
electronics

Article

Sustainable IoT Sensing Applications Development
through GraphQL-Based Abstraction Layer

Raees Khan 1,* and Adnan Noor Mian 2,3

1 Department of Computer Science, FAST—National University of Computer and Emerging Sciences,
Lahore 54000, Pakistan

2 Department of Computer Science, Information Technology University (ITU)-Punjab, Lahore 54000, Pakistan;
adnan.noor@itu.edu.pk

3 Computer Laboratory, Department of Computer Science and Technology, University of Cambridge,
Cambridge CB3 0FD, UK

* Correspondence: raees.khan@nu.edu.pk

Received: 17 January 2020; Accepted: 21 March 2020; Published: 28 March 2020
����������
�������

Abstract: Internet of Things (IoT) networks are mostly comprised of power-constrained devices,
therefore the most important consideration in designing IoT applications, based on sensor networks is
energy efficiency. Minor improvement in energy conservation methods can lead to a significant increase
in the lifetime of IoT devices and overall network. To achieve efficient utilisation of energy, different
solutions are proposed such as duty cycling optimization, design changes at the MAC layer, etc. In this
paper, we propose a new approach to overcome this challenge in cloud-based IoT sensing applications,
based on integration of an abstraction layer with constrained application mechanism. To achieve energy
conservation and efficient data management in IoT sensing applications, we incorporate modules of
efficient web framework with cloud services, in order to minimize the number of round trips for data
delivery and graph-based data representation. Our study is the first attempt in the literature, to the best
of our knowledge, which introduces the potential of this integration for achieving the aforementioned
objectives in the target applications. We implemented the proposed interfacing of abstraction layer
in constrained applications, to develop a testbed using Z1 IoT motes, Contiki OS and GraphQL web
framework with Google cloud services. Experimental comparisons against baseline REST architecture
approach show that our proposed approach achieved significant reductions in data delivery delay
and energy consumption (minimum 51.53% and 52.88%, respectively) in IoT applications involving
sensor network.

Keywords: IoT; GraphQL; abstraction layer; sensing applications; WSN

1. Introduction

Innovative sensor modules, next-generation wireless networks and modern cloud services are the
enabling tools, headed for the realisation of the large scale Internet of Things (IoT) applications [1].
IoT devices having sensing abilities, enable us to interact with the environment to collect data and send
them to the cloud through communication networks. The number of such sensing modules that have to
be connected to the Internet is increasing at rapid speed and is expected to be 500 billion by 2030 [2].

Traditional sensor network standards and technologies are not expected to sufficiently furnish
the connectivity for abundant sensing and interaction with the physical world, thus undermining the
development of innovative IoT applications on large scale. The rapid growth of modern technologies in
communication, computation and sensing platforms is enabling a wide range of IoT sensing applications
providing services in an overly connected way [3]. The energy demands of IoT networks are increasing
because of the steadily multiplying number of participating sensor devices and a wide range of modern
applications [4]. According to an estimation, 12.3 billion mobile devices are expected to be connected

Electronics 2020, 9, 564; doi:10.3390/electronics9040564 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-6844-4191
https://orcid.org/0000-0003-1034-0140
http://www.mdpi.com/2079-9292/9/4/564?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9040564
http://www.mdpi.com/journal/electronics

Electronics 2020, 9, 564 2 of 23

by 2022, which also includes the IoT devices using machine-to-machine communication [5]. Therefore,
for these battery operated IoT platforms, efficient energy utilisation is a crucial factor for an extended
network life-time, without replacement of the devices or recharging of the batteries.

Data communication is the most energy consuming operation for constrained sensor modules and
it can become a bottleneck, especially in IoT sensing applications that generate continuous or plenty of
data. Examples of such applications include dense IoT networks and sensor networks with multimedia
applications. Such applications use Internet-connected wireless sensor networks with dense deployments
of devices in the field or send multimedia (audio, video and images) data from the physical environment.
A report by Cisco on visual networking says that during 2015–2016, video monitoring through Internet
connectivity increased by 72%, with data sending per month increasing from 516 Petabyte (PB) to
883 PB [6]. These IoT sensing networks provide very useful services in applications such as disaster
management, industrial automation, military surveillance, monitoring services in home, agriculture and
wildlife, elderly as well as general healthcare and safety. Figure 1 shows a layered architecture of the
IoT-based system with typical scenarios for sensing applications.

Physical World

Gateway Nodes

Smart
Applications Smart Health

Application Smart Tracking Smart Surveillance Smart Control Smart Farming

...

IoT Devices

Sensing Module Actuating Module

Controller Communication Module

Local Congestion
Control

Reliability
Module

Stream Manager

Server Nodes Data Storage Data Analytics

End-to-End Congestion Control

Figure 1. Layered architecture of IoT-based system with typical application scenarios for sensor networks.

Despite having significant use cases of sensor network-based IoT applications, there are many
technical challenges in the practical realisation of their deployments on large scale. These challenges
mostly narrow down towards the constrained nature of IoT devices in terms of energy, causing
transmission delays and information fidelity. Energy is considered the scarcest resource in Wireless

Electronics 2020, 9, 564 3 of 23

Sensor Networks (WSN) and many different approaches can be found in the literature for efficient
utilisation of node energy, to maximise individual nodes’ as well as overall network lifetime.

Wireless sensor nodes are usually deployed on a large scale having complex network topology and
participating devices mostly are battery operated. This is because large scale wired infrastructure for
continuous power supply and connectivity to WSN nodes is not a viable option [7,8]. Similarly, delivery
of multimedia content (audio/video) in sensor networks, presents new distinct design challenges, and for
which specialised Wireless Multimedia Sensor Networks (WMSN) are designed. Energy conservation
is even more challenging in WMSN, because data are complex and large in size, whereas nodes are
battery powered mostly [8,9]. Excessive traffic may be injected into the network in such application
cases, which is not sustainable in constrained IoT networks. As a consequence, the network can become
congested, which results in high latency and packet losses. This becomes a massive source of energy
consumption/wastage, especially due to lost packets which were transmitted and partially traveled
on their multi-hop path. IoT devices have to consume additional energy if those packets may need
re-transmissions for information fidelity in reliable application or due to critical nature of the payload.

The commonly used approach in the literature for energy management is radio duty cycling, that is
enabling the IoT devices to turn off the transceiver during idle periods, having no data transmitting or
receiving [10]. However, in IoT sensing applications such as those discussed above, data communication
is to be continuous and/or with many packets [7]. Therefore, duty cycling opportunities are expected to
be very minimal, making this approach less functional and not helpful for energy saving. In the light
of duty cycling being less effective in such IoT applications, controlling the excessive traffic generation
becomes a key factor for achieving significant energy conservation. Traffic management of the network
can be done through controlling data sending rate and number of round trips in the form of number of
packets. Thus, efficient data management becomes crucial for longer operating times of IoT devices as
well as the lifetime of the network.

The channel contention is also increased when the data flows towards the neighbourhood of the
gateway node. This issue can be better seen in the example scenario presented in Figure 2. In such
circumstances, the nodes which are close to the gateway node are particularly under severe pressure. In
commonly used sensor network architectures, this kind of pressure is because of the extra contention
near a single sink, due to multi-path data forwarding to it. This phenomenon is also commonly referred
to as the energy-wave problem, as shown in Figure 2. Nodes shown in red colour are under heavy
pressure and their residual energy can quickly deplete due to excessive forwarding on behalf of other
nodes. Therefore, these nodes are critical in the IoT sensing applications and solutions like proposed in
this paper are needed to prolong their lifetime by avoiding unnecessary forwarding, as otherwise the
network would soon be disconnected.

The contributions of the study presented in this paper for efficient energy consumption and data
management in IoT sensing applications are as follow:

i. We proposed a scheme based on interfacing efficient web framework (GraphQL) and cloud services
with constrained application protocol.

ii. We implemented a testbed involving real IoT devices for evaluation of the proposed approach in
the target applications.

The rest of the paper is organised as follows. Section 2 is about related work. Section 3 presents
possible architectures for cloud-based IoT sensing applications considered in this research work.
The proposed approach and its implemented components are presented in Section 4. Setting up of
the experimental testbed is explained in Section 5. Results and discussions are included in Section 6.
The energy-wave problem alternate resolution is in Section 7. Section 8 concludes the work.

Electronics 2020, 9, 564 4 of 23

Access point

Server

Access point

Access point

Access point
Access point

Energy Levels

High

Medium

Low

Figure 2. The energy-wave problem in sensor network architecture.

2. Related Work

As the replacement of traditional web services based on REST architecture, Facebook released
GraphQL [11] and Falcor [12] was introduced by Netflix. Such solutions mainly target decreasing
bandwidth utilisation through implementing reduction in traffic generation involving connected nature
data. We base our work in this paper on incorporating these approaches for sensing application
scenarios in Contiki-based cloud IoT networks. In the literature, applying such an abstraction layer for
IoT applications has limited existence related to work in this paper, as we are not using the traditional
enhancement scheme of duty cycling which is found in many of the optimisations for energy usage.

Hartig and Pérez analysed GraphQL to understand properties of the language and also gave details
of semantics and complexity of its use [13,14]. They provided a solution to handle large size of GraphQL
response for Internet scenario and obtained computation as well as delay improvements, to show it is
helpful for more robust web interfaces. Vázquez-Ingelmo et al. [15] looked into complex data-driven
ecosystems which need high levels of interoperability and REST APIs are used as common approach
to achieve it. They leveraged benefits of GraphQL protocol and presented a case study achieving
benefits using GraphQL as main API in different parts of the ecosystem. Taelman et al. [16] presented
GraphQL-LD, a linked data querying in linked open data cloud for application development, which is
pushing for linked data consumption.

Sabharwal et al. [17] stated that usage of energy can be decreased by utilising the data
communication reducing schemes through power-aware applications. Our proposed approach in
this work is also reducing the data traffic by utilising an abstraction layer for combining the queries
to a single endpoint for multiple resources. Han et al. [18] emphasised reducing active slots in sensor
devices and their focus is on optimising the duty cycling mechanism. Piyare and his co-authors [19]
discussed hardware and networking details in low power wake-up radios. Our research is different as

Electronics 2020, 9, 564 5 of 23

we do not utilise the duty cycling scheme, as it is discussed in above section to be not fulfilling in the
case of our target high data rate applications. We achieve the power conservation and delay minimising
through incorporating the application layer for data transaction optimisation. Ram D. Sriram [20]
introduced a gateway as a service for transforming data from application layer protocol, for enhancing
the performance. We also use the same protocol CoAP at the application level in our work but integrated
it alongside the abstraction layer of graph-based querying and server layers. Translation like this between
application layer protocols for IoT implementation has also been introduced in some other research
works (e.g., [21–23]). These works mainly emphasise the mapping of IoT protocol CoAP and Internet
communication of HTTP, using a service such as Firebase. Similarly, F. Nogatz et al. [24] worked on
comparing GraphQL-based cloud service and traditional REST scheme, which gives a helpful insight for
transforming these implementations to one another for mapping purpose. In [25], the work introduced
REST Query Language (RQL) to minimise the number of data transactions in mobile applications.

The work presented in this paper is an extension of our previous study given in [26]. Previously,
we used GraphQL for duty cycling-based sensor networks to optimise active time slots through
round trips saving. The study presented in this paper, aims at achieving energy efficiency through
communication optimisation using GraphQL layer, in active IoT applications involving high data
sending. Several application layer frameworks and protocols are developed for IoT-based applications,
e.g., IoTivity, CoAP, REST etc. We integrated an abstraction layer based on GraphQL that works on
top of application CoAP layer, as a wrapper to optimise communication in IoT sensing applications.
In the experimental study presented in this paper, we implemented proposed GraphQL-based approach
and compared it with solutions based on REST architecture, which is the prevalent technology for this
purpose. Significant performance gain was observed when the results of the proposed scheme were
compared with this base-line scheme. We are quite hopeful that a similar performance gain can be
achieved in other cases using the proposed scheme.

3. Application Models for Cloud-based IoT

3.1. REST Architecture and Cloud-based IoT

REST (Representational State Transfer) is a web architectural style, which is built around Uniform
Resource Identifier (URI), HyperText Markup Language (HTML) and HyperText Transfer Protocol
(HTTP). It defines some constraints for web services and properties. It presents principles for server to
expose resources to its clients. However, in the modern age of agile technologies, REST APIs are lacking
the flexibility needed for the clients with dynamic requirements.

REST architecture is bound with HTTP protocol for data transport and it requires a separate
API endpoint for each server resource. For requirement of flexibility and maintainability, APIs may
need re-writing, when the domain data structure, components or users requirements are changed,
because endpoint definition in advance for every data request cannot be provided. An application has
to address multiple resources, if the data requested are of the complex nature from multiple entities
involving different types. Thus, it results in multiple round trips to collect the data.

REST being prevalent web architectural style is still used for accessing variety of data and even
for hierarchical nature data. However, for cloud-based IoT networks, it becomes draining because
of the limitations of the resources of involved constrained devices. It may become more worrying in
case of applications needing continuous large amount of data sending. Such type of applications need
communication efficiency, with less number of round trip times for data collection. Hence, IoT sensing
applications desire new solutions for cloud-based scenarios.

Figure 3 shows a scenario to the illustrate inefficiency of REST architecture in IoT sensing
applications submitting data to the cloud. Here, we have an IoT device attached to a smart car containing
two sensors, which is posting data to a cloud server. Each sensor needs to send its data to a separate
resource at server through its exposed endpoint. By using the REST architecture, multiple requests
are needed to submit data to each resource. Many examples of more complex scenarios can be easily
found in real-world IoT applications, e.g., a smart car having multiple sensors such as speed sensor,

Electronics 2020, 9, 564 6 of 23

acceleration sensor, location sensor, engine and fuel status sensors. Here, for the sake of clarity in the
example scenario, only two sensors are being considered, i.e., location sensor and speed sensor. Data
collected from these two sensors need to be sent to a cloud server where each sensor node has a separate
resource defined for its data, with a unique REST endpoint, i.e., /Car/Loc and /Car/Speed. Each sensor
datum will require a separate POST request and, therefore, in a smart city having thousands of smart
cars and other IoT devices, we can easily imagine the explosion in the network traffic. As a result, IoT
applications can suffer network congestion, resulting in packet losses and energy wastage.

To avoid such situations and improve the lifetime of the sensor nodes, as well as of the overall IoT
network, a suitable approach is used to decrease the number of data transactions communicated by the
application. One way to achieve this minimisation can be using data fusion at IoT node level or through
in-network data aggregation, but the constrained nature of IoT devices poses challenges for adopting
such complex data reducing algorithms. The other solution to control network traffic in cloud-based IoT
networks can be reducing the number of round trips needed for data posting from sensor nodes, and we
adopt this approach in our work.

REST ServerREST Client
Location
Resource

Speed
Resource...

Initialize

Get Data

POST Data /Car/Loc?Car-ID=1002

Store Data

Update

Ack

Ack

POST Data /Car/Speed?Car-ID=1002

Store Data

Update

Ack

Ack

loop

until End

Cloud Server

Speed SensorLocation Sensor

Data {Lat:126.12, Long: 34.251}

{
“Lat” : “126.12”
“Long” : “34.251”
}

Get Data

Data {Speed:60, Unit: km/h}

{
“Speed” : “60”
“Unit” : “km/h”
}

Client Side (Smart Car)

Figure 3. Smart car example scenario with multiple requests from IoT device to POST data to multiple
end-points using REST architecture.

3.2. GraphQL Framework and its Feasibility

GraphQL employs message exchange similar to any classical request–response system, but it
provides a single API endpoint on server for communication. GraphQL query language is used for
building client applications and it aims to combine all the data requests into one, resulting in reduced
number of requests for data retrieval/delivery. This approach can result in improvement of IoT network
performance by reducing the number of round trips for data exchange. It is also efficient due to the
reduction in size of data transactions, as clients can state their requests for particular fields of needed
data for their working.

GraphQL, developed in 2012, was internally used for three years by Facebook, but it was
open-sourced with a specification release in October 2015 [11]. Its latest release was released on 10
June 2018, and the most recent working draft on 20 June 2019. It is increasingly adopted since its
release and each day it handles hundreds of billions of API calls by Facebook applications’ data fetching.

Electronics 2020, 9, 564 7 of 23

Implementation of its modules in popular programming languages and tools for its interaction with
existing back-end technologies are available.

GraphQL enables flexible queries on linked (No SQL graph-based) data and its single endpoint
approach is backed by a structured hierarchical system for combining data of various sources. It does
the representation of data as set of nodes which is able to have nesting and relations with other nodes.
Its query is a set of hierarchical data fields requested and only those which are required are returned
to the client, resulting in reducing the size of data. Data requests are to be sent to a unique endpoint
for the unification, which means it requires a single URI to present all available data via its single API.
Figure 4 presents same example IoT scenario of a smart car with two sensors to illustrate the working
of the GraphQL-based client–server system. We can observe that, unlike REST architecture, data from
multiple sensors can be posted to the server in a single transaction. This way its reduction in the number
of round trips makes efficient use of available resources of the IoT network.

GraphQL
Server

GraphQL
Client

Location
Resource

Speed
Resource...

Initialize

POST Data /Car

Store Data

Update

Ack

Store Data

Update

Ack

Ack

loop

until End

Preprocessing

Cloud Server

Speed SensorLocation Sensor

Get Data

Data {Lat:126.12, Long: 34.251}

Get Data

Data {Speed:60, Unit: km/h}

{
 Car {
 “Car-ID” : “1002”
 Loc {

“Lat” : “126.12”
“Long” : “34.251”

 }
 Speed {

“Speed” : “60”
“Unit” : “km/h”

 } }
}

Client Side (Smart Car)

Figure 4. Smart car example scenario with IoT device POSTing data to multiple end-points in single
request using GraphQL architecture.

By analysing its efficiency features suitable for IoT sensing applications, our proposal for integration
of this web framework with IoT protocols and cloud services appears to be a viable solution.

4. Proposed Approach

Energy is the most scare resource in IoT devices as they are mainly powered by dry batteries
and, according to a study [27], around 60% of the node energy is consumed by the communication
sub-system. Due to a shared wireless channel, the chances of collision in data transmission and packet
losses arise when data transmission rate or number of active data sending nodes are increasing. A suitable
approach to address this challenge is to reduce the number of transmissions at individual node level,
which is beneficial in two ways: (a) energy consumption is reduced by the fraction of transmissions
reduced; and (b) reduced number of transmissions results in reduction of collision in data transmission,
thus avoiding energy wastage in packets re-transmission. Our proposed scheme addresses the energy
efficiency challenge.

As discussed in the previous section, GraphQL framework has suitable features which can be used
in sensing applications and it has no implementation dependency, which means it can be integrated with

Electronics 2020, 9, 564 8 of 23

constrained IoT libraries. We expected it to furnish efficient energy and bandwidth utilisation as well as
reduction in communication delays in IoT applications. Therefore, we were motivated to propose an
approach based on integration of its abstraction layer, cloud services and constrained application protocol
for IoT. In this paper, we interface a GraphQL abstraction layer with IoT CoAP protocol both on client
and server modules, and integrate in cloud services for efficient energy utilisation and data management.
We implemented a testbed based on our proposed incorporation of web/cloud technologies for IoT
applications, to evaluate on different scenarios posing various data injection challenges.

The proposed integration of graph-based web framework and constrained application
request/response structure is targeted for both scalar and multimedia sensing data. The experimental
study presented in this paper focused on the high injection of sensing traffic that is not sustainable by
the sensor network. Traffic minimisation is also possible by using local data fusion at IoT node level
to reduce the data into some scalar values. However, such techniques can fail where sensing data are
of different types and to be delivered to different end-points. The proposed interfacing of GraphQL
modules with CoAP protocol has the features to optimise network traffic of diverse data, serving the
respective data repositories and the clients. GraphQL framework adds hierarchical data communication
possibility with data having multiple relationships, otherwise needing separate trip times for delivery in
REST style. IoT networks with large deployments and frequent data communication even having scalar
sensor data can become congested and need lightweight schemes such as the one presented here.

The proposed approach for wireless sensor networks-based IoT applications involves cloud services
and maintaining client–server architecture, where implementation is running client side on sensor nodes
and cloud services are providing residence for the server side. We integrate the GraphQL abstraction
module on our client side in the form of GraphQL query language and we incorporate its default module
named as Runtime on the server side hosted in Google cloud functions. This implemented Runtime
provides data exchange according to the configuration by clients where they can mention the filters,
operations and structure of the received data in the aggregated queries. Figure 5 presents the block
components of the proposed scheme integrating cloud services, web framework, and interfacing with
IoT CoAP protocol, showing their positions on client/server side of the system.

In our proposed methodology, GraphQL abstraction layer is used to represent IoT data in graphs and
queries notion, which makes the paradigm scalable and flexible. If we need modification of data objects,
it is done as the modification in graphs, making evolution and changes very simplified. The graph query
module on client side of the implementation provides flexibility by allowing IoT clients to design any
specific query. Therefore, server does not need implementing endpoints for all possible data requests.
The client sensor layer can specify the data exchange requirement in a declarative manner and it achieves
only the required data transaction, nothing extra is bundled in the object.

Server / Cloud

GC Functions

GraphQL RunTime

IoT Device

P
a

rs
e

r

R
e

s
o

lv
e

rs

S
c
h

e
m

a

C
o

A
P

 M
o

d
u

le

C
o

A
P

 M
o

d
u

le

G
ra

p
h

Q
L
 Q

u
e

ry

S
e

n
s
o

rs
 M

o
d

u
le

Storage

Firebase

Figure 5. Components of the integrated framework on the client and server sides.

Electronics 2020, 9, 564 9 of 23

The integration of GraphQL and cloud services results in the reduction of round trips for CoAP
application, when IoT devices have to deliver data to the cloud storage. For example, if an IoT device
has to post a data sample having one-to-many association, the classical REST way of communicating
these data will need one endpoint for the parent entity and one for the child entity, and it will use two
request–response round trips to send the data. In our proposed implementation, these two entities are
unified in a single query on client side and delivered in a single round trip to the server hosted on cloud
functions. Thus, this approach can result result in saving many round trips of communication for large
complex data having many complex structures, thus saving energy and time for submitting the data.

The web framework integrated in the proposed implementation provides a unified abstraction layer
having an internal schema and resolver/parser for storage repositories. It also allows the change in
technologies of front and back-end for varieties of applications. In the following subsections, we further
discuss the integrated client-side graph-based data query module used to send data requests of the
application and Runtime module of the server side hosted at cloud functions, which entertains these
requests. We show the level of proposed scheme implementation in Figure 6.

In some cases, data processing can be a major source of energy consumption for IoT nodes when local
processing is done to reduce the data into some scalar values. In such cases, our proposed strategy will
be limited, as we are targeting to achieve energy efficiency through communication management. Thus,
the utility of the proposed scheme is in proportion to the energy consumed in communication. Local
processing can be used to reduce communication traffic and, in that case, those processing algorithms
will be more power consuming modules [9]. However, the constrained nature of devices is again a hurdle
in application of complex data processing modules. Even after using some local processing techniques,
network traffic still can be have ample volume, thus our technique of communication optimisation
remains a useful proposal.

We discuss the details of block components of the proposed scheme in the subsequent sections.

Sensors

In
te

rn
e

t/
M

id
d

le
w

a
re

s1 ... sn

A
p

p
li

ca
ti

o
n

La

y
er

Clients

Firebase Resources

P
h

y
si

ca
l

La
ye

r

Internet

Resource 1

Resource N

...
Cloud Server

Gateway

G
ra

p
h

Q
L

Se
rv

er

Figure 6. Layered setup of the proposed architecture for supporting IoT sensing applications.

Electronics 2020, 9, 564 10 of 23

4.1. Server-Side Implementation

Base libraries for server-side environment for fulfilling graph-based data queries provide reference
specification. We adopted these libraries as base for server-side implementation of the interfacing in
proposed scheme. The integrated Runtime server makes a unified abstraction layer at the REST level to
contain internals of the system.

The framework Runtime server hosted at cloud functions does not have data model definition.
It implicitly uses a logical model-based over storage layer of the server side, with a hierarchical
graph-based view. Thus, the incorporated server layer makes underlying data representable in a
directed labeled multi-graph having nodes and labels. This Runtime is not dependent on the data
back-end and other underlying modules in the architecture. Client applications of different IoT devices
can send requests to single endpoint of the server. Client requests must be sent to it in a clearly defined
query formed as plain text, structuring it hierarchically in a unified entity involving all date associations.
The server module integrated with CoAP layer executes the received query and sends back a JSON
object, having entities/relations from multiple data sources of the storage service.

4.2. Client-Side Interfacing

The query language module integration is the main enabling component of the client side in our
proposal. This module integrated with CoAP layer is used to send data exchange messages to the
respective server abstraction hosted on the cloud services. As stated above, format of the queries is
similar to JSON objects, but these requests are supported by the server layer in the cloud. At the Runtime
server integrated in our proposed approach, the general structure of possible queries is defined prior in
the application.

In our proposed setup, the GraphQL server module implementation provides a unified interface in
cloud-side system for data storage service interactions. Its back-end revolvers have specifications of the
data fields which are available for client queries. POST request of CoAP layer is employed for query
sending containing object as the payload. The client side uses query structure to dictate the response
object construction, making the proposed approach a client specific scheme.

The schema module in the server side contains the set of fields to define types of involved data
objects. The server environment is able to provide result filtering, because query fields are similar to
program functions, able to take arguments and return the required values only. The size of the result
object is the combination of sizes of requested fields, unlike the classical architecture which extracts
all the fields of an interface causing over-fetching of data. This over-fetching control feature provides
further efficiency on client side in constrained devices-based IoT sensing applications.

4.3. Scheme Formulation

Cloud computing, fog computing [28] and edge computing [29] are different computational models
being explored in the paradigm of IoT. Cloud computing focuses on centralised management, whereas
the other two involve computation near the source devices. These technologies are vital for the
realisation of IoT. We can use the cloud computing for the delegation of computationally intensive
processing and centralised management of IoT. It can facilitate implementing and executing different
software applications across diverse devices involved in the IoT network. This suits the incorporation of
abstraction layer in our proposed approach. Implementation of GraphQL-based proposal is workable
as it is an application layer framework and we can use it with any back-end frameworks meeting its
protocol specification. Another point of its implementation feasibility is that GraphQL is not dependent
on any specific transport protocol for client–server communication because of keeping its data of queries
and responses in the payload.

In typical IoT networks, sensor nodes are generating data at some specific rate or when some
particular event is detected. Data are usually sent to the neighbouring gateway node where necessary
processing can be carried out. Gateway nodes then forward the data to the central server (sink) node
for further analysis. Figure 7 shows the typical scenario of IoT network where multiple source nodes
are connected to the central sink node through intermediate gateway nodes. Let’s consider Si be the ith

Electronics 2020, 9, 564 11 of 23

source generating data of total size di with a particular data rate ri. Every source node Si is connected to
a gateway node Gi where GraphQL client is deployed to perform necessary aggregation and then data
are forwarded to the sink node.

G1

S1

S2

...

Sn

G2

...

Gn

Sink

d1

d2

dn

Figure 7. Typical scenario of IoT network where multiple source nodes are connected to the central sink
node through intermediate gateway nodes.

Data aggregation at each gateway node depends upon the data receiving rate from the connected
source nodes. Afterwards, data transmission time tbi for a single packet by each gateway node depends
on the aggregated data size bi at respective gateway node. Brief descriptions of the various symbols used
in the formulation are given in Table 1.

Data transmission time tbi for a single packet by each gateway node can be computed as below

tbi = RTS + CTS + Tx(bi) + Ack (1)

For total data di generated by source node Si with data sending rate ri, minimum transmission time
minTxi is given by

minTxi =
di

pi × ri
(2)

The actual total transmission time to send out the application data amount from the sensor node to
sink node is the sum of the time spend in transmission, receiving, idle and sleep states [30]. However,
Equation (2) provides a simplified model for minimum transmission time (theoretical) from sensor
node to its next-hop gateway node assuming the node is not facing any interference or contention.
For instance, a node has to send 1000 Bytes of data (including packet headers) to its gateway node
and the data sending rate is 5 packets per second where packets size is 100 Bytes. Then, the minimum
transmission time minTxi for this node becomes 2 s, computed using Equation (2).

Electronics 2020, 9, 564 12 of 23

Table 1. Description of the symbols used in the formulation.

Symbol Description

Si ith source node

di Total data generated by source Si

ri Data generation rate by source Si

pi Packet size at each source node

Gi ith gateway node

bi Aggregated data size at Gi

tbi Data transmission time by gateway node Gi

minTxi Minimum transmission time for data generated by source node Si

maxTxi Maximum transmission time for data generated by source node Si

Ai Total number of aggregated packets at gateway Gi

φi,k Scheduling interval for kth packet at gateway Gi

α Starting time of an interval

β Ending time of an interval

θGi Throughput of gateway Gi node

Total number of aggregated packets Ai at gateway Gi becomes

Ai =
di
bi

(3)

As all gateway nodes are directly connected with the sink node, at any given time instant, only one
gateway node can forward the packets. Let φi,k = [α, β] be time interval at which kth packet at gateway
Gi node is scheduled where α and β are the start and end time of this particular interval. Given above
formulation, maximum transmission time maxTxi for total data di generated by source node Si can be
computed as

maxTxi = φi,Ai (β) (4)

whereas throughput θGi of gateway Gi node becomes

θGi =
di

φi,Ai (β)− φi,1(α)
(5)

Overall network throughput θG can be formulated as below

θG =
∑n

i=1 di

max(φi,Ai (β))−min(φi,1(α))
(6)

The goal is to maximise overall throughput while minimising the transmission time at individual
gateway nodes. Thus, objective function can be formulated as below

θG
max(φi,Ai (β)− φi,1(α))

(7)

Constraints:

0 < minTxi ≤ maxTxi for all i = 1...n (8)⋂
(φi,k, φj,l) = ∅ for all i = 1...n and i 6= j (9)

‖φi,k‖ = tbi for all i = 1...n (10)

Electronics 2020, 9, 564 13 of 23

5. Experimental Testbed Setup

In detailing our experimental testbed, we first discuss our server-side setup of Runtime with cloud
services. For our setup implementation, we used the state-of-the-art cloud services of Google Platform
infrastructure. Google has introduced Firebase storage services for IoT data and which gained popularity
as NoSQL cloud storage [31]. We evaluated our GraphQL-based approach in IoT applications through
experiments using real IoT devices (Z1) and Firebase appears to be an effective cloud service storage
for our designed testbed for experiments. For our experimentation of server-side module, we also used
cloud functions for hosting. The Runtime environment was hosted via Google Cloud Functions and it
connects the server-side Firebase service with the client-side GraphQL queries.

NoSQL-based databases used as cloud services and its types, which store data in an aggregated
form offering single view data retrieval, are called aggregate-oriented NoSQL databases. The category
of graph-based NoSQL databases provide multiple views of data. This ability comes from storing
data as graph nodes and putting relationships as labels on the edges of the graph, but this category
takes advantage of a standard language for data querying. Firebase is an aggregate-oriented NoSQL
database for storage in the cloud environment, in which data are discrete, thus lacking support for
relationships, in comparison to graph databases. Therefore, our implementation needs a parser for using
Firebase with GraphQL-based implementation to store high connected data in discrete data storage.
Thus, we used cloud functions of Google to host the required parser, which translates GraphQL queries to
the underlying storage. The specification’s Runtime implements this parser for storing highly connected
data, received from IoT nodes, in the discrete data cloud storage of Firebase.

As far as choosing GraphQL query language on client side IoT devices for our implementation is
concerned, GraphQL has introduced a new way of clients querying an API. There are also some other
query languages available for graph databases, but they mostly have dependencies on other software.
Therefore, their acceptance as standard in the domain could not be possible. The GraphQL query
language has an inherent design of API interaction. As Firebase database can also allow interaction
through APIs, we chose it in our implementation with API facing GraphQL.

The experimental setup/testbed used in this research comprised of real IoT devices Z1 manufactured
by Zolertia, having low power MSP430F2617 micro-controller, with 16 MHz RISC CPU, 8 KB RAM and
92 KB internal memory. Deployment was done in real indoor environment of university environment
with walls, people’s mobility, WiFi interference, etc. Moreover, connectivity and traffic scenarios were
changed in many ways to check different possible real world situations. Figure 8 shows a snapshot of a
typical scenario of our working setup.

For our IoT devices, we used Contiki OS with its default implementation and used IEEE 802.15.4
standard protocol on lower layers of the stack. Data transmission was limited to 250 kbps and 2.4 GHz
radio band was used as a medium for channels. We used RPL of the Contiki stack as the routing layer
protocol and radio duty cycling was set to off, to make a case study of continuous sensing IoT scenarios.
At the MAC layer, we enabled re-transmissions for one-hop packet reliability and the border router using
RPL DODAG worked as a gateway for connection with the cloud services. The messages used for sensor
values were of POST nature used to deliver data to destination end-point repositories with typical size of
96 bytes under Contiki OS layered stack. Energy values were measured using Powertrace [32], a network
level power profiling model for low power wireless networks. It uses a linear power model to estimate
the power as the sum of all active power states and energy of the system is derived from the time spent
in each power state. For example, CPU in sleep and active modes are separate power states and radio
transceiver in transmission or listening modes adds separate power usage to the energy model. Table 2
shows the configuration of IoT devices and the server system used in this set of experiments.

Electronics 2020, 9, 564 14 of 23

Figure 8. Indoor experimental setup with real Z1 motes to evaluate the proposed approach for IoT
sensing applications.

The proposed approach uses communication optimisation through traffic minimisation and thus
helps in relieving the bottleneck issue possible due to hierarchical setup. This problem can be better
explained through an example scenario, as presented in Figure 2. The nodes near sink are critical and
solutions such as those proposed in this paper are needed to prolong its lifetime by avoiding unnecessary
forwarding as otherwise the network will soon be disconnected.

Figure 9 shows the experimental topology scenarios used in our study for performance evaluation
of the proposed approach. In Scenario 1, we have a single IoT device (real Z1 mote) with multiple sensors
attached to it, and its data are posted to separate resources on the cloud server. In Scenario 2, we increase
the number of IoT device (Z1 motes) to study the impact of increased traffic/contention around the
gateway node. In Scenario 3, some of the IoT devices are not in direct communication range of the
gateway node and this scenario is to study the impact of multi-hop communication on the performance
comparison of the proposed approach against baseline REST schemes.

In these experiments, a CoAP server residing at cloud maintained three data resources/services and
an IoT device must submit data to one or more of these repositories. In cloud-based IoT applications,
these data resources can be assumed as a server providing different services to the clients, who subscribed
to these resources, with each of the resources getting data from separate sensors of the field IoT devices.
In these experiments, real IoT devices Z1 are used as the senders and as the border router attached
to the gateway. These IoT motes use client–server mechanism of IoT CoAP protocol and its Er-rest
implementation in Contiki OS to achieve data submission to the resources at the cloud system.

In our experiments, we considered scenarios of putting more traffic injection into the system using
typical sensors available on our Z1 devices with Contiki OS layered stack sending adequate message
sizes. We want show high traffic scenarios with multiple sensors and data destinations using multiple
motes. We addressed the issue of high data traffic and its management in general, but mainly non-scalar
sensor data can be the reason of network congestion and a good candidate case of the proposed approach.

Electronics 2020, 9, 564 15 of 23

Table 2. Configuration details of Server and IoT devices used in experimental setup.

Component IoT Device Server

Hardware Zolertia Z1 MCU: MSP430F2617

Google Cloud Services
Radio: CC2420

RAM: 8 kB

ROM: 92 kB

Operating System Contiki OS Ubuntu

Development Tool Cooja, Eclipse Python

Libraries and Frameworks GraphQL client, Query Language Firebase, GraphQL Runtime

Sensors

s1 s2 s3

Firebase Resources

Internet

Resource 1

Resource 3Cloud Server

Gateway

R
ES

T/
G

ra
p

hQ
L

S
er

ve
r

Resource 2

Z1 Mote

REST/GraphQL
Client

Sensors

s1 s2 s3

Firebase Resources

Internet

Resource 1

Resource 3Cloud Server

Gateway

R
ES

T/
G

ra
p

h
Q

L
S

er
ve

r

Resource 2

Z1 Mote

REST/GraphQL
Client

Firebase Resources

Internet

Resource 1

Resource 3Cloud Server

Gateway

R
ES

T/
G

ra
p

h
Q

L
S

er
ve

r

Resource 2

Scenario 1 Scenario 2 Scenario 3

Figure 9. Experimental scenarios for performance analysis of the proposed scheme.

6. Results and Discussion

Our proposed approach is helpful in prolonging operational lifetime of IoT devices and overall
network by achieving energy efficiency through communication optimisation. The proposed approach is
effective in two cases: (a) current IoT networks with sparse deployments; and (b) future IoT networks
with expected dense deployments. Experimental results presented in this paper were collected in a
testbed environment with 4 IoT devices contained in a single site and significant (51–52%) improvement
in achieving energy efficiency was observed. These results gives us confidence to further explore and
evaluate proposed idea in a bigger experimental setup with a higher number of IoT devices.

In this section, we discuss the results obtained from all three experimental scenarios. Comparisons
include three approaches: (i) rest-2R needing two round trip (REST-based approach subscribed to two
data resources); (ii) REST-based sending to three resources (rest-3R needing three round trips sending
each for separate resource endpoint); and (iii) our proposed approach based on abstraction layer to send
data to three cloud-based data resources.

6.1. Scenario-1

In this scenario, we have single IoT device (Z1 mote) with multiple sensors attached to it, and the
data are posted to separate resources on the cloud server. Here, we show delay and energy consumption
results on increasing transaction loads (in form of data sending interval) in Figure 10. The results were
collected with varying packet sending interval from 2 to 0.5 s, with a step size of −0.5. With an increase
in data sending rate, we observe increase in the delay values. REST-based scheme with three resources
subscribed suffers greatly and around 100 ms delay increase is observed when the data sending interval

Electronics 2020, 9, 564 16 of 23

is reduced from 2 to 0.5 s. However, the proposed scheme results in the lowest delay for all the cases.
Furthermore, we observe the increase in the delay for it is marginal with increase in data sending rate,
which shows that the proposed approach is more robust and resilient, and hence more suitable for IoT
sensing applications.

Energy consumption results also exhibit a similar pattern. A significant increase in energy
consumption is observed for the REST-based schemes, on all the data sending intervals and further
increases when the data sending rate is increasing. The proposed approach outperforms the baseline
REST-based schemes and achieves delivery of the same data using less than half energy cost. Packet
Delivery Ratio (PDR) and throughput results for this scenario are not meaningful (hence, not reported),
as there is no notable packet loss or throughput changes for this one device-based evaluation scenario.
Spread of the values has been shown by error bars for both the metrics and we can see better performance
confidence for proposed GraphQL-based approach.

2 1.5 1 0.5

0

200

400

Data Sending Interval (seconds)

D
el

ay
(m

s)

rest-2R rest-3R Proposed Approach

2 1.5 1 0.5

0

0.5

1

Data Sending Interval (seconds)

En
er

gy
(m

J)

rest-2R rest-3R Proposed Approach

Figure 10. Scenario 1: Average delay and energy consumption comparison of proposed approach against
REST based communication to two and three data resources.

6.2. Scenario-2

This scenario has device configurations as in Scenario 1, but we varied the number of IoT client
devices (number of Z1 motes ranging 1–4) in a dumbbell-shaped network topology, having all the
devices/senders in direct one-hop connectivity to the border router/cloud gateway. Here, offered/data
load increases in the form of multiple active senders ranging from one to four devices. Comparisons was
done among: (i) rest-2R (nodes registering data to two resources with separate endpoints); (ii) rest-3R
(sender nodes submitting data to three separate resources at the cloud with CoAP server); and (iii) using
proposed framework implementation for sending data to three cloud resources. Here, we also show
results for PDR and system throughput (in terms of number of successful data transaction) in Figure 11,
because all the sender devices are in the same contention area to the border node in the used topology.
For both values, the proposed scheme shows better performance in comparison to REST architecture.

With the increase in offered data load, increase in the delay is minimal and values are lowest for
the proposed scheme in comparison in all the cases. Both the REST architecture schemes with two
and three resources subscription have started to suffer when three active devices are communicating
simultaneously. Similarly, the least used and the marginal increase in energy consumption is observed in
the proposed scheme with increase in offered load, but the REST-based approach are behind and their
energy consumption increase is linearly going up when multiple devices submit their data to the cloud
data repositories. These schemes also suffer in terms of packet losses on high load and rest-3R scheme
shows significant wastage of energy in terms of data loss on load of four active devices. The throughput
result also shows some achievement in the case of the proposed framework.

Electronics 2020, 9, 564 17 of 23

1 2 3 4
0

200

400

600

D
el

ay
(m

s)
rest-2R rest-3R Proposed Approach

1 2 3 4

0

1

2

En
er

gy
(m

J)

rest-2R rest-3R Proposed Approach

1 2 3 4
0.92

0.94

0.96

0.98

1

No of Senders

PD
R

1 2 3 4

1

2

3

4

No of Senders

Th
ro

ug
hp

ut
(t

ra
ns

ac
ti

on
s)

Figure 11. Scenario 2: Delay, energy consumption, packet delivery ratio (PDR), and throughput on
different Loads.

The proposed approach outperforms state of the art REST-based schemes in this scenario too and
achieves energy-efficient, in-time delivery with a minimum loss of data packets. In the graphs of delay
and energy, we can see the the proposed approach also shows better spread of the values with confidence,
in comparison to other two schemes.

6.3. Scenario-3

In this scenario, we tested the performance of our proposed system implementation for hop-by-hop
communication in IoT sensing application. We used four Z1 nodes in these experiments, with one mote
acting as border router/gateway and three motes as set of hop-by-hop sending devices. We collected
results for four metrics: delay, energy, PDR, and throughput. Our results, as shown in Figure 12, clearly
establish that proposed scheme is much better in energy consumption as well as all the other three
metrics. In hop-by-hop communication with increasing distance in terms of hops, energy consumption
and delay increase for the proposed approach is normal. However, REST-based approaches, especially
3R-rest communication, face disastrous output in the maximum three hop case. Similarly, packet loss
for rest-2R and rest-3R are higher when the number of hops is increased but the proposed architecture
maintains its PDR as well as throughput results. It significantly outperforms the REST schemes on all
the metrics.

6.4. Results Summary

In these experiments, we observed a 46.27% increase in delay using REST architecture, when
the number of subscribed resources (end-points) is increased from two to three. On three subscribed
resources (rest-3R), REST results in an average delay of 481.48 ms, whereas the proposed approach could
achieve an average delay of 159.54 ms, i.e., a significant 66.86% reduction in delay. Our experimental
results reveal that the average amount of energy consumption increases from 1.04 to 1.53 mJ when
the number of subscribed resources (end-points) is increased from two to three using REST-based
architecture. However, average energy consumption for the proposed scheme was recorded as 67.97
mJ, i.e., 52.88% and 67.97% reduction as compared to the baseline REST architecture with two and three
end-points, respectively.

Electronics 2020, 9, 564 18 of 23

1 2 3

0

500

1,000

D
el

ay
(m

s)
rest-2R rest-3R Proposed Approach

1 2 3

0

2

4

En
er

gy
(m

J)

rest-2R rest-3R Proposed Approach

1 2 3

0.8

0.85

0.9

0.95

1

No of Hopes

PD
R

1 2 3

0.8

0.85

0.9

0.95

1

No of Hopes

Th
ro

ug
hp

ut

Figure 12. Scenario 3: Average delay, energy consumption, PDR, and throughput comparisons with
increasing number of sender hopes.

Comparative analysis of packet delivery ratio (PDR) and throughput results show that all schemes
achieve satisfactory results. There was no significant impact on PDR using REST architecture with the
increase in number of end-points from two to three and this is because fewer nodes (Z1 motes) were used
in experimental scenarios. There was very little room for improvement in performance for the proposed
approach and only 4.16% and 7.5% improvement was observed in PDR and throughput, respectively.

The proposed approach achieves this performance because it can deliver the same data with a
reduced number of round trips, thus saving a significant amount of energy that is highly desirable in
IoT networks. This concludes our discussion on experimental results conducted in a controlled testbed
environment with a limited number of IoT devices. These results give us the confidence to test the
proposed approach in a more congested and challenging setup involving higher number of nodes to
further validate its performance.

7. Energy-Wave Problem and High Power Communication

The energy-wave problem can be raised in dense IoT networks where data are communicated to
gateway nodes in multi-hop fashion due to communication range limitations of constrained devices.
We focus on IoT networks with high data rate above, either due to multimedia sensors or dense
deployment with frequent reporting scenarios. Such networks using multi-hop data collection, e.g., in
Scenario 3 of our experimentation, face the energy-wave problem. Our proposed approach can help
in overcoming the energy-wave problem through traffic management in constrained IoT networks
with high data sending rate. We considered the energy-wave problem and tested an added proposal
for overcoming it. Our approach was using direct high power communication instead of low power
multi-hop data sending. We obtained supporting results for this test case by changing the communication
range of involved devices.

IoT devices are constrained in energy supply and communication range. Multi-hop communication
is used for long range IoT applications connectivity. Channel contention is increased when the data
flow towards the neighbourhood of the gateway node and hierarchical connection may face bottleneck

Electronics 2020, 9, 564 19 of 23

issues. This phenomenon is also commonly referred as the energy-wave problem, as shown in Figure 2.
We propose high power single hop connectivity as efficient alternative to multi-hop data delivery and
resolution of energy-wave problem. We discuss supporting results obtained on real experiments based on
our implementation of GraphQL-based abstraction layer using our IoT testbed in outdoor environment.

7.1. Hierarchical Connectivity Bottleneck

The Internet of Things (IoT) revolution promises to make “things” including electronic, industry,
health devices and home appliances part of the Internet world. Most of the devices in Internet of Things
paradigm have to be constrained in energy supply powered by batteries with wireless connectivity.
Therefore, energy efficiency is a driving factor regarding design of IoT applications’ architecture.
Communication over wireless channels is responsible for the large portions of energy consumption of
the IoT devices. Therefore, IEEE 802.15.4 wireless communication standard was designed to extend
the lifetime of IoT power sources by using low power transmissions. It provides low-rate, short range
connectivity between communicating devices. Hop-by-hop communication-based mesh architecture is
suggested in long range needing IoT applications [33]. In multi-hop topology, end-to-end communication
between a data sender and destination is achieved by using intermediate nodes as forwarders in routing
path. This architecture provides the connectivity between ends through multi-hop paths by using low
power low range transmissions in hope of energy saving but communications’ quality of service is
deteriorated [34].

We tested the assumption of communications suffering in hop-by-hop communication for long
range data transmissions. We suggest direct one-hop high power transmissions for achieving long range
connectivity for better quality of service. We tested our case on real IoT research motes on a basic set
of experiments of increasing data rates and found supporting results to our position. For high power
direct connectivity, we obtained up to 15 times less average delays and more than four times higher
response receiving rate at high data sending rates. Even energy consumption is better conserved in high
power case due to in-time high rate data delivery, causing less duty cycling for IoT devices. We obtained
the best result of energy saving at one request per second rate and it is six times lower than multi-hop
data delivery. Single hop communication causes much less duty cycling for the sender in high power
communication case, which is also one of the main reasons for low energy consumption.

7.2. Communication Setup and Test Findings

We designed experiment scenarios to test our assumption and suggested high power
communications. We used four Zolertia Z1 IoT motes with a custom small external antennas to enable
short hop ranges in lab environment, running on Contiki OS for IoT. IETF standard ReST-based CoAP
protocol is often used in modern IoT applications, thus we used Contiki implementation [35] of this
request–response protocol for our IoT communications. In all the trials, there was a sender node
providing in-field sensing service in response to periodic requests by a client installed on a server laptop,
sent via Z1 mote acting as IoT gateway node. In each experiment trial, the client made 100 requests for
sensors’ data and variation in frequency of requests massages was done to check effect of different data
load on the IoT system.

We used two topologies for connectivity experiments, in which sender and receiver gateway were
placed 12 m away in an indoor/home environment. In first scenario, low transmission power equal
to −25 dbm (0.0032 mW) was set to restrict direct connectivity. Connectivity for data communication
was provided by placing two z1 motes in between at equal distances with same transmission powers
(−25 dbm) to act as intermediate forwarders. We made sure that each mote had connectivity range
only to next forwarder and communication was really happening via multi-hop path. In the other
scenario, we switched off intermediate motes and increased the transmission powers to −15 dbm
(0.0316 mW), which was sufficient to provide direct connectivity between in-filed sensing server and
gateway node. The intervals between periodic request messages were varied as 10, 5, 1 and 0.5 s
providing message sending rates 0.1, 0.2, 1 and 2 per second, respectively. We measured average round
trip delays, average energy consumption by sender per request–response message exchange, average

Electronics 2020, 9, 564 20 of 23

response receiving rate achieved at receiver gateway per second and duty cycling to be done by sender
node per request–response exchange.

All the results comparisons in Figure 13 are on the same set of experiments and variations. The only
difference is of transmission powers to provide connectivity between sender and receiver. We consider
the results in Figure 13 one by one.

0.1 0.2 1 2

0

1

2

3

(a) Average Delay (s)

0.
99

0.
83

2.
51

2.
35

0.
23

0.
12

0.
12

0.
15

Message Sending Rate

D
el

ay
(s

ec
on

ds
)

3-Hops 1-Hop Direct

0.1 0.2 1 2

0

1

2

(b) Response Rate (/second)

0.
10 0.
20 0.

40 0.
45

0.
10 0.
20

1.
01

2.
00

Message Sending Rate
R

es
po

ns
e

R
at

e
(/

s)

3-Hops 1-Hop Direct

0.1 0.2 1 2

0

1

2

(c) Energy consumption (mJ/msg)

1.
16

1.
10

1.
53

1.
07

0.
61

0.
39

0.
26

0.
24

Message Sending Rate

En
er

gy
(m

J/
m

sg
)

3-Hops 1-Hop Direct

0.1 0.2 1 2

0

20

40

(d) Duty Cycling (%/msg)

1.
66 3.
10

19
.2

9

33
.8

7

0.
77

1.
02 3.
14 5.

90

Message Sending Rate

D
ut

y
C

yc
lin

g(
%

)

3-Hops 1-Hop Direct

Figure 13. Results comparisons with respect to increasing message sending rates.

Delay: Average delay for direct connectivity case Figure 13a is much less on all the request sending
rates. The average for all four sending rate experiments is 0.62 s for direct connectivity case, whereas it is
8.5 s for hop-by-hop case. The high power case is five times better at low sending rates and 15 times less
on high data rates in comparison to multi-hop communication. Its values are not much affected by more
load in shape of high message rates on the system, whereas hop-by-hop architecture suffers by the load
and delays are increased on high data rates.

Response Receive Rate: The response receiving rate on increasing request rates in Figure 13b
are very encouraging and, on high data rates, direct connectivity scenario delivers all the data in
time. The hop-by-hop case suffers severely at high load rates and is unable to deliver the data even in
reasonable time. On two requests per second rate, direct transmission delivers at two packets per second,
whereas hop-by-hop communication is only able to deliver at 0.45 packets per second. It is 4 times less
than request sending rate as well as delivery rate of multi-hop case. On high data sending rates of 1
and 2, to complete the total 100 request/response exchanges, direct connectivity case needed 100 and
50 s, whereas hop-by-hop communication took 253 and 244 s, respectively. This is one of the major
reasons for high energy usage for three-hop case because it has to run for 2.5–5 times longer, utilising the
extra power.

Energy Consumption: Now, if look at the energy consumption of both the cases Figure 13c,
it is more interesting to observe these results. Direct connectivity case even outperforms hop-by-hop
communication in energy consumption on all data rates despite using much high transmission power.

Electronics 2020, 9, 564 21 of 23

The greater is the sending rate of requests, the greater is the difference and benefit per message exchange
because, at high rates, data flow as a stream and control packets are fewer. At one request per second,
direct connectivity consumes six times lower energy per message than multi-hop communication.

Duty Cycling Faced: Average duty cycling faced per message exchange Figure 13d shows the
second main reasons for less energy usage. In hop-by-hop case, sender has to perform more duty cycling
on all the sending rates. The highest case is at message rate 2 where it goes to 33.87% in comparison 5.9%
by direct communicating sender.

Other reasons for high energy consumption and duty cycling in multi-hop case are packet losses,
more control packets and channel contention problems due to more no of communicating devices. Packet
losses and resultant retransmissions are obvious from the fact that calculated packet delivery ratio (PDR)
dropped up to 0.8 on high data rates, which means 20% extra data communication and hence extra
energy usage, duty cycling and total time for data delivery.

On all the metrics, the direct connectivity high power case outperforms the hop-by-hop connectivity
despite using about 10 times lower transmission power by sender in multi-hop communication.
By analysing these preliminary results, high power transmissions-based direct one hop communication
appears to be a promising option for IoT connectivity extending. Application quality of service is
expected to improve in comparison to multi-hop communication and even energy consumption is
reduced due to in-time, loss free delivery and reduced duty cycling. We have further verification plans
for extensive long range outdoor experiments about 100 m distance and testing the case with multiple
IoT application protocols.

8. Conclusions

The realisation of large scale IoT sensing applications faces many challenges due to the constrained
nature of involved devices and traditional communication protocols. GraphQL is an application layer
framework introduced by Facebook to resolve the efficiency challenges of communication in web-based
linked data. We leveraged its appropriate features as the abstraction layer and implemented that layer
for sensor network-based IoT application scenarios. We studied the performance of our incorporation on
real IoT motes (Z1) having Contiki OS, through experiments involving different scenarios, which depict
continuous sending IoT sensing applications. Through our empirical studies of the proposed approach,
we got the strengths of GraphQL-based abstraction layer validated for our target cases, by achieving
a significant improvement in the usage of energy (52–68% reduction) and transaction delays (51–67%
reduction). We also considered energy-wave problem faced in hierarchical structure adopted for
multi-hop IoT communication and tested a proposal of high power direct communication using our
testbed to relive this issue. We obtained improved performance in this case too for our experimental
setup. Therefore, we suggest utilisation of modern web software through efficient integration in modern
IoT applications. We aim to further strengthen our proposal through more use cases in large IoT networks
via different applications of such modern technology. Our implementation and experimental study will
help the research community and industry to make knowledgeable decisions and do further exploration
in utilising web-based technologies for emerging IoT applications involving large scale implementation.

Author Contributions: R.K. and A.N.M. discussed and confirmed the idea. R.K. carried out the experiments,
analysis and wrote the main paper. R.K. and A.N.M. did reviews and editing. A.N.M. was supervising the work.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Boccardi, F.; Heath, R.W.; Lozano, A.; Marzetta, T.L.; Popovski, P. Five disruptive technology directions for 5G.
IEEE Commun. Mag. 2014, 52, 74–80. [CrossRef]

2. CISCO White Paper. Internet of Things at a Glance. Technical Report. Available online: https://www.
cisco.com/c/dam/en/us/products/collateral/se/Internet-of-things/at-a-glance-c45-731471.pdf (accessed on
14 September 2019).

http://dx.doi.org/10.1109/MCOM.2014.6736746
https://www.cisco.com/c/dam/en/us/products/collateral/se/Internet-of-things/at-a-glance-c45-731471.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/se/Internet-of-things/at-a-glance-c45-731471.pdf

Electronics 2020, 9, 564 22 of 23

3. Ahmad, I.; Kumar, T.; Liyanage, M.; Ylianttila, M.; Koskela, T.; Bräysy, T.; Anttonen, A.; Pentikäinen, V.;
Soininen, J.P.; Huusko, J. Towards gadget-free Internet services: A roadmap of the Naked world. Telemat.
Inform. 2018, 35, 82–92. [CrossRef]

4. Ejaz, W.; Naeem, M.; Shahid, A.; Anpalagan, A.; Jo, M. Efficient energy management for the Internet of things
in smart cities. IEEE Commun. Mag. 2017, 55, 84–91. [CrossRef]

5. CISCO White Paper. Global Mobile Data Traffic Forecast Update, 2017–2022. Technical Report. Available
online: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-
vni/white-paper-c11-738429.html/ (accessed on 14 September 2019).

6. CISCO White Paper. Cisco Visual Networking Index: Forecast and Methodology, 2016–2021. Technical
Report. Available online: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-
cloud-index-gci/white-paper-c11-738085.html (accessed on 14 September 2019).

7. Harjula, E.; Mekonnen, T.; Komu, M.; Porambage, P.; Kauppinen, T.; Kjällman, J.; Ylianttila, M. Energy
Efficiency in Wireless Multimedia Sensor Networking: Architecture, Management and Security. In Greening
Video Distribution Networks; Springer: Cham, Switzerland, 2018; pp. 133–157.

8. Li, S.; Kim, J.G.; Han, D.H.; Lee, K.S. A survey of energy-efficient communication protocols with QoS
guarantees in wireless multimedia sensor networks. Sensors 2019, 19, 199. [CrossRef] [PubMed]

9. Shallari, I.; O’Nils, M. From the Sensor to the Cloud: Intelligence Partitioning for Smart Camera Applications.
Sensors 2019, 19, 5162. [CrossRef] [PubMed]

10. Choudhury, N.; Matam, R.; Mukherjee, M.; Shu, L. Beacon synchronization and duty-cycling in IEEE 802.15. 4
cluster-tree networks: A review. IEEE Internet Things J. 2018, 5, 1765–1788. [CrossRef]

11. GraphQL, Oct. 2016. Available online: https://graphql.github.io/graphql-spec/ (accessed on 21 October 2019).
12. Husain, J. Keynote: JSON Graph: Reactive REST at Netflix. 2015. Available online: https://dl.acm.org/doi/10.

1145/2742580.2742640 (accessed on 18 October 2019).
13. Hartig, O.; Pérez, J. An Initial Analysis of Facebook’s GraphQL Language. In Proceedings of the 11th

Alberto Mendelzon International Workshop on Foundations of Data Management and the Web (AMW 2017),
Montevideo, Uruguay, 7–9 June 2017.

14. Hartig, O.; Pérez, J. Semantics and complexity of GraphQL. In Proceedings of the 2018 World Wide Web
Conference. International World Wide Web Conferences Steering Committee, Lyon, France, 23–27 April 2018;
pp. 1155–1164.

15. Vázquez-Ingelmo, A.; Cruz-Benito, J.; García-Pe nalvo, F.J. Improving the OEEU’s data-driven technological
ecosystem’s interoperability with GraphQL. In Proceedings of the 5th International Conference on
Technological Ecosystems for Enhancing Multiculturality, Cádiz, Spain, 18–20 October 2017; p. 89.

16. Taelman, R.; Vander Sande, M.; Verborgh, R. GraphQL-LD: Linked Data Querying with GraphQL.
In Proceedings of the International Semantic Web Conference (P&D/Industry/BlueSky), Monterey, CA,
USA, 8–12 October 2018.

17. Sabharwal, M.; Agrawal, A.; Metri, G. Enabling Green IT through Energy-Aware Software. IT Prof. 2013, 15,
19–27. [CrossRef]

18. Han, K.; Luo, J.; Liu, Y.; Vasilakos, A.V. Algorithm design for data communications in duty-cycled wireless
sensor networks: A survey. IEEE Commun. Mag. 2013, 51, 107–113. [CrossRef]

19. Piyare, R.; Murphy, A.L.; Kiraly, C.; Tosato, P.; Brunelli, D. Ultra low power wake-up radios: A hardware and
networking survey. IEEE Commun. Surv. Tutor. 2017, 19, 2117–2157. [CrossRef]

20. Sriram, R.D.; Sheth, A. Internet of Things Perspectives. IT Prof. 2015, 17, 60–63. [CrossRef]
21. Lerche, C.; Laum, N.; Golatowski, F.; Timmermann, D.; Niedermeier, C. Connecting the web with the

web of things: lessons learned from implementing a CoAP-HTTP proxy. In Proceedings of the 2012 IEEE
9th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS 2012), Las Vegas, NV, USA,
8–11 October 2012; pp. 1–8. [CrossRef]

22. Castellani, A.; Loreto, S.; Rahman, A.; Fossati, T.; Dijk, E. Best Practices for HTTP-CoAP Mapping
Implementation. Available online: https://tools.ietf.org/id/draft-castellani-core-advanced-http-mapping-01.
html (accessed on 10 November 2019).

23. Leggieri, M.; Hausenblas, M. Interoperability of two RESTful protocols: HTTP and CoAP. In REST: Advanced
Research Topics and Practical Applications; Springer: New York, NY, USA, 2014; pp. 27–49.

24. Nogatz, F.; Seipel, D. Implementing GraphQL as a query language for deductive databases in SWI-prolog
using DCGs, quasi quotations, and dicts. arXiv 2017, arXiv:1701.00626.

http://dx.doi.org/10.1016/j.tele.2017.09.020
http://dx.doi.org/10.1109/MCOM.2017.1600218CM
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
http://dx.doi.org/10.3390/s19010199
http://www.ncbi.nlm.nih.gov/pubmed/30621117
http://dx.doi.org/10.3390/s19235162
http://www.ncbi.nlm.nih.gov/pubmed/31775371
http://dx.doi.org/10.1109/JIOT.2018.2827946
https://graphql.github.io/graphql-spec/
https://dl.acm.org/doi/10.1145/2742580.2742640
https://dl.acm.org/doi/10.1145/2742580.2742640
http://dx.doi.org/10.1109/MITP.2012.104
http://dx.doi.org/10.1109/MCOM.2013.6553686
http://dx.doi.org/10.1109/COMST.2017.2728092
http://dx.doi.org/10.1109/MITP.2015.43
http://dx.doi.org/10.1109/MASS.2012.6708525
https://tools.ietf.org/id/draft-castellani-core-advanced-http-mapping-01.html
https://tools.ietf.org/id/draft-castellani-core-advanced-http-mapping-01.html

Electronics 2020, 9, 564 23 of 23

25. Rasool, S.; Saleem, A.; Mian, A.N. Poster: RQL: REST Query Language for Converting Firebase to a Mobile
Cloud Computing Platform. In Proceedings of the 23rd Annual International Conference on Mobile Computing
and Networking, MobiCom’17, Snowbird, UT, USA, 16–20 October 2017; ACM: New York, NY, USA, 2017;
pp. 567–569. [CrossRef]

26. Rasool, S.; Khan, R.; Mian, A.N. GraphQL and DC-WSN-Based Cloud of Things. IT Prof. 2019, 21, 59–66.
[CrossRef]

27. Nechibvute, A.; Chawanda, A.; Luhanga, P. Piezoelectric energy harvesting devices: an alternative energy
source for wireless sensors. Smart Mater. Res. 2012, 2012. [CrossRef]

28. Vaquero, L.M.; Rodero-Merino, L. Finding Your Way in the Fog: Towards a Comprehensive Definition of Fog
Computing. SIGCOMM Comput. Commun. Rev. 2014, 44, 27–32. [CrossRef]

29. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016,
3, 637–646. [CrossRef]

30. Krug, S.; O’Nils, M. Modeling and comparison of delay and energy cost of iot data transfers. IEEE Access 2019,
7, 58654–58675. [CrossRef]

31. Overview of Internet of Things. 2017. Available online: https://cloud.Google.com/solutions/iot-overview#
storing (accessed on 2 January 2020).

32. Dunkels, A.; Eriksson, J.; Finne, N.; Tsiftes, N. Powertrace: Network-Level Power Profiling for Low-Power Wireless
Networks; Swedish Institute of Computer Science, Kista, Sweden, 2011.

33. Shang, W.; Yu, Y.; Droms, R.; Zhang, L. Challenges in IoT Networking via TCP/IP Architecture; Technical
Report, NDN Project, Tech. Rep. NDN-0038. Available online: https://named-data.net/wp-content/uploads/
2016/02/ndn-0038-1-challenges-iot.pdf (accessed on 29 December 2019).

34. Andreev, S.; Galinina, O.; Pyattaev, A.; Gerasimenko, M.; Tirronen, T.; Torsner, J.; Sachs, J.; Dohler, M.;
Koucheryavy, Y. Understanding the IoT connectivity landscape: A contemporary M2M radio technology
roadmap. IEEE Commun. Mag. 2015, 53, 32–40. [CrossRef]

35. Kovatsch, M.; Duquennoy, S.; Dunkels, A. A low-power CoAP for Contiki. In Proceedings of the 2011 IEEE
Eighth International Conference on Mobile Ad-Hoc and Sensor Systems, Valencia, Spain, 17–22 October 2011;
pp. 855–860.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/3117811.3131244
http://dx.doi.org/10.1109/MITP.2018.2876982
http://dx.doi.org/10.1155/2012/853481
http://dx.doi.org/10.1145/2677046.2677052
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/ACCESS.2019.2913703
https://cloud.Google.com/solutions/iot-overview#storing
https://cloud.Google.com/solutions/iot-overview#storing
https://named-data.net/wp-content/uploads/2016/02/ndn-0038-1-challenges-iot.pdf
https://named-data.net/wp-content/uploads/2016/02/ndn-0038-1-challenges-iot.pdf
http://dx.doi.org/10.1109/MCOM.2015.7263370
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Application Models for Cloud-based IoT
	REST Architecture and Cloud-based IoT
	GraphQL Framework and its Feasibility

	Proposed Approach
	Server-Side Implementation
	Client-Side Interfacing
	Scheme Formulation

	Experimental Testbed Setup
	Results and Discussion
	Scenario-1
	Scenario-2
	Scenario-3
	Results Summary

	Energy-Wave Problem and High Power Communication
	Hierarchical Connectivity Bottleneck
	Communication Setup and Test Findings

	Conclusions
	References

