter. Another kind
of localization methods are nonlinear estimation, such as maximum likelihood estimation (MLE) [24]
and the closed-form solutions [20,25,26] based on least squares (LS) or weighted LS. However, often
only the measurement error is considered in causing the errors on the location estimate [27,28].
The extension of localization algorithms to account for inaccurate sensor positions [20,29,30]
or spatiotemporal variation of sound speed [31,32] has also been investigated. Nevertheless, the AUV
motion effect is ignored in most existing research to simplify their methods. [20] proposed a closed-form
solution using the LS method for the TWTT measurements by considering the calibration error
of deployed beacons, where the vehicle motion is still ignored. The vehicle motion is compensated
in [21] to obtain a better solution by developing a Bayesian inference algorithm. [33] determines
the vehicle position using TWTT together with the information of the angle measurements
and orientation (pitch angle and yaw angle) of AUV. Feng [25] accounted for the AUV motion
in the method and proposed an approximate solution by solving the circular equations constructed
from the nonlinear equations of the time measurements. Although [21,25,33] improve the localization
performance by including the AUV motion effect in their methods, their works lack analysis
of the optimality property.

In AUV localization, the depth information can be normally measured by the pressure sensor
mounted on AUV [5]. Only two position coordinate values need to be estimated by the localization
system in a 3D scenario if the depth measurement is accurately obtained. However, when the pressure
sensor is broken or there is a large error with the depth measurement, the known depth localization
will be invalid or inaccurate. Therefore, the unknown depth localization shall be a complement
of the known depth localization, and will also increase the robustness of the localization system.
Thus, we will focus on these two localization cases.

This paper will propose a time measurement moving model for range-only AUV localization
which compensates for vehicle motion during the TWTT interval. The Cramér–Rao lower bound
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(CRLB) is derived for the proposed moving model in two different cases: unknown depth localization
and known depth localization. We also prove that the AUV localization accuracy can be improved
by measuring the AUV depth. Then, an accurate closed-form solution is derived for the proposed
model in these two cases. The closed-form solution does not require initial solution guess, and so
it is computationally attractive. Finally, results from the Monte Carlo (MC) simulation show that
applying the proposed moving model significantly improves the localization accuracy in comparison
with the static model. More importantly, the proposed closed-form solution can reach the accuracy set
by the CRLB. The main contributions of this work are highlighted as follows:

• a new time delay measurement model that accounts for the AUV motion during the TWTT
is proposed in the paper. it is unbiased and accurate for the moving AUV localization.

• the CRLBs are derived using the proposed model for the two cases in range-only AUV localization.
it is proved that the AUV localization accuracy can be improved by measuring the AUV depth.

• a set of closed-form solutions are constructed using time delay measurement for the two cases
in range-only AUV localization. The proposed solutions are computationally efficient and can
achieve the CRLB analytically. Simulations validate the performance of the proposed solutions.

The paper is organized as follows: Section 2 provides a new time measurement moving model as
well as the traditional static model for a moving AUV localization scenario. Section 3 derives the CRLB
for the proposed moving model in two different cases and compares the CRLBs theoretically. Section 4
presents the proposed closed-form solution and compares analytically the proposed estimator with
the CRLB. Section 5 shows the simulation results, and Section 6 provides the conclusions.

The following notation will be adopted throughout the paper. Bold face uppercase letters represent
matrices and lowercase bold letters represent vectors. (·)o is the true value and (·) is its noisy
version with additive noise ∆(·). The symbols I and O represent the identity matrix and zero matrix
with appropriate dimension. For a given matrix A, λp(A), tr(A) and rank(A) denote the positive
eigenvalues, the trace, and the rank of A. For a given vector u, ‖u‖2 or ‖u‖ is the l2 norm. E[·]
is the mathematical expectation.

2. Models for AUV Localization

2.1. Moving Model

We first consider a moving AUV localization system with N sensors (transponders and/or
beacons) fixed at si = [xi, yi, zi]

T , i = 1, 2, · · · , N, as shown in Figure 1. The moving AUV with known
velocity v = [vx, vy, vz]T sends out an interrogation signal at position uo = [uo

x, uo
y, uo

z]
T and will receive

all the replied signals from the sensors. We suppose the signals received by AUV do not interfere
with each other, and the processing delay of every sensor is assumed to be zero. The true signal travel
distance from the moving AUV to the ith sensor and finally back to the moving AUV can be obtained as

ro
i = ‖uo − si‖+ ‖uo

i − si‖

= ‖uo − si‖+ ‖uo +
ro

i
c

v− si‖ (1)

where c is acoustic signal propagation speed. The model describes the relationship between the true
signal travel distance and the true AUV position value. However, when the time delay is estimated from
the received signals, there will be noise in the time delay measurement [34]. Therefore, the two-way
travel time (TWTT) measurement is modeled as

τi = τo
i + ∆τi =

ro
i
c
+ ∆τi (2)
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where ∆τi is the time measurement noise that is assumed to be zero-mean Gaussian. Finally, the moving
measurement model in vector form is expressed as

τ = τo + n (3)

where τo = [τo
1 , τo

2 , · · · , τo
N ]

T and n = [∆τ1, ∆τ2, · · · , ∆τN ]
T . The noise vector is modeled as

a zero-mean Gaussian with covariance matrix Q = E[nnT ].

Figure 1. Localization scenario for moving AUV.

This paper is to find the AUV position uo from the TWTT measurement τ, the known sensor
positions si, the signal propagation speed c, and the noise covariance matrix Q. According to whether
AUV depth is known or not, we will focus on two different cases: AUV localization with unknown
depth and AUV localization with known depth.

2.2. AUV Motion Effect and Static Model

The original new model in Equation (1) is recursive and we would like to gain some insights about
the effect of AUV motion after transformation of the recursive model. In Equation (1), after moving
‖uo − si‖ to the left, squaring both sides and expanding the Euclidean norms give

ro2
i − 2ro

i ‖uo − si‖+ ‖uo − si‖2 = ‖uo +
ro

i
c

v− si‖2. (4)

where ‖uo +
ro

i
c v− si‖2 = ‖uo − si‖2 + 2ro

i (u
o − si)

Tv/c + ro2
i ‖v‖2/c2. Substituting it in (4) gives

ro2
i − 2ro

i ‖uo − si‖ = 2ro
i (u

o − si)
Tv/c + ro2

i ‖v‖2/c2. (5)

Because ro
i is positive and cannot be zero, cancelling ro

i on both sides and solving for ro
i yield

ro
i =

2
1− ‖v‖2/c2

(
‖uo − si‖+ (uo − si)

T v
c

)
. (6)

Defining θi as the angle between uo − si and v, we have

(uo − si)
Tv = ‖uo − si‖‖v‖ cos(θi). (7)

Putting (7) in (6) and rearranging gives an expression related to θi

ro
i = 2‖uo − si‖

1
1− ‖v‖2/c2

(
1 + cos(θi)

‖v‖
c

)
. (8)
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We can see from (8) that, if the AUV motion effect during the interrogation is ignored and ‖v‖/c
can be set to zero, ro

i will be approximated by

rs
i = 2‖uo − si‖ , (9)

which is also known as the two-way time of arrival (TW-TOA) measurement [35–37]. It is simple
and accurate for static AUV localization. Actually, the moving model (1) is a natural generalization
of the static model (9) for moving AUV localization, which compensates the AUV motion effect.
When the static model is used for moving AUV localization, the error in the two-way distance is

δo
ri = ro

i − rs
i = 2‖uo − si‖

1
1− ‖v‖2/c2

(
cos(θi)

‖v‖
c

+
‖v‖2

c2

)
= rs

i
1

1− ‖v‖2/c2
‖v‖

c

(
cos(θi) +

‖v‖
c

)
.

(10)

We can see that the error δo
ri caused by the AUV motion is nonlinear with respect to the speed

normalized by the propagation speed, with leading order one. It has a sinusoidal relationship with
the angle between the AUV-movement and AUV-sensor directions. Figure 2 gives an example
of the model error related to ‖v‖ and θi where uo = [50, 50, 0]T m, si = [500, 500, 0]T m
and c = 1456 m/s. The model error of the two-way distance becomes significant when ‖v‖ increases.

1 2 3 4 5 6 7 8 9 10

 ||v|| (m/s) 

-10

-8

-6

-4

-2

0

2

4

6

8

10

r 
i

o
 (

m
)

i
=0 deg

i
=45 deg

i
=90 deg

i
=135 deg

i
=180 deg

0 50 100 150 200 250 300 350 400

 
i
 (deg)

-10

-8

-6

-4

-2

0

2

4

6

8

10

 
r 

i
o

 (
m

)

||v||=2 m/s
||v||=4 m/s
||v||=6 m/s
||v||=8 m/s
||v||=10 m/s

Figure 2. The effect of ‖v‖ and θi on δo
ri.

Therefore, for moving AUV localization, the static model ignores the AUV motion effect
and the position estimate based on (9) shall be inaccurate. In other words, the static model will
introduce estimation error in localization.

We illustrate this aspect visually in Figure 3 where the blue square symbol represents the true
position of the moving AUV in the instant of interrogation. The use of static model to locate a moving
AUV will lead to a biased estimate, and the optimal position of the likelihood function is away from
the true value. In contrast, the true position value is on the peak of the likelihood surface using
moving model. Thus, the corresponding ML estimator is unbiased. We would like to show the loss
of localization performance when using the static model compared with the moving model.
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(a) (b)

Figure 3. Log-likelihood surface of moving AUV localization. The blue square symbol represents
the true position of AUV in the instant of interrogation. The true position is [50, 50, 0]T m and the speed
is [5, 5, 0]T m. This scenario has four sensors located at [−500,−500, 0]T m, [−500, 500, 0]T m,
[500,−500, 0]T m and [500, 500, 0]Tm. (a) likelihood under the static model: biased estimator;
(b) likelihood surface under the moving model: unbiased estimator.

3. CRLB

This section will evaluate the CRLB for moving AUV localization problem. The CRLB is the lowest
bound of the covariance matrix of an unbiased estimate. Roughly speaking, the CRLB defines the best
estimation accuracy that an unbiased estimator can achieve in terms of mean square error. The CRLB
is always used as a benchmark for comparison of the localization methods although some of them
may not be unbiased. Because the AUV may have the information of its depth, the CRLB focuses on
the two cases: AUV localization with unknown depth and AUV localization with known depth.

3.1. AUV Localization with Unknown Depth

Assume that the time measurement vector τ satisfies the measurement model in (3) and define
the CRLB matrix of an unbiased estimate as Cuo . Based on the equations in [23,38], we have

Cuo = F−1
uo (11)

where Fuo is the Fisher information matrix and it is

Fuo = Juo Q−1JT
uo . (12)

Juo is concretely expressed as

Juo =
∂τoT

∂uo =

[
∂τo

1
∂uo ,

∂τo
2

∂uo , · · · ,
∂τo

N
∂uo

]
(13)

where ∂τo
i /∂uo is the partial derivative of τo

i with respect to the unknown vector uo. This term
is given by

∂τo
i

∂uo =
1
c

[
uo − si
‖uo − si‖

+
1

‖uo
i − si‖

∂uoT
i

∂uo (uo
i − si)

]
, (14)

where
∂uoT

i
∂uo = I +

∂τo
i

∂uo vT . (15)
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Finally, ∂τo
i /∂uo is obtained by substituting (15) into (14) and solving (14)

∂τo
i

∂uo =
1

c− ρT
uo

i−si
v
(ρuo−si + ρuo

i−si
) (16)

where ρa = a
‖a‖ for a given vector a.

3.2. AUV Localization with Known Depth

If the depth of AUV is known, the z-axis coordinate value uo
z is a known parameter. Supposing that

µo = [uo
x, uo

y]
T , the CRLB of µo using model (3) has the similar expression as (11) by replacing uo

with µo. Hence, the related vector ∂τo
i /∂µo that represents the partial derivative of τo

i with respect
to the unknown vector µo is

∂τo
i

∂µo =
1
c

 µo −ωi
‖uo − si‖

+
I + ∂τo

i
∂µo νT

‖uo
i − si‖

(µo
i −ωi)

 , (17)

where ωi = [xi, yi]
T , ν = [vx, vy]T and µo

i = µo + τo
i ν. We can obtain ∂τo

i /∂µo by solving (17), which is

∂τo
i

∂µo =
1

c− νT µo
i−ωi
‖uo

i−si‖

[
µo −ωi
‖uo − si‖

+
µo

i −ωi

‖uo
i − si‖

]
. (18)

3.3. Comparisons of the CRLBs of Proposed Cases

We claim that
tr(Cuo ) > tr(Cµo ) (19)

when the covariance matrix of the measurement noise in the two cases is the same. The detailed
derivation is shown in Appendix A. This implies the CRLB of AUV localization with known depth
is less than that of unknown depth localization. In other words, the AUV localization accuracy can
be improved by measuring the AUV depth.

The following simulation compares the CRLBs of the proposed two cases using the moving
AUV localization scenario in [21], with one additional sensor. The positions of sensors are shown
in Table 1 in Section 5. The AUV moving tracks are shown as blue lines in Figure 4a. The AUV
starts at [−150,−150, 3.9] m, moves from left to right with 1.5 m/s, and then turns back on a opposite
direction with the same speed. The AUV performs this operation until it covers the preset region.
The localization cycle period is eight seconds. In each cycle, the AUV first interrogates the sensors
and sends out a signal, and the sensors would reply a predefined sequence once they receive the signal.
The AUV estimates its position every cycle. The acoustic signal speed c = 1456 m/s and the covariance
matrix of time measurement noise is Q = σ2

t I. The standard deviation σt = 30 µs.
The CRLB establishes the theoretical lower bound for the variance of the position error. Figure 4b–c

show the comparisons of CRLBs in different cases. The simulation settings in Figure 4b,c are the same
except if the AUV depth is unknown. Figure 4b is the CRLB for AUV localization with unknown depth.
The CRLB of the position error is between 10−3 and 7× 10−3 and the large values occur at the beginning
and end of each row in the tracks. The CRLB values for known depth localization shown in Figure 4c
are generally less than the CRLB values in the corresponding positions of Figure 4b. Furthermore,
the large values only occur in the corners of the region. This result also validates the previous claim
that the AUV localization accuracy can be improved by measuring the AUV depth. The known depth
localization in Figure 4d only uses four co-plane sensors which usually become invalid in unknown
depth localization. However, the CRLB is also less than the result in Figure 4b.
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Figure 4. AUV localization scenario and the comparisons of the CRLBs in different cases. The red star
symbol represents the sensor position and pixel colors indicate the values of CRLB at the corresponding
positions. (a) AUV moving tracks and the sensor positions. The blue lines are the moving tracks
and there are five sensors in total; (b) CRLB of unknown depth localization using five sensors;
(c) CRLB of known depth localization using five sensors; (d) CRLB of known depth localization
using four sensors.

4. Closed-Form Solution

The closed-form solution for localization using a static model has been derived in [26,39].
This section will propose a close-form solution using the accurate model (3) for moving AUV
localization. We first find an initial solution using the static model, and then we use the moving
model to refine the initial estimate. The proposed solution has three stages. The first and second
stages aim to provide a position estimation from the traditional static model as accurate as possible
so that the refinement in the third stage can work well. the first stage introduces a nuisance variable
to transform the nonlinear static measurement model to a pseudo linear equation. The second stage
is to estimate the amount of correction to refine the estimate from the first stage solution. Finally, in the
third stage, the moving model is to used to refine the solution by using Taylor-series expansions [23,40].
The closed-form solutions are proposed in this section for two cases: moving AUV localization with
unknown depth and moving AUV localization with known depth.

4.1. AUV Localization with Unknown Depth

In this case, we shall estimate uo from (2) using τ, si, and v. The proposed closed-form solution
has three stages.
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4.1.1. First Stage

In this stage, a nuisance variable is introduced to transform the nonlinear static measurement
model to a pseudo linear equation that can be solved directly by weighted least squares (WLS). We start
with the static model in (9). Squaring on both sides yields the nonlinear TOA equation

c2τs2
i = 4(αo − 2sT

i uo + sT
i si) (20)

where τs
i = rs

i /c and αo = uoTuo. Substituting τs
i = τi − ∆τi and rearranging yield

−2c2τi∆τi = 4αo − 8sT
i uo + 4sT

i si − c2τ2
i (21)

where the second-order error terms have been ignored. Define ϕo = [uoT , αo]T and Equation (21) can
be written in matrix form and finally we get the linear system of equations

P1n = h1 −G1ϕo (22)

where

h1 =


4sT

1 s1 − c2τ2
1

4sT
2 s2 − c2τ2

2
...

4sT
NsN − c2τ2

N

 , G1 =


8sT

1 −4
8sT

2 −4
...

8sT
N −4

 , P1 = −2c2


τ1 0 · · · 0
0 τ2 · · · 0
...

...
. . .

...
0 0 · · · τN

 .

The WLS solution to (22) is

ϕ̄ = [ūT , ᾱ]T = (GT
1 W1G1)

−1GT
1 W1h1, (23)

where W1 = (P1QPT
1 )
−1 is the weighting matrix.

4.1.2. Second Stage

Because the first stage neglects the relevance between αo and uo, this stage improves the accuracy
of position estimate ū by computing the amounts of corrections. Supposing that ϕ̄ = ϕo + δϕ,
δϕ = [δuT , δα]T and, based on αo = uoTuo, we have

ᾱ− δα = (ūT − δuT)(ū− δu) ≈ ūTū− 2ūTδu (24)

where δu is considered as a unknown vector and it can be used to correct the solution in the first stage.
We can construct a system of equations

δϕ = h2 −G2δu (25)

where

G2 =

[
−I
−2ūT

]
h2 =

[
0

ᾱ− ūTū

]
.

The left-side δϕ is pretended as a random error vector and δu on the right side is the unknown.
The WLS solution of (25) is

δū = (GT
2 W2G2)

−1GT
2 W2h2 (26)

where W2 = cov(δϕ)−1 = cov(ϕ̄)−1 ≈ GT
1 W1G1 is the weighting matrix. Finally, the estimate of this

stage is
û = ū− δū. (27)
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In fact, the position estimate û in this stage is the accurate solution of the static model (9).
However, the static model is an approximation of the moving model (1). û is not accurate and it will
be refined in the following stage.

4.1.3. Third Stage

In this stage, we will refine the estimate û using the moving model (1). Squaring (1) after putting
‖uo − si‖ to the left side,

c2τo2
i − 2cτo

i ‖uo − si‖ = τo2
i vTv + 2τo

i vT(uo − si). (28)

Suppose uo = û + ∆u and we have the first-order Taylor-series expansion

‖uo − si‖ ≈ ‖û− si‖+ ρT
û−si

∆u. (29)

Then, substituting uo = û + ∆u, τo
i = τi − ∆τi and (29) in (28), and neglecting the high-order

noise terms yield

[−2c2τi + 2c‖û− si‖+ 2τivTv + 2vT(û− si)]∆τi

= 2(τivT + cτiρ
T
û−si

)∆u + τ2
i vTv + 2τivT(û− si)− c2τ2

i + 2cτi‖û− si‖ (30)

where ∆u is unknown. This is another set of linear equations with respect to ∆u and the matrix form is

P3n = h3 −G3∆u (31)

where the i-th row vector of G3 is −2(τivT + cτiρ
T
û−si

), the i-th element of h3 is h3(i) = τ2
i vTv +

2τivT(û− si)− c2τ2
i + 2cτi‖û− si‖, and P3 is a diagonal matrix. The i-th diagonal element is P3(i, i) =

−2c2τi + 2c‖û− si‖+ 2τivTv + 2vT(û− si).
The WLS solution of (31) is

∆û = (GT
3 W3G3)

−1GT
3 W3h3 (32)

where the weighting matrix is W3 = (P3QPT
3 )
−1. By refining the estimate in the second stage,

the solution in this stage is finally updated as

u = û + ∆û. (33)

It is obvious that (33) can be iterated several times to obtain an even better solution.
The simulations show that applying (33) twice is sufficient to produce an accurate result.

4.2. AUV Localization with Known Depth

In this case, we shall estimate µo = [uo
x, uo

y]
T from the moving measurement model (1) using τ, si,

v and uo
z.

4.2.1. First Stage

When the depth is known (uo
z is known), (20) can be transformed as

c2τs2
i = 4(βo + uo

zuo
z − 2ωT

i µo − 2ziuo
z + sT

i si) (34)

where βo = µoTµo is a nonlinear term, and it is supposed to be independent unknown variable with µo

in the first step. Substituting τs
i = τi − ∆τi into (34) and rearranging yield

−2c2τi∆τi = 4βo − 8ωT
i µo + h̄1(i) (35)
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where h̄1(i) = 4uo
z(uo

z − 2zi) + 4sT
i si − c2τ2

i . Define ϕo
2 = [µoT , βo]T , h̄1 = [h̄1(1), h̄1(2), · · · , h̄1(N)]T

and Equation (35) can be written in a matrix form as

P̄1n = h̄1 − Ḡ1φo (36)

where P̄1 = P1 and Ḡ1 is

Ḡ1 =


8sT

21 −4
8sT

22 −4
...

8sT
2N −4

 . (37)

The WLS solution is
φ̄ = [µ̄T , β̄]T = (ḠT

1 W̄1Ḡ1)
−1ḠT

1 W̄1h̄1 (38)

where W̄1 = (P̄1QP̄T
1 )
−1 is the weighting matrix. Under small noise conditions, we have cov(φ̄) ≈

(Ḡ1W̄1ḠT
1 )
−1.

4.2.2. Second Stage

The second stage will estimate the amounts of corrections to the estimate from the first stage
solution ϕ̄2. Supposing φ̄ = φo + δφ and δφ = [δµT , δβ]T , we have

β̄− δβ ≈ µ̄T µ̄− 2µ̄Tδµ (39)

where δu is the unknown to be estimated. (39) can be written in a matrix form as

δφ = h̄2 − Ḡ2δµ (40)

where

G2 =

[
−I
−2µ̄T

]
h2 =

[
0

β̄− µ̄T µ̄

]
.

δφ is pretended as a noise vector and cov(δφ) ≈
(
ḠT

1 W̄1Ḡ1
)−1. The unknown vector δµ can be solved

using an WLS method
δµ̄ = (ḠT

2 W̄2Ḡ2)
−1ḠT

2 W̄2h̄2 (41)

where W̄2 = cov(δφ̄)−1 is the weighting matrix. Finally, the estimate of this stage is

µ̂ = µ̄− δµ̄. (42)

4.2.3. Third Stage

Suppose µo = µ̂ + ∆µ, û = [µ̂T , uo
z]

T and we have the first-order Taylor-series expansion

‖uo − si‖ ≈ ‖û− si‖+
(µ̂−ωi)

T

‖û− si‖
∆µ. (43)

Then, substituting µo = µ̂ + ∆µ, τo
i = τi − ∆τi and (43) in (28) and neglecting the high-order noise

terms yield:

[−2c2τi + 2c‖û− si‖+ 2τivTv + 2vT(û− si)]∆τi

= 2(τiν
T + cτi

(µ̂−ωi)
T

‖û−si‖
)∆µ + τ2

i vTv + 2τivT(û− si)− c2τ2
i + 2cτi‖û− si‖

(44)

where ∆µ is unknown and the corresponding matrix form is expressed as

P̄3n = h̄3 − Ḡ3∆µ (45)
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where the i-th row vector of Ḡ3 is

Ḡ3(i) = −2
(

τiν
T + cτi

(µ̂−ωi)
T

‖û− si‖

)
. (46)

The expressions of h̄3 and P̄3 are the same as h3 and P3 in (31), respectively. The WLS solution
of (45) is

∆µ̂ = (ḠT
3 W̄3Ḡ3)

−1ḠT
3 W̄3h̄3 (47)

where the weighting matrix is W̄3 = (P̄3QP̄T
3 )
−1. By refining the estimate in the second stage,

the solution in this stage is finally refined as

µ = µ̂ + ∆µ̂. (48)

4.3. Performance Analysis

We shall estimate the theoretical covariance matrix of the proposed solution, and compare it with
the CRLB. We first consider the known depth localization. When the noise is small, both the bias
of the final estimate u and the bias of the third step estimate ∆û are negligible, and so the covariance
of u is

cov(u) = E
[
(u− uo)(u− uo)T]

= E
[
(û + ∆û− uo)(û + ∆û− uo)T]

= E
[
(∆û− ∆u)(∆û− ∆u)T]

= cov(∆û).

(49)

This implies that the covariance of the final estimate u is equal to the covariance matrix of the third
step estimate ∆û. After subtracting both sides of (32) by the value ∆u and applying (31) yield
the estimation error

∆û− ∆u = (GT
3 W3G3)

−1GT
3 W3P3n. (50)

When the noise is small so that the noise in the related matrices can be ignored, it can be shown that

E[∆û− ∆u] ≈ (GT
3 W3G3)

−1GT
3 W3P3E[n] = 0

cov(∆û) ≈ (GT
3 W3G3)

−1.
(51)

Substitute W3 below (32), and cov(∆û) can be expressed as

cov(∆û) ≈ (GT
3 P−1

3 Q−1P−1
3 G3)

−1. (52)

Note that (52) has the same form as the CRLB of (11). If we substitute the true values uo and τo
i

for the estimated ones û and τi in G3 and P3, we have

P−1
3 (i, i) = (P3(i, i))−1

= −
(
2‖uo

i − si‖
)−1

(c− ρT
uo

i−si
v)−1 (53)

and the ith column of GT
3 is

GT
3 (i) = −2(τiv + cτiρû−si )

= −2
(
uo

i − si + ‖uo
i − si‖ρuo−si

)
.

(54)

After some straightforward matrix manipulation, we have

GT
3 P−1

3 = Juo . (55)
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As a result, based on (11) and (52) and for sufficient small noise, we have

cov(u) ≈ Cuo (56)

and the proposed closed-form solution can reach the CRLB.
The same analysis can also obtained for the AUV localization case with known depth.

The estimated theoretical covariance matrix is

cov(u2) = (ḠT
3 W̄3Ḡ3)

−1 ≈ Cuo
2

(57)

if the noise effect in Ḡ3 or W̄3 is insignificant. Therefore, the proposed solution can attain the corresponding
CRLB for sufficient small noise.

5. Simulation

In this section, the numerical simulations are carried out to examine the performance
of the proposed closed-form solution for the moving model. the existing Feng’s method in [25]
for moving AUV localization and the two-step WLS method in [26] for solving the static model
are included for comparison. In addition, the first stage solution and second stage solution
are evaluated to show the performance improvement in different stages. the localization accuracy
is examined in terms of mean square error (MSE) and bias,

bias = ‖ 1
L

L

∑
l=1

ul − uo‖

MSE =
1
L

L

∑
l=1
‖ul − uo‖2

where ul denotes a position estimate of a given method at ensemble l and L = 5000 is the ensemble runs.
The sensor positions shown in Table 1 are based on the moving AUV localization scenario in [21],

with one additional sensor. The acoustic signal speed c = 1456 m/s and the covariance matrix of time
measurement noise is Q = σ2

t I. σt is the standard deviation of ∆τi. For simplicity, we define range
measurement standard deviation σ = cσt m.

Table 1. The positions of sensors.

No. i xi m yi m zi m

1 100 100 30
2 100 −100 30
3 −100 −100 30
4 −100 100 30
5 0 0 0

5.1. AUV Localization with Unknown Depth

Figure 5 compares the MSE of the proposed solution for a moving model and the two-step WLS
solution for a static model. The localization scenario and noise setting are the same as in Figure 4b,
and Figure 4b is also the corresponding CRLB of this scenario. Figure 5a shows the MSE using
the static model. The MSE values of the static model are large and far away from the CRLB. In contrast,
the proposed solution shown in Figure 5b can improve the estimation accuracy and reach the CRLB.

Figure 6a is the result for a moving AUV located at [50, 50, 3.9]T m with velocity [1.5, 1.5, 0] m/s.
The sensor positions correspond to those in Figure 4b and there are five sensors. The value
of measurement noise 10 log(σ) varies from −20 dB to 0 dB. The localization performance of the static
model is generally worse for a moving AUV. There is a definite performance improvement in the three
stages and the performance of second stage solution is almost the same as that of the two-step WLS.
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the bias of the proposed closed-form method for moving model is near zero, while the two-step WLS
solution of the static model has a steady bias. Although the bias of Feng’s method is also close to zero,
the corresponding MSE can not reach the CRLB and there is a steady gap between them that is about
3.5 dB. As expected, the MSE values of static model are far away from CRLB, especially when the noise
is small. The MSE of the proposed method can attain the CRLB and is lower than Feng’s method
by 3.4 dB. For example, when σ = 1 m, the MSE of the proposed method is less than that of Feng’s
method by 1.9 m2.
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Figure 5. Comparisons of the MSE in unknown depth localization. The red star symbol represents
the sensor and pixel colors indicate the localization MSE at the corresponding position. The scenario
is the same as that in Figure 4b where the pixel colors represent the values of CRLB. (a) MSE using
the static model; (b) MSE using the moving model.

Figure 6b shows the result of the proposed method for moving AUV localization with different
values of speed. The same localization geometry is utilized as in Figure 6a, except that the AUV speed
v is normalized to be a unit vector and then is multiplied by a scale value, and the standard deviation
σt = 300 µs (σ = 0.44 m). Both the bias and the MSE of the static model increase as the AUV speed
increases. On the contrary, the AUV speed has less effect on the performance of the proposed solution
and Feng’s method. However, the observation validates again that the proposed method is better than
Feng’s method in terms of MSE. in general, the proposed method using the moving model outperforms
the other two methods.
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Figure 6. Comparisons of the MSE and bias in unknown depth localization. (a) comparisons
of the performance for unknown depth localization with different noise power; (b) comparisons
of the performance for unknown depth localization with different AUV speed.

5.2. AUV Localization with Known Depth

Figure 7 shows the result for known depth localization. The localization scenario and noise setting
are the same as in Figure 4d which also shows the CRLB of this case. It is evident that the proposed
method in Figure 7b is able to attain the accuracy set by the CRLB. However, the MSE of the two-step
WLS solution using the static model is not satisfying.
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Figure 7. Comparisons of the MSE in unknown depth localization. The red star symbol represents
the sensor and pixel colors indicate the localization MSE at the corresponding position. The scenario
is the same as that in Figure 4d where the pixel colors represent the values of CRLB. (a) MSE using
a static model; (b) MSE using a moving model.

Figure 8a,b are for the known depth localization as in Figure 4d and there are four sensors.
The AUV is located at [50, 50, 3.9]T m with velocity [1.5, 1.5, 0] m/s. Figure 8a shows the effect of noise
to bias and MSE. The proposed solution performs better than the two-step WLS using the static model



Electronics 2020, 9, 565 16 of 22

and it can reach the CRLB when the measurement noise is small. The performance improvement
in MSE is about 1.5 dB when using the proposed method compared with Feng’s method. Figure 8b
shows the performance of the mentioned methods with different values of speed. The observations
are consistent with those in Figure 8b. The performance improvement of the proposed method using
the moving model is significant.
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Figure 8. Comparisons of the MSE and bias in known depth localization. (a) Comparisons
of the performance for known depth localization with different noise power. (b) Comparisons
of the performance for known depth localization with different AUV speed.

5.3. AUV Localization Performance When Error Occurring in Depth

This subsection investigates the effect of depth error on AUV localization. The AUV depth
is assumed to be exactly known in the known depth localization. However, there is an error with
the depth measurement in the real situation besides the TWTT measurement noise. In this subsection,
the available depth measurement uz is contaminated by noise and it is modeled as uz = uo

z + ∆uz. ∆uz

is zero mean Gaussian and σd is the standard deviation that changes from 0.2 m to 2 m. The other
settings are the same as Figure 6 except σt.

Figure 9 demonstrates the performance of the proposed methods when depth error increases
where “UD” denotes “Unknown Depth” and “KD” denotes “Known Depth”. Apparently,
the observation shows that the depth error cannot affect the performance of unknown depth
localization. Figure 9a shows that depth error effect is not significant in the known depth localization
when TWTT measurement noise is relatively large (σt = 300 µs). The proposed known depth
localization can still reach the CRLB. However, the depth error effect becomes significant in Figure 9b
when TWTT measurement noise is relatively small (σt = 30 µs). Therefore, the known depth
localization methods are sensitive to depth error when the TWTT measurement noise is small.
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Figure 9. The effect of depth error on localization. “UD” denotes “Unknown Depth” and “KD” denotes
“Known Depth”. (a) comparisons of the performance with different depth error where σt sets as 300 µs;
(b) comparisons of the performance with different depth error where σt sets as 30 µs.

5.4. AUV Localization Performance When Error Occurring in Velocity

Similar to the depth measurement, there is an error with the AUV velocity in the real situation
besides the TWTT measurement noise. This subsection investigates the effect of AUV velocity error
on the localization. The available velocity is v + ∆v instead of v and ∆v is assumed to be zero-mean
Gaussian. In the simulation, the covariance of ∆v is set as σ2

v I and σv is the standard deviation that
changes from 0.1 m/s to 1 m/s. The other settings are the same as Figure 6 except σt.

Figure 10 demonstrates the performance of the proposed methods when velocity error increases.
The performance is affected by the velocity error. Figure 10a shows that velocity error effect is not
significant when TWTT measurement noise is relatively large (σt = 300 µs). The proposed methods
can still reach the CRLB when σv ≤ 0.3 m/s. However, the velocity error effect becomes significant
in Figure 10b when TWTT measurement noise is relatively small (σt = 30 µs). Therefore, the localization
methods are sensitive to velocity error when the TWTT measurement noise is small.
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Figure 10. The effect of AUV velocity error on localization. “UD” denotes “Unknown Depth” and “KD”
denotes “Known Depth”. (a) comparisons of the performance with different velocity error where σt

sets as 300 µs; (b) comparisons of the performance with different velocity error where σt sets as 30 µs.

5.5. AUV Localization Performance with Randomly Generated Scenarios

It is widely known that the localization performance depends greatly on the AUV-sensor geometry,
such as sensor positions, number of sensors, AUV positions, AUV moving direction, and so on.
These factors are fixed in the above experiments. Therefore, in this subsection, the localization
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performance is examined using the randomly generated scenarios. The sensors and AUV are placed
randomly at uniformly distributed positions inside a 3D cube ([0, 500] m×[0, 500] m×[0, 100] m).
The AUV moving direction is generated randomly in each direction and AUV speed is generated
randomly from the interval [5, 10] m/s. We randomly generate 200 scenarios each with different
geometries, and the results are the average over them. The number of ensemble runs is 5000 for each
given geometry realization. There is no depth error or velocity error and TWTT noise σt = 300 µs.

Figures 11 and 12 show the performance with randomly generated scenarios using different
number of sensors. The introduction of the auxiliary variable αo (or βo) in the first stage requires
a minimum of four (or three) TWTT measurements for the unknown (or known) depth localization.
However, the minimum required measurements are not enough to ensure the localization performance
in the randomly generated scenarios because an improper geometry with less sensors can appear.
This phenomenon can be alleviated dramatically if we increase the number of sensors by two (or one)
for unknown (or known) depth localization. The proposed solutions can reach the CRLBs when there
are enough sensors. In addition, it should be noted that extensive simulations show that the performance
of the second stage solution is almost the same as that of the two-step WLS. Hence, the proposed first
and second stage solution can be replaced by the two-step WLS in most cases.
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Figure 11. Unknown depth localization performance with randomly generated scenarios.
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Figure 12. Known depth localization performance with randomly generated scenarios.

6. Conclusions

In this paper, we studied the accurate closed-form solution for moving AUV localization with
range-only data. First, a new time measurement model for moving AUV localization was presented,
which compensates for vehicle motion. Then, the CRLB of the proposed model was derived in two
different cases. We also proved that accurately measuring the AUV depth can improve the AUV
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localization accuracy. Next, we derived a closed-form solution for the proposed model in two cases.
Moreover, the proposed solution was shown analytically to reach the CRLB. Finally simulations
collaborate the theoretical performance of the proposed estimators and the moving model significantly
improves the localization accuracy in comparison with the static model.

The AUV localization accuracy can be affected by the accuracy of parameters in the measurement
model, including the TWTT measurement noise, the depth error, the AUV velocity error, the sensor
position error, and the sound speed error. When the TWTT measurement noise is significant compared
with the other errors, the proposed solutions are accurate enough to reach the CRLB. However,
when the other errors are comparable with the TWTT measurement noise, the errors that are significant
should also be accounted for in the method to improve the localization accuracy. Some errors,
such as the sensor position error and the sound speed error, have been studied by the previous
research [20,29–32], while the other errors, such as depth error and AUV velocity error, should
be studied further in the future research.
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Appendix A

Based on the expressions in (13), Juo can be expressed as

Juo =

[
Jµo

Jz

]
Jz =

∂τoT

∂uo
z
=
[

∂τo
1

∂uo
z
, ∂τo

2
∂uo

z
, · · · , ∂τo

N
∂uo

z

] (A1)

Then, substituting this in (12), Fuo is equal to

Fuo =

[
Juo

2
Q−1JT

uo
z

Jµo Q−1JT
z

JzQ−1JT
uo

2
JzQ−1JT

z

]
(A2)

Using the block matrix inversion formula, we have the CRLB of uo

tr(Cuo ) = tr(F−1
uo )

= tr
([

Jµo Q−1JT
µo

]−1
+ xZ−1xT + Z−1

)
= tr(Cµo ) + tr(xZ−1xT) + Z−1

(A3)
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where x is a N × 1 vector and Z is a scalar. They are expressed as

x = Cµo Jµo Q−1JT
z

Z = JzQ−1JT
z − JzQ−1JT

µo Cµo Jµo Q−1JT
z

(A4)

Therefore,
tr(Cuo )− tr(Cµo ) = Z−1

[
tr(xxT) + 1

]
(A5)

It is clear that
[
tr(xxT) + 1

]
≥ 1 and Z > 0, which means tr(Cuo ) > tr(Cµo ). The next part

is the details. It can be shown that

tr(xxT) = tr(xTx) = ‖x‖2 ≥ 0 (A6)

The positive-definite matrices Q−1 and Cuo have invertible lower triangular matrices, such that
Q−1 = L1LT

1 and Cuo
2
= L2LT

2 . Defining a vector y = LT
1 JT

z and a matrix B = LT
2 Jµo L1, Z becomes

Z = yT(I− LT
1 JT

µo Cµo Jµo L1)y
= yT(I− BTB)y

(A7)

It can be shown that
rank(BTB) = rank(BBT) = 2 (A8)

tr(BTB) = tr(Cµo Jµo LLTJT
µo ) = tr(I) = 2 (A9)

λp(BTB) = λp(BBT) (A10)

det(BBT) = det(Jµo L1LT
1 JT

µo L2LT
2 ) = det(I) = 1 (A11)

where λp(·) denotes all the positive eigenvalues of a matrix. Note that all the eigenvalues of BTB
are greater than or equal to 0. Therefore, there are only two nonzero eigenvalues that are equal
to λ1 = λ2 = 1 and let Φ−1Λ1Φ be an eigendecomposition of the symmetric real matrix BTB, where
Λ1 = diag(1, 1, 0, · · · , 0). We have

I− BTB = Φ−1(I−Λ1)Φ

= Φ−1Λ2Φ
(A12)

where Λ2 = diag(0, 0, 1, · · · , 1). Clearly, I− BTB is a positive semidefinite matrix and, as a result,
Z = yT(I− BTB)y ≥ 0. In addition, Z 6= 0, and this is because, if Z = 0, Fuo is a singular matrix
and Cuo does not exist.
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