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Abstract: One of the main drawbacks of the well-known Fuzzy C-means clustering algorithm (FCM)
is the random initialization of the centers of the clusters as it can significantly affect the performance
of the algorithm, thus not guaranteeing an optimal solution and increasing execution times. In this
paper we propose a variation of FCM in which the initial optimal cluster centers are obtained by
implementing a weighted FCM algorithm in which the weights are assigned by calculating a Shannon
Fuzzy Entropy function. The results of the comparison tests applied on various classification datasets
of the UCI Machine Learning Repository show that our algorithm improved in all cases relating to
the performances of FCM.
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1. Introduction

The Fuzzy C-means (FCM) algorithm [1,2] is a well-known partitive fuzzy clustering algorithm
which adopts the Euclidean metric for calculating distances and detects cluster centers as points.
Unlike partitive crisp algorithms like K-means [3], FCM objects are allowed to belong to more than one
cluster and handle uncertainty in assigning them to a cluster.

FCM applies an iterative process with the aim of minimizing an objective function in order to
detect the cluster centers assigning the membership degrees of the objects to them. As in K-means,
the number of clusters is set a priori and initially the membership degrees of the objects to the clusters
are randomly assigned. At each iteration the cluster centers and the partition matrix are recalculated,
minimizing an objective function. The process ends when the absolute difference between the partition
matrix and the one calculated in the previous cycle is less than a prefixed threshold.

The initialization phase significantly affects the algorithm’s performances, influencing its accuracy
and running time. In fact, based on the initial choice of the partition matrix or clusters, the algorithm
can quickly converge towards a global optimum or get trapped in a local optimum.

Many variations of FCM were worked out in order to optimize the initialization phase.
Some authors [4–6] apply the Subtractive Clustering algorithm to find the initial cluster however,

this method requires to set a priori the mountain peak and the mountain radius parameters.
In [7], an initialization method based on a density cluster algorithm is proposed.
Recently metaheuristic methods have been proposed in the literature to optimize the initialization

of the cluster centers. A Genetic Algorithm (GA) is applied to a kernel FCM algorithm in [8] in order to
find the initial cluster centers. In [9], a GA is applied to find the optimal initial cluster centers in image
segmentation. In [10], a Particle Swarm Optimization algorithm is applied to find the optimal FCM
initial cluster centers for sentiment clustering. Three metaheuristic hybrid FCM algorithms based,
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respectively, on Differential Evolution, GA, and Particle Swarm Optimization (PSO) are used in [11] to
find the optimal initial cluster centers.

However, the use of metaheuristic algorithms, despite contributing to improve the accuracy of the
solutions obtained by running FCM, can produce a heavy increase in computational load.

In this research we propose a hybrid FCM algorithm in which a fuzzy entropy algorithm is applied
to initialize the cluster centers.

The aim of this research is to improve FCM in classification problems finding the initial clusters
by using a weighted FCM algorithm in which a fuzzy entropy function is calculated for setting the
weight’s value. This fuzzy entropy function is applied to measuring the fuzziness of an object in
assigning it to the clusters.

In the literature some variations of the FCM algorithm that include entropy functions are proposed
in order to increase the FCM performances.

In [12], a fuzzy clustering method combining the possibility of C-means clustering [13] and a
fuzzy entropy function is proposed in order to make the algorithm robust to noise. A variation of
FCM based on information entropy is proposed in [14] in order to find the optimal number of clusters.
The authors introduce a weighting parameter in the objective function to adjust the location of cluster
centers and reduce the influence of noise. Two entropy-based FCM variations in which an entropy
function is applied for feature extraction are proposed in [15,16]. In [16], the entropy weight method
is applied to delete features with less information, then, the K-means and the One-Hot encoding
algorithms are used to initialize the membership matrix. A new entropy based FCM algorithm is
applied in [17] for the segmentation of brain MR images. The objective function is modified adding a
Shannon Entropy component applied to redress the uncertainty among the pixels. In [18], the authors
apply the maximum entropy method to find the optimal kernel weights in a kernel FCM algorithm.
An entropy-based FCM algorithm is applied in [19] to cluster webpages in a PageRank process. The
weight of each cluster is set by using an information entropy method, which is then used to adjust
the average weight. An improved entropy-based FCM algorithm is applied in [20] to detect epistasis
whereby a cross-entropy method is used to calculate the distances.

In this research, we used the De Luca and Termini fuzzy entropy definition given in [21,22] to
measure the fuzziness that models the membership degree of an object to the clusters. We applied a
weighted FCM algorithm in the initialization phase to optimize the initial choice of the cluster centers
whereby the weight assigned to an object was greater the lower its fuzziness. We tested our algorithm
on various classification training sets to measure its performances and compare the results with the
ones obtained using FCM.

In Section 2 the FCM algorithm is presented and in Section 3 the Entropy weighted FCM (EwFCM)
algorithm is presented. Section 4 shows the results of our experiments. Final considerations are
discussed in Section 5.

2. FCM Algorithm

Let X = {x1, . . . , xN}⊂Rn be a set of N objects in the n-dimensional space Rn where xj = (xj1, . . . , xjn)
and V = {v1, . . . ,vC} ⊂ Rn be the set of centers of the C clusters. Let U be the C × N partition matrix
where uij is the membership degree of the jth object xj to the ith cluster.

The FCM algorithm [1,2] is based on the minimization of the following objective function:

J(U, V) =
C∑

i=1

N∑
j=1

um
ij d

2
i j =

C∑
i=1

N∑
j=1

um
ij ‖x j − vi‖

2 (1)

where dij = ‖xj − vi‖ is the Euclidean distance between the center vi of the ith cluster and the jth object xj

and m∈[1,+∝) is the fuzzifier parameter (a constant which affects the membership values and defines
the degree of fuzziness of the partition). For m = 1, FCM become a Hard C-means clustering whereby
the more m tends towards +∝ the more the fuzziness level of the clusters grows.
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Considering the following constraints:

C∑
i=1

ui j = 1 ∀ j ∈ {1, . . . , N} (2)

0 <
N∑

j=1

uij < N ∀ i ∈ {1, . . . , C} (3)

and applying the Lagrange multipliers, we obtain the following solutions for Equation (1):

vi =

∑N
j=1 um

ij x j∑N
j=1 um

ij

i ∈ {1, . . . , C} (4)

and
uij =

1∑c
k=1

(
di j
dkj

) 2
m−1

i ∈ {1, . . . , C}, j ∈ {1, . . . , N}. (5)

An iterative process is proposed in [2] as follows: Initially the membership degrees are assigned
randomly and in each iteration the cluster centers are calculated by Equation (4), then the membership
degree components are calculated by Equation (5). The iterative process stops at the tth iteration when:∣∣∣U(t)

−U(t−1)
∣∣∣ < ε i = 1, . . . , C; j = 1, . . . , N (6)

where ε > 0 is a parameter assigned a priori to stop the iteration process and
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Algorithm 1 FCM 
1.    Set m, ε, C 
2.    Initialize randomly the partition matrix U 
3.    Repeat  
4.            Calculate vi, i = 1,...,C by using Equation (4) 
5.            Calculate uij, i = 1,...,C; j = 1,…,N by using Equation (5) 
6.    Until  푼( ) − 푼( ) > 휀 
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A variation of the FCM algorithm is the weighted FCM (wFCM) algorithm in which a weight
defines the influence of the object to the solutions.

The objective function in wFCM is the given by:

Jw(U, V) =
∑C

i=1

∑N

j=1
w jum

ij d
2
i j =

∑C

i=1

∑N

j=1
w jum

ij ‖x j − vi‖
2. (8)

The partition matrix U and the cluster centers V are obtained minimizing this objective function
by using the Lagrange multipliers. The solution for the components uij of the partition matrix are
given by Equation (5). The cluster centers are given by:

vi =

∑N
j=1 w jum

ij x j∑N
j=1 w jum

ij

(9)

in which the weight wj provides the degree of influence of the jth object to find the cluster centers.
A set of wFCM-based cluster methods was proposed by some researchers (see, for example, [23–26])

in order to reduce the number of objects in massive datasets assigning to an object a weight based on the
density of near data [23] and to encode pixel’s local information in image segmentation activities [24,25].
In [26] some variations of wFCM are proposed in order to handle very large data.

Formally, at any cycle the weight wj assigned to the object xj, j = 1, . . . ,N is calculated by using a
weight function w(xj).

The pseudocodes of the FCM (Algorithm 1) and wFCM algorithms (Algorithm 2) are shown below.
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Algorithm 1 FCM

1. Set m, ε, C
2. Initialize randomly the partition matrix U
3. Repeat
4. Calculate vi, i = 1, . . . ,C by using Equation (4)
5. Calculate uij, i = 1, . . . ,C; j = 1, . . . ,N by using Equation (5)

6. Until
∣∣∣U(t)

−U(t−1)
∣∣∣ > ε

Algorithm 2 wFCM

1. Set m, ε, c
2. Initialize randomly the partition matrix U
3. Repeat
4. Calculate wj, j = 1, . . . ,N by using a weight function w(xj)

5. Calculate vi, i = 1, . . . ,C by using Equation (9)
6. Calculate uij, i = 1, . . . ,C; j = 1, . . . ,N by using Equation (5)

7. Until
∣∣∣U(t)

−U(t−1)
∣∣∣ > ε

FCM can be considered a special case of wFCM where wj = 1, j = 1, . . . ,N.

3. The Entropy Weighted FCM Algorithm

De Luca and Termini [21,22] introduce the concept of fuzzy entropy as a measure of the degree of
fuzziness of a fuzzy set and they define the properties of any fuzzy entropy.

Let X = {(xs, us), s = 1, . . . ,S} be a fuzzy set with us membership degree of xs to X. The fuzzy
entropy of X is given by:

H(X) = K
S∑

s=1

h(us) (10)

where K is a constant positive and h: [0,1]→ [0,1] is a continuous function monotonically increasing in
[0, 1/2] and monotonically decreasing in [1/2, 1], with h(0) = h(1) = 0 and h(us) = h(1 – us).

A simple example of fuzzy entropy function is given by:

h(us) =

{
2us i f us < 1

2
2(1− us) i f us ≥

1
2

(11)

in which h(0) = h(1) = 0 and h(0.5) = 1.
De Luca and Termini in [21] propose the following fuzzy entropy function as a measure of

fuzziness of a membership degree:

h(us) =


0 i f us = 0
−usln(us) − (1−us)ln(1− us) i f 0 < us < 1
0 i f us = 1

(12)

We use Equation (12) to measure the fuzziness in the assigning the object xj = (xj1, . . . , xjn) to the
ith cluster, given by:

h
(
ui j

)
=


0 i f ui j = 0
−ui jln(ui j) −

(
1−ui j

)
ln(1− ui j) i f 0 < ui j < 1

0 i f ui j = 1
(13)
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where uij is the membership degree of the jth object to the ith cluster.
The mean fuzziness assigned to xj is given by:

H
(
x j

)
=

1
C

C∑
i=1

h
(
ui j

)
. (14)

H(xj) is calculated to assign the weight wj to the jth object in Equation (8). The constant K has been
set to the value 1/C in order to normalize the mean fuzziness H(xj).

Due to the existence of the constraint in Equation (2), the maximum fuzziness value hmax ≤ 1 is
obtained when the membership degree of the object to each cluster is equal to 1/C, while the minimum
value is 0, and is obtained when the object belongs with a membership degree equal to 1 to a cluster
and membership degrees equal to 0 to all others.

Since the relevance of the object must be greater the lower its fuzziness, we assign the following
weight value:

w j = 1−H
(
xj
)
. (15)

This formula for wj is due to the choice of a linear dependence of the weight on the fuzziness.
Many other choices are possible, as wj = 1/H(xj) however, it has the risk of assigning very high weight
values to objects with low or evanescent fuzziness among which outliers or noisy objects can be
confused since FCM is sensitive to the presence of noise and outliers in the data, the risk of increasing
the influence of noise and outliers in the detection of the final cluster may not be negligible.

We define the clustering mean fuzziness H given by:

H =
1
N

N∑
j=1

H
(
xj
)
. (16)

H take values in [0, hmax] and is initially high, but its value is reduced along the iterations, in
which it is given more importance to objects closer to the cluster centers.

The initial cluster centers are found when absolute difference between the mean fuzziness
calculated in the current cycle and the one calculated in the previous cycle is below a fixed threshold η
or when the number of iterations is equal to a maximal number of iterations imax.

The EwFCM algorithm (Algorithm 3) is schematized below:

Algorithm 3 EwFCM

1. Set m, ε, c
2. Initialize randomly the partition matrix U
3. niter := 1 // number of iterations
4. Repeat
5. Calculate wj, j = 1, . . . ,N using Equation (15)

6. Calculate vi, i = 1, . . . ,C by using Equation (9)
7. Calculate uij, i = 1, . . . ,C; j = 1, . . . ,N by using Equation (5)

8. Until
∣∣∣∣∣H(t)

−H
(t−1)

∣∣∣∣∣ > η OR niter = imax

9. Repeat
10. Calculate vi, i = 1, . . . ,C by using Equation (4)
11. Calculate uij, i = 1, . . . ,C; j = 1, . . . ,N by using Equation (5)

12. niter := niter+1

13. Until
∣∣∣∣U(t)

−U(t−1)
∣∣∣∣ > ε
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We tested the EwFCM algorithm on two well-known datasets of the UCI Machine Learning
Repository (http://archive.ics.uci.edu/ml/datasets.html), Iris and Wine, comparing the performance
with those obtained by executing the FCM algorithm. In order to make complete classification
performance assessments we measured the accuracy, precision, recall (or sensitivity), and F1 score
indexes where F1 score is the weighted average of precision and recall.

The four indexes are given by [27,28]:

accuracy =
TP + TN

TP + TN + FP + FN
×100 (17)

precision =
TP

TP + FP
×100 (18)

recall =
TP

TP + FN
×100 (19)

F1 score =
2× recall× precision

recall + precision
×100 (20)

where:

• TP (True Positive) is the number of data correctly assigned to the class;
• TN (True Negative) is the number of objects correctly not assigned to the class;
• FP (False Positive) is the number of objects wrongly assigned to the class;
• FN (False Negative) is the number of objects wrongly not assigned to the class.

To measure the four indices, each fuzzy cluster is labeled with the name of the class in the training
dataset to which the largest number of objects assigned to the cluster belong.

4. Simulation Results

We compared the performance of FCM and EwFCM on over 40 datasets of the UCI machine
learning repository. The fuzzifier parameter m was set to 2 and the end iteration parameter εwas set
to 0.01. Furthermore, by means of suitable calibration performed on various datasets by varying the
value of the parameters η and imax, the entropy threshold parameter was set to 0.05 and the maximum
number of cycles was set to 50. For our experiments, we used an Intel core I5 3.2 GHz processor. The
FCM algorithm was executed 10 times and the performance results obtained by running EwFCM were
compared with the best performance results obtained by running FCM.

For brevity we present the complete results obtained for two datasets: Iris and Wine. The Iris
dataset was composed of 150 objects with four numerical features describing three types of iris flowers:
Iris setosa, Iris virginica, and Iris versicolor. Although Iris setosa is linearly separable from the other
two classes, Iris virginica and Iris versicolor are not linearly separable from each other.

We executed the two algorithms setting the number of clusters C to 3.
In Tables 1 and 2 show the results obtained by executing, respectively, FCM and EwFCM. The

four metrics are calculated for each class. The last column shows, for each metric, the average value
among those calculated for each class.

Table 1. Dataset Iris: Fuzzy C-means clustering algorithm (FCM) results.

Index Iris Setosa Iris Versicolor Iris Virginica Mean

Accuracy 100.00% 92.67% 92.67% 95.11%
Precision 100.00% 86.79% 91.49% 92.76%

Recall 100.00% 92.00% 86.00% 92.67%
F1 Score 100.00% 89.32% 89.66% 92.66%

http://archive.ics.uci.edu/ml/datasets.html
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Table 2. Dataset Iris: EwFCM results.

Index Iris Setosa Iris Versicolor Iris Virginica Mean

Accuracy 100.00% 94.67% 94.67% 96.44%
Precision 100.00% 90.38% 93.75% 94.71%

Recall 100.00% 94.00% 90.00% 94.67%
F1 Score 100.00% 92.16% 91.84% 94.66%

As the two tables show, the mean values of all the performance metrics obtained by running the
EwFCM algorithm were higher than those obtained by running the FCM algorithm. In particular,
all the metrics calculated by using EwFCM for the classes Iris versicolor and Iris virginica were better
than the correspondent ones obtained by using the FCM algorithm.

Table 3 shows the results of the comparison of the EwFCM with other FCM variations aimed at
optimal search of the initial cluster centers. Table 3 shows the mean accuracy, precision, and recall
obtained by using FCM, EwFCM, Density-based FCM [7] Kernel-based FCM [8], and PSO FCM [10].

Table 3. Dataset Iris: Comparison with other FCM-based algorithms.

Index FCM EwFCM Density Kernel PSO

Accuracy 95.11% 96.44% 96.05% 96.00% 96.44%
Precision 92.76% 94.71% 94.19% 94.07% 94.67%

Recall 92.67% 94.67% 94.15% 94.04% 94.67%
F1 score 92.66% 94.66% 94.12% 94.00% 94.67%

These results show that the best results were obtained by using EwFCM and PSO. The values of
accuracy, precision, recall, and F1 score obtained running the two algorithms were very similar.

To evaluate the computational cost, we measured the number of iterations and running time.
Table 4 shows the number of iterations and running time measured using FCM, EwFCM Density FCM,
Kernel FCM, and PSO FCM. The number of iteration and the running time calculated using FCM were
the minimum and average values obtained by executing the algorithm 10 times.

Table 4. Dataset Iris: Number of iterations and running time comparison.

Method Iterations Running Time (s)

FCM Min 16 0.13
FCM Mean 16.7 0.14

EwFCM 8 0.11
Density FCM 9 0.11
Kernel FCM 10 0.12

PSO FCM 8 0.13

These results show that EwFCM had a better computational cost than FCM. While the number of
iterations obtained by running EwFCM was approximately half that obtained by running the FCM
algorithm, the running time was slightly less. This happens in consideration of the time taken in the
initialization phase by the EwFCM algorithm. EwFCM and PSO FCM provided the least number of
iterations but the running time in PSO FCM was slightly longer than in EwFCM, as PSO FCM took
longer than EwFCM to complete the initialization phase.

Now we present the results of the comparison tests performed on the wine dataset.
The wine dataset was given by 178 objects with 13 numerical features representing the chemical

composition of wine. The dataset contains data of chemical composition of Italian wine derived from
three different crops: It is partitioned in three classes whose belong 59, 71, and 48 objects, respectively.
We executed the two algorithms setting the number of clusters C to 3.

Tables 5 and 6 show the resultant four indicators obtained by using FCM and EwFCM, respectively.
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Table 5. Dataset Wine: FCM results.

Index Class 1 Class 2 Class 3 Mean

Accuracy 91.33% 87.79% 89.35% 89.49%
Precision 83.33% 87.88% 82.61% 84.61%

Recall 93.22% 81.69% 79.17% 84.69%
F1 Score 88.00% 84.67% 80.85% 84.51%

Table 6. Dataset Wine: EwFCM results.

Index Class 1 Class 2 Class 3 Mean

Accuracy 95.43% 92.53% 92.53% 93.50%
Precision 90.48% 93.94% 85.71% 90.04%

Recall 96.61% 87.32% 87.50% 90.48%
F1 Score 93.44% 90.51% 86.60% 90.18%

The four metrics are calculated for each class and the last column shows, for each metric,
the average value among those calculated for each class.

These results confirm the ones obtained by applying FCM and EwFCM on the Iris dataset: The
values of all the performance indicators obtained by running the EwFCM algorithm were higher than
those obtained by running the FCM algorithm. This trend was obtained for all training sets used in
our experiments.

Table 7 shows the mean accuracy, precision, and recall obtained for the dataset wine by using
FCM, EwFCM, Density-based FCM, Kernel-based FCM, and PSO FCM.

Table 7. Dataset Wine: Comparison with other FCM-based algorithms.

Index FCM EwFCM Density Kernel PSO

Accuracy 89.49% 93.50% 93.10% 92.79% 93.81%
Precision 84.61% 90.04% 89.47% 89.16% 90.61%

Recall 84.69% 90.48% 89.78% 89.51% 90.84%
F1 Score 84.51% 90.18% 89.54% 89.24% 90.66%

For the results of the tests performed on the Iris dataset and Wine dataset, the optimal values
of mean accuracy, precision, recall, and F1-score were obtained using the algorithms EwFCM and
PSO FCM.

Table 8 shows the computational cost results obtained by running all algorithms.

Table 8. Dataset Wine: Number of iterations and running time comparison.

FCM Iterations Running Time (s)

FCM Min 17 0.145
FCM Mean 18.2 0.148

EwFCM 10 0.137
Density FCM 12 0.142
Kernel FCM 12 0.143

PSO FCM 9 0.145

Similarly to the previous test as well as in this case, the least number of iterations was obtained
running EwFCM and PSO FCM. It was almost half than that used by FCM and the running time in
EwFCM was slightly lower than in FCM, Density FCM, Kernel FCM, and PSO FCM.

Table 9 shows, for each metrics, the mean values of the difference between the measure obtained
applying, respectively, EwFCM, Density FCM, Kernel FCM, and PSO FCM and the one obtained by
applying FCM.
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Table 9. Mean difference of the measured values of the four performance indicators obtained with
respect to FCM.

Index EwFCM Density Kernel PSO

Accuracy 2.91% 2.50% 2.45% 2.90%
Precision 3.78% 3.32% 3.28% 3.77%

Recall 3.95% 3.42% 3.36% 3.97%
F1 Score 3.86% 3.37% 3.32% 3.85%

These results show that the EwFCM, Density FCM, Kernel FCM, and PSO FCM algorithms, applied
to classification datasets of different size and number of features, produced a better performance than
the FCM algorithm in obtaining accuracy, precision, recall, and F1-score measurements with an average
of more than 2% than that obtained by running the FCM algorithm. In particular, EwFCM and PSO
FCM had the best performance with the mean difference of the accuracy being near 3% and the mean
difference of the precision, recall, and F1 score metrics being near 4%.

Table 10 summarizes the computational cost results obtained for all datasets by running,
respectively, EwFCM, Density FCM, Kernel FCM, and PSO FCM. The minimum, mean, and maximum
values of the ratio are shown between the number of iterations and what was obtained by running
FCM as well as the ratio between the running time and that obtained by running FCM. Here we have
considered, for each experiment, the minimum number of iterations and the shortest running time
obtained by executing the FCM algorithm ten times.

Table 10. Synthesis of number of iterations and running time comparison.

Method Measure Iterations Running Time (s)

EwFCM
Min Ratio 0.41 0.81

Mean Ratio 0.51 0.93
Max Ratio 0.58 0.97

Density FCM
Min Ratio 0.48 0.90

Mean Ratio 0.55 1.02
Max Ratio 0.64 1.07

Kernel FCM
Min Ratio 0.49 0.88

Mean Ratio 0.56 1.02
Max Ratio 0.68 1.08

PSO FCM
Min Ratio 0.40 0.91
Mean atio 0.51 1.04
Max Ratio 0.59 1.11

The results in Table 10 show that the number of iterations in EwFCM and PSO FCM was about
half that of FCM. Furthermore, EwFCM had a slightly shorter running time than Density FCM, Kernel
FCM, and PSO FCM.

5. Conclusions

We presented a variation of the FCM in which a using a fuzzy entropy function was used in the
initialization phase to optimize the assignment of cluster centers. This allowed us to overcome the
FCM algorithm problem of detecting local solutions by randomly assigning the initial positions of the
clusters. To set the initial cluster centers we used the FCM weighted algorithm in which the weight
assigned to each object was greater the smaller its fuzziness. The results of the comparative tests
performed on over 40 datasets in the UCI machine learning repository showed that the performance
of the proposed algorithm was better than that obtained by applying the FCM algorithm. The mean
difference of the accuracy was about 3% and the mean difference of the precision, recall, and F1 score
metrics was near 4%. The results of comparisons with other FCM-based algorithms aimed to optimize
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the initialization phase showed that EwFCM and PSO FCM provided the best performances in terms of
accuracy, prediction, recall, and F1-score. Furthermore, the number of iterations in EwFCM and PSO
FCM was about half that in FCM. Finally, EwFCM had a slightly shorter running time than Density
FCM, Kernel FCM, and PSO FCM.

Further tests are needed in the future. We intend to improve the proposed algorithm by exploring
its use on massive datasets and testing the use of robust weight functions with respect to the presence
of noise and outliers in the data. We also intend to carry out performance comparison tests of EwFCM
with respect to other well-known machine learning clustering algorithms.
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and agreed to the published version of the manuscript.
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