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Abstract: The number of older adults is increasing worldwide, and it is expected that by 2050 over
2 billion individuals will be more than 60 years old. Older adults are exposed to numerous pathological
problems such as Parkinson’s disease, amyotrophic lateral sclerosis, post-stroke, and orthopedic
disturbances. Several physiotherapy methods that involve measurement of movements, such as
the Timed-Up and Go test, can be done to support efficient and effective evaluation of pathological
symptoms and promotion of health and well-being. In this systematic review, the authors aim to
determine how the inertial sensors embedded in mobile devices are employed for the measurement
of the different parameters involved in the Timed-Up and Go test. The main contribution of this
paper consists of the identification of the different studies that utilize the sensors available in mobile
devices for the measurement of the results of the Timed-Up and Go test. The results show that mobile
devices embedded motion sensors can be used for these types of studies and the most commonly used
sensors are the magnetometer, accelerometer, and gyroscope available in off-the-shelf smartphones.
The features analyzed in this paper are categorized as quantitative, quantitative + statistic, dynamic
balance, gait properties, state transitions, and raw statistics. These features utilize the accelerometer
and gyroscope sensors and facilitate recognition of daily activities, accidents such as falling, some
diseases, as well as the measurement of the subject’s performance during the test execution.

Keywords: older adults; inertial sensors; physical exercises; physiotherapy; systematic review;
timed-up and go test measurement

1. Introduction

People with disabilities or older adults are two essential groups that can benefit from technology
advancements. Currently, around 9% of the world’s population is aged 65 and above, and approximately
10% of the world’s population lives with a disability [1,2]. Consequently, in countries with life expectancy
over 70 years old, people spend on average about eight years, or 11.5 per cent of their life span, living
with disabilities [1]. The increasing number of older adults is another cause for the growing number of
people with impairments [1].
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The number of older adults is increasing worldwide, and it is expected that by 2050, two
billion individuals will be older than 60 years [3,4]. In parallel, the proliferation of information and
communications technology brings numerous applications to the development and implementation of
numerous methods for enhanced personalized healthcare systems [5,6]. Furthermore, the research
interest in mobile computing technologies that focus on novel healthcare applications to promote
public health and well-being is also increasing [7–9].

The use of mobile devices by older people was evaluated with the use of questionnaires and
interviews [10]. In general, most older people only uses mobile phones for emergency situations, i.e.,
voice calls, and only a few of them use these devices for SMS and video calls [11,12]. Furthermore,
mobile devices incorporate high processing power, numerous sensors, and connectivity methods for
short-range and long-range communications [13]. Mobile devices are used in the implementation
of numerous methods for clinical evaluation and personalized healthcare [14–17]. Several mobile
sensors such as accelerometers, magnetometers, and gyroscopes that are incorporated in the majority
of today’s smartphones can be used to support numerous clinical evaluation procedures such as
activity recognition and fall detection [18–22]. The continuous technological enhancements on mobile
sensing promote novel applications for enhanced living environments and well-being; however,
the collaboration between information and communications technology and medical researchers is
mandatory for the efficient applicability of these methods [23].

The development of these solutions is related to the progress of the Ambient Assisted Living
(AAL) domain, fueled using different types of sensors, that should not be intrusive and at the same
time correctly positioned to acquire reliable data [24]. There are plenty of studies that demonstrate
the applicability of mobile device sensors for recognition of different physical and physiological
parameters, including the recognition of Activities of Daily Living (ADL) [25,26], environments [27],
or even for reduction of false alarms in intensive care units [28]. Likewise, mobile devices have been
used for the measurement of the results of the Heel-Rise test [29], proving that the implementation of
physiotherapy tests is feasible with the mobile device sensors.

The Timed-Up and Go (TUG) test is a quick and straightforward clinical method for assessment of
lower extremity function, mobility, and fall risk [30]. During it, the person is performing the following
actions: getting up from the chair, walking for 3 meters, turning around, walking another 3 meters in a
reverse direction, and sitting down on the chair. The typical duration of this test is a maximum of
12 seconds.

This method has been used to evaluate numerous individuals with pathological problems such as
Parkinson’s disease, amyotrophic lateral sclerosis, post-stroke, and orthopedic disturbances [30,31].
Therefore, clinicians would benefit from the implementation of mobile sensors to support efficient and
effective methods for pathological symptom evaluation to promote agile interventions for enhanced
public health [32].

A specific example of how a sensor-enhanced version of the TUG test outperformed the stopwatch
version at classifying fall risk is provided in [33], demonstrating that measuring accelerometry during
the TUG test improved the classification of fallers to 87% (compared with 63% using duration alone).
Other publications, such as [34], have reported considerably higher scores of the stopwatch TUG test.
An additional justification for performing TUG tests on a smartphone instead of the simple smartwatch
version is the automated data collection and measurement [35] that can facilitate additional long-term
analysis that could discover trends in the results of a single patient. This could lead to early detection
of health issues and concerns before they come to a serious level [36].

Nowadays, artificial intelligence is taking a major role in the medical field. Numerous emerging
applications of artificial intelligence methods have been designed and developed for enhanced patient
treatment [37]. The TUG test has also been used to measure the functional performance of patients
during their recovery process using unsupervised machine learning methods by several studies [38–41].
The calculation of features can be integrated with the feature engineering and selection process in a
systematic way for supervised learning problems, such as in [25,42].
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The main contribution of this paper is synthesizing the existing body of knowledge and identifying
common threads and gaps that would open new research directions about the application of TUG tests
on mobile devices. Furthermore, this literature review provides a comparison between the duration of
the TUG test and the features used.

This work presents a systematic review of studies published between 2010 and 2018, focused on
the application of the available sensors in off-the-shelf mobile devices to AAL and physical therapy,
and specifically for the automation of the measurements performed during the TUG test [43]. The
Timed-Up and Go test is especially important for the treatment and diagnosis of Parkinson disease and
fall risk prediction [44–46]. For this purpose, this test analyzes the movement and recognizes different
patterns related to various diseases, facilitating identifying future risky situations. The Timed-Up
and Go test is executed in five distinct phases: (1) the individual sits in a chair (see Figure 1a); (2) the
individual walks 3 meters (see Figure 1b); (3) the individual reverses the gait (see Figure 1c); (4) the
individual walks back (see Figure 1d); and, finally, (5) the individual sits back in the chair (see Figure 1e).
Throughout this test, the movements and speed can be measured using the embedded inertial sensors
in smartphones. As a result, it is possible to identify patterns that highlight issues related to falls of
older adults. It is noteworthy that several results presented, in general, calculations of the individuals’
angles of movements or the speed and acceleration throughout the test. Several statistical methods
and people of different ages were used for differentiating and defining patterns, which allowed for
validation of the studies [47–52].

Figure 1. Timed-Up and Go test execution phases. (a) the individual sits in a chair; (b) the individual
walks 3 meters; (c) the individual reverses the gait; (d) the individual walks back; (e) the individual sits
back in the chair.
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There are different types of TUG tests, including the standard TUG test, the Extended TUG test,
the Smart Insole TUG test, and the Instrumented TUG test. The TUG test consists of a set of five
phases, as represented in Figure 1 [43]. The Extended TUG test also includes a set of five stages [53],
including standing up from a chair, walking for a ten meters distance, turning around, walking back to
the chair and sitting down. The Smart Insole TUG (SITUG) test implements the TUG test with a Smart
Insole device to provide real-time and fine-grained results in a more multifaceted analysis for the fall
risk evaluation [54]. The Instrumented TUG (ITUG) test uses sensors to perform quantitative data
extraction during the TUG test [55].

This remainder of the paper is organized as follows. Section 2 defines the applied methodology,
explaining the research questions, the inclusion criteria, and the search strategy. Section 3 presents
the results of this systematic review, which are subsequently discussed in Section 4. Finally, Section 5
concludes the paper.

2. Materials and Methods

2.1. Research Questions

The primary research questions of this review were as follows: (RQ1) In what ways are low-cost
inertial measurement unit (IMU) sensors used to enhance TUG? (RQ2) Which methods for analysis of
the TUG test results can be implemented on mobile devices? (RQ3) In what ways can IMU sensors
improve the automation of TUG for assessing fall risk?

2.2. Inclusion Criteria

The inclusion criteria of studies and assessing methods for measurement of the results of the
TUG test were: (1) Studies that measure the parameters of the TUG test using sensors; (2) Studies that
present different approaches relative to the TUG test; (3) Studies that utilize at least motion or magnetic
sensors; (4) Studies that focus on the use of sensors embedded in mobile devices; (5) Studies that
were published between 2010 and 2018; (6) Studies which correctly define the participants population;
(7) Studies written in English.

2.3. Search Strategy

The team searched for studies meeting the inclusion criteria in the following electronic databases:
IEEE Xplore, ACM Digital Library, BMC, and PubMed. The research terms used to write this systematic
review were: “Time-Up and Go test”, “sensors”, and “mobile devices”. Every study was independently
evaluated by eight reviewers, and its suitability was determined with the agreement of all parties. The
studies were examined to identify the different approaches relative to the measurement of the results
of TUG test, using the onboard sensors available in an off-the-shelf mobile device.

2.4. Extraction of Study Characteristics

The following data were extracted from the studies and presented in Table 1: year of publication,
population, purpose, devices used, sensors available, raw data available, source code available,
implementation, and studied diseases. We contacted the corresponding author of each study by email
and asked for the source code and raw data. The implementation column groups the articles in two
categories: “Calculation of the features” and “Implementation of machine learning methods”. The
“Calculation of the features” includes analytical features, such as angular velocity, which is not directly
measured by the sensors, but rather derived from the original sensory measurements while considering
the time factor. In general, the applicable statistical metrics on such sensors for this domain as well
as their mathematical definition are provided in [42]. The second group of articles goes beyond and
utilizes such features as inputs to machine learning models which are automatically trained and tuned.
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Table 1. Study analysis.

Paper Year of
Publication Population Purpose of the Study Devices Sensors Raw Data

Available
Source Code

Available Implementation Studied
Diseases

Yang et al.
[56] 2018

10 patients aged
between 19 and 44

years old

Prevention of fall risks in the
elderly subjects with the TUG

test
Smartphone

Accelerometer
Gyroscope

Magnetometer
no no Calculation of

the features
Healthy
people

Bao et al. [57] 2018
12 subjects aged

between 65 and 85
years old

Shows the efficacy of the balance
training to help the elderly, using

the TUG test
Smartphone Accelerometer

Gyroscope no no Calculation of
the features

Healthy
people

Yang et al.
[54] 2018 6 subjects with

unknown age

Appreciate the feasibility of the
TUG test and using a complex

system
Smartphone Accelerometer

Gyroscope yes yes

Implementation
of machine

learning
methods

Healthy
people

Silva et al.
[58] 2018

18 older adults aged
between 68 and 78

years old

Methodology to prevent and
identify fall risks, using sensors

and based on the TUG test
Smartphone Accelerometer

Gyroscope no no Calculation of
the features

Rheumatic
diseases;

chronic pain;
hypertension;

dizziness;
polypharmacy

Hellmers
et al. [59] 2018

157 subjects aged
between 70 and 85

years old

Automated analyses using
inertial measurement units and

the TUG test
Smartphone

Accelerometer
Gyroscope

Magnetometer
no no Calculation of

the features
Parkinson

disease

Chigateri
et al. [60] 2018 23 older adults aged

75 years old or over
Measure the fall risk using
sensors and the TUG test

Mobiles
devices Accelerometer no no Calculation of

the features
Healthy
people

Mellone et al.
[61] 2018

49 subjects aged
between 43 and 75

years old

Validate a method for measuring
the TUG test Smartphone Accelerometer no no Calculation of

the features
Parkinson

disease

Madhushri
et al. [62] 2017

10 geriatric patients
aged between 78
and 86 years old

Mobility assessment with the
TUG test Smartphone Gyroscope

Accelerometer no no Calculation of
the features

Mobility
problems

Beyea et al.
[63] 2017

12 individuals aged
between 21 and 64

years old

A mobile device using sensors
and the TUG test separated in
the different phases of the test

Mobiles
devices

Accelerometer
Gyroscope

Magnetometer
no no Calculation of

the features
Healthy
people

Coni et al.
[64] 2017

239 subjects aged
between 65 and 93

years old

Study the decline associated
with the evolution of age using

the TUG test and sensors
Smartphone Accelerometer

Gyroscope no no

Implementation
of machine

learning
methods

Healthy
people

Salarian et al.
[65] 2017

28 subjects aged
between 52 and 68

years old

Instrumented the TUG test using
sensors in people with

Parkinson’s disease

Mobiles
devices Accelerometer no no Calculation of

the features
Parkinson

disease
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Table 1. Cont.

Paper Year of
Publication Population Purpose of the Study Devices Sensors Raw Data

Available
Source Code

Available Implementation Studied
Diseases

Suppa et al.
[66] 2017

28 patients aged
between 63 and 77

years old

Inspect and associate the gait in
people with Parkinson’s disease

using the TUG test and the
sensors

Mobiles
devices

Microsoft
Kinect

Accelerometer
Gyroscope

no no

Implementation
of machine

learning
methods

Parkinson
disease

Madhushri
et al. [67] 2016 2 patients with

unknown age

Application for mobility
assessment helping the elderly to

use the TUG test
Smartphone Accelerometer

Gyroscope no no Calculation of
the features

Mobility
problems

Cippitelli
et al. [68] 2016

20 subjects aged
between 22 and 39

years old

Quantify the possibility of the
falls using data captured with

sensors and tested with TUG test

Computer
mobile
devices

Microsoft
Kinect

Accelerometer
yes no

Implementation
of machine

learning
methods

Healthy
people

Williams et al.
[69] 2015

5 subjects aged
between 21 and 36

years old

The system that helps the
subjects in stroke rehabilitation

using the TUG test
Smartphone

Accelerometer
Gyroscope

Magnetometer
no no Calculation of

the features
Healthy
people

Cuesta-Vargas
et al. [70] 2015 30 subjects over 65

years old

Evaluation of the people and
their mobility difficulty using

sensors embedded in the
smartphone and using the TUG

test.

Smartphone Accelerometer no no Calculation of
the features

Frailty
syndrome

Milosevic
et al. [71] 2015 7 subjects with

unknown age

Application to automate
instrumented the TUG test using

sensors
Smartphone Accelerometer

Gyroscope no no Calculation of
the features

Parkinson
disease

Dzhagaryan
et al. [72] 2015 4 subjects with

unknown age
Wearable system for older adults

using the TUG test

Small
wearable

computing;
smartphone

Accelerometer
Gyroscope

Magnetometer
no no Calculation of

the features
Healthy
people

Greene et al.
[73] 2014

124 older adults
aged between 69
and 83 years old

The mobile platform using
inertial and pressure sensors to

check the mobility of older
adults, using the TUG test

Mobiles
devices

Accelerometer
Gyroscope no no

Implementation
of machine

learning
methods

Frailty
syndrome

Galán-Mercant
et al. [74] 2014 30 subjects aged

over 65 years old

Quantify and describe the
acceleration, angular velocity
and the motions of the body
using a smartphone and the

TUG test

Smartphone Accelerometer no no

Implementation
of machine

learning
methods

Frailty
syndrome

Galán-Mercant
et al. [75] 2014 18 subjects aged

over 70 years old

Quantify and define the
magnitude of inertial sensors

using a smartphone test
assessment, based on the TUG

test

Smartphone
Accelerometer

Gyroscope
Magnetometer

no no Calculation of
the features

Frailty
syndrome
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Table 1. Cont.

Paper Year of
Publication Population Purpose of the Study Devices Sensors Raw Data

Available
Source Code

Available Implementation Studied
Diseases

Greene et al.
[76] 2014

21 patients aged
between 18 and 60

years old

Examine the consistency of the
quantifiable measures derivate of

sensors and utilizing the TUG
test

Smartphone Accelerometer
Gyroscope no no Calculation of

the features
Multiple
sclerosis

Galán-Mercant
et al. [53] 2014 5 subjects aged over

65 years old

Analyze and quantify the
reliability criterion-related with

the utilization of sensors and
using the extended TUG test

Smartphone Accelerometer yes no

Implementation
of machine

learning
methods

Healthy
people

Tacconi et al.
[77] 2014 3 subjects with

unknown age
System to analyze the human

falls using the TUG test Smartphone Accelerometer no no Calculation of
the features

Healthy
people

Mellone et al.
[22] 2014 200 subjects aged

over 65 years old

Smartphone solutions to prevent
and detect the human falls using

the TUG test
Smartphone Accelerometer

Gyroscope no no

Implementation
of machine

learning
methods

Healthy
people

Bernhard
et al. [78] 2012

384 subjects aged
between 40 and 89

years old

Analyses the effectiveness of
mobile devices using sensors

and the TUG test
Smartwatch

Accelerometer
Gyroscope

Magnetometer
no no Calculation of

the features

Parkinson’s
disease;
stroke;

epilepsy; pain
syndromes;

multiple
sclerosis;
tumors;

polyneuropathy;
vertigo;

dementia;
meningitis;
encephalitis

Palmerini
et al. [79] 2011

49 subjects aged
between 28 and 87

years old

Motion analysis systems
incorporated in a smartphone, to
study the possibility of falls for
people with Parkinson’s disease
using the TUG test and inertial

sensors

Smartphone Accelerometer no no Calculation of
the features

Healthy
people

King et al.
[80] 2010 28 subjects with

unknown age

Predict the risks of falls, using a
BSN attached with inertial
sensors using the TUG test

Mobiles
devices

Accelerometer
Gyroscope no no Calculation of

the features
Healthy
people
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3. Results

As illustrated in Figure 2, our review identified 265 papers that included twenty-four duplicates,
which were removed. The remaining 241 works were evaluated in terms of title, abstract, and keywords,
resulting in the exclusion of 95 citations. The main criterion for the exclusion of papers was because
95 articles were not related to the applicability of mobile sensors available in an off-the-shelf mobile
device. We performed the full-text evaluation of the remaining 146 papers, excluding 118 articles that
did not match the defined inclusion criteria. The remaining 28 papers were included in the qualitative
synthesis and quantitative synthesis. In summary, our review examined 28 documents.

Figure 2. Flow diagram of identification and inclusion of papers.

We refer the interested readers to the original cited works to find relevant information about the
details of the TUG test measurements analyzed in this review. As shown in Table 1, all studies were
performed with mobile devices. The studies analyzed were published between 2010 and 2018 with
one study in 2010 (4%), one study in 2011 (4%), one study in 2012 (4%), seven studies in 2014 (25%),
four studies in 2015 (14%), two studies in 2016 (7%), six studies in 2017 (21%), and seven studies in
2018 (25%). The analyzed studies indicate that 20 studies used smartphones (71%) and eight used
other types of mobile devices (29%). Therefore, related to the sensors used in the analyzed studies,
the studies indicate the sensors used were the accelerometer in 27 studies (97%), the gyroscope in
19 studies (68%), and the magnetometer in seven studies (25%). Moreover, only eight studies (29%)
present the accuracy of the results obtained with the different experiments related to the TUG test.
Finally, the analysis of the diseases by the different studies was researched, where 14 studies (50%)
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performed the TUG test with healthy people, 5 studies (18%) analyzed people with Parkinson’s disease,
four studies (14%) analyzed people with frailty syndrome, and, the remaining 5 studies (18%) analyzed
people with other diseases.

The following sections present the results categorized by the different diseases listed in Table 1.

3.1. Healthy People

The authors of [56] implemented a method to assess the subject’s balance, proposing four
environment adapters designed to evaluate the ability to adapt to walking in complex environments
associated to a compatible system that provides, in real-time, characteristics spatially related to walking.
Thus, the authors proposed a four environment-adapting TUG test to asses one’s aptitude to adjust
gait in multifaceted environments and a compatible system called Smart Insole TUG (SITUG) [56].
These report an average precision of 92% and 23% in the segmentation of the 5 phases of the TUG
test [56]. The features used in the study are the duration, the threshold of the forefoot, the limit of
the rearfoot, the full contact time, the foot-ground contact time, the non-foot-ground contact time, the
initial contact time, the gait cycle time, the gait cycle count, the gait cycle pace, the stride length and
the sole average pressures [56]. The results show that SITUG reports an accuracy of over 92% in the
recognition of the different phases of the test [56].

In [57], the authors evaluated the efficacy of long-term balance training with and without inertial
sensors. Participants attended the sessions at home with one 45-minute session per week, using
smartphone balance trainers that provided written, graphic, and video guidance, and monitored trunk
sway [57]. The sensors, including gyroscopes and accelerometers, were used to measure angular
changes [57]. They also estimated the duration of the TUG test as well as the gait speed, fast gait speed,
sit-to-stand duration, and others [57].

The authors of [54] proposed a SITUG test to obtain the motor performance information in
complex environments, to identify the probability of falls. The authors calculated the time variance,
reporting an average accuracy of 94.1% in the extraction of subcomponents within a stride, and 93.13%
in deriving the stride length based on the distance travelled [54]. Thus, the five phases of the test
were recognized with an accuracy of around 90%, using pressure features, spatial features, temporal
features, and spatial-temporal features [54].

In [60], the authors proposed the assessment of automatic real-time feedback provided by a
shoe-mounted inertial-sensor-based gait therapy system is feasible in individuals with gait impairments
after incomplete spinal cord injury. A way to identify parameters associated with gait was proposed,
implementing several tests, including the TUG test with an accelerometer sensor [60]. The median
overall agreement between the processed accelerometer data and the annotated video was an
approximate match of 92.8% and 95.1% for walking episodes in scripted and unscripted activities,
respectively [60]. In addition, based on the duration of each activity, the results reported an accuracy
of 92.2% for recognition of the non-walking event and 88.7% for the recognition of walking activity

Beyea et al. [63] developed a protocol to acquire the Inertial Measurement Unit (IMU) data and
measure the results of two versions of the TUG test, such as a test with 3 meters walking and another
with 5 meters walking to compare the performance based on the different durations. The authors
recognized the different phases of the test and calculate the average of the acceleration and the time of
the TUG test [63]. Finally, the authors calculated the total time of the test and walking times, reporting
an accuracy of 87% in the recognition of the different phases of the test [63].

In [64], the authors proposed research on the functional decline associated with ageing and its
differences through a set of sensor-based measures by using the Instrumented TUG test, recognizing
the different activities. The authors also examined the decline related to age-related and gender-related
variances through a set of sensor-based measures [64].

Based on the TUG test, Cippitelli et al. proposed fall detection algorithms using the Inertial
Measurement Units (IMUs) and an RGB depth sensor (Microsoft Kinect) [68]. The authors identified
the sit-to-stand, walk, turn, walk, and turn-to-sit phases [68]. The authors also evaluated the maximum
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inclination of the torso angle and the time required to perform the movement [68]. They implemented
three algorithms, where the first algorithm reports an accuracy of 79%, the second one presents an
accuracy of 90%, and the latest algorithm shows an accuracy of 99% [68]. The orientation angle must
be around 90◦ during a not very extensive period to check the fall [68].

In [69], a system to rehabilitate patients who have suffered a stroke was proposed, implementing
the Smart Insole TUG test at the individuals’ own homes. They measured the angles, stride length,
total distance traveled, average velocity, and execution time of the TUG test, and identified the sitting
and standing activities [69]. This system, featuring a simple configuration and a relatively low cost,
provides feedback to the user, showing that it is possibly even better than current physiotherapy
methods [69]. The system also checks the health status of knees [69]. The results show that the
difference between the app’s timer and the mobile devices represents a difference a Root Mean Square
Error (RMSE) of 0.907 [69].

In [72], the authors introduced a wearable system titled Smart Button designed to assist the
mobility of older adults and assess people with Parkinson’s and the elderly with regards to the
movement, balance, strength limits, and risks of falling, while calculating the highest and lowest
accelerations as well as the angular velocity. The parameters extracted from the TUG test are total
duration of the TUG test, active TUG test, and lift-up phase of the sit-to-stand transition, the length of
the lean forward period, and the duration of the lift-up phase of the sit-to-stand, maximum change,
and maximum angular velocity during the trunk angle in the lean-forward, maximum angular velocity
during the lift-up, duration of the stand-to-sit transition, duration of the prepare-to-sit in the stand-to-sit,
duration of the sit-down phase in the stand-to-sit, and number of steps during the walking phase [72].

The authors of [53] proposed the evaluation of the reliability and concurrent criterion validity of
the acceleration using a smartphone application, inertial sensors, and the Extended TUG test. They
implemented the Bland–Altman method with the data acquired from the accelerometer available in
the mobile devices to obtain the different results [53]. Thus, they identified the sit-to-stand, gait-go,
turn, gait-come, and stand-to-sit activities with the features available in a previous study protocol and
the angles of the movement [53].

Based on a mobile platform, the authors of [77] presented a system for the study of falls and
mobility, using the data captured by an inertial sensor and the Extended TUG test for validation. They
calculated several features, including total, gait, sit-to-stand, and stand-to-sit durations, Root Mean
Square (RMS) of sit-to-stand and stand-to-sit, maximum acceleration, mean cadence, cadence standard
deviation, and cadence coefficient of variation [77]. The algorithm chosen was the single-threshold
algorithm, and several simulations were made for the detection of falls, including forward fall, lateral
fall, backward fall, fall sliding against a wall final position vertical, fall slipping against a wall, and
falling out the bed actions [77].

A study presented by [22] is based on the techniques for the implementation of FARSEEING
using smartphones to detect falls and prevent falls. The inertial sensors are used in the smartphone to
calculate the probabilities of fall. For this application, they created a mobile application to perform the
tests and use the TUG test as a study centre [22]. Based on the orientation of the device, the authors
proposed a wearable system to identify the reasons for the falls using inertial sensors and the TUG
test [22]. The results show the total duration and the maximum acceleration during the trial [22].

The authors proposed a method that uses accelerometer available in the smartphone as a
measurement system for people with Parkinson’s disease using the TUG test [79]. They extracted
different features, including the duration, RMS, preparatory RMS and jerk of the sit-to-stand transition,
the mean and standard deviation of step duration, phase coordination index, mean phase of gait phase,
and maximum value of acceleration during the stand-to-sit period, recognizing the different stages [79].

The authors of [80] used a body sensor network (BSN) to detect the equilibrium to forecast
falling. They extracted the mean, variance, number of peaks, and time as features to quantify 3100
amplitudes related to left–right movements, 2600 magnitudes related to up–down movements, and
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2450 amplitudes related to forward–back actions [80]. For this purpose, they calculated the Tinetti
score and the maximum and minimum amplitudes with the TUG test [80].

3.2. Parkinson Disease

The authors of [59] authors proposed the use of wearables for the assessment of gait and balance
features in a clinical setting with an inertial measurement unit to use in people with Parkinson’s disease
for the evaluation of the possibility of falls using the TUG test. They extracted the auto-correlation,
mean, pitch, standard deviation, RMS, energy, signal magnitude area (SMA), signal vector magnitude
(SVM), spectral entropy, and correlation as features for the recognition of the different activities during
the TUG test [59]. They reported that the use of self-learning methods presents a maximum acceleration
of 12 m/s2 and an angular velocity of 3 m/s [59].

The study presented in [61] evaluated the efficiency of the smartphone and its inertial embedded
sensors in the implementation of the TUG test, and validation of the measurement of activity in frail
elder people using inertial sensors. They extracted the total duration, jerk and range of sit-to-stand
transition of the trial, the mean, and standard deviation of the step time, among others [61]. The
reported results showed a balance when the smartphone was used and the McRoberts Hybrid device,
which demonstrates that embedded sensors and smartphones are a viable alternative to more expensive
equipment [61].

The study in [65] proposed the use of the instrumented TUG test with inertial sensors to improve
the TUG test evaluation in several situations, employing automatic detection and separation of
subcomponents, detailing the analysis of each of them and achieving a higher sensitivity than the TUG
test. The Instrumented TUG test was different concerning the angular velocity duration of the turn,
and the turning duration, and the time to perform turn-to-sit [65].

Suppa et al. [66] used the TUG test to examine and compare the gait in patients with Parkinson’s
disease for the recognition of freezing of gait based on the duration of the TUG test, and implemented
treatment for the disease, reporting accuracy of 98% in recognition of the different phases of the test.

In [71], the authors presented a mobile application named sTUG that completely automated the
ITUG test, measuring the total duration of the TUG test, sit-to-stand transition, and lean forward and
lift phases in the sit-to-stand. Also, other features were measured, including the maximum change
of the trunk angle, and maximum angular velocity during the lean forward and lift-up phases, the
duration of the stand-to-sit transition, and the prepare-to-sit and sit-down periods in the stand-to-sit
transition [71].

3.3. Frailty Syndrome

The authors of [70] implemented a method for the measurement of the Extended TUG test with a
smartphone, identifying kinematic variables obtained with the inertial sensors, measuring the averages
of time and the acceleration during the TUG test. The highest accuracy in discrimination between frail
and non-frail elderly was reported as a value around 72.8% in recognition of the different phases of the
test [70].

Based on the use of inertial sensors available on a mobile platform and other pressure sensors, the
authors of [73] discussed the falls of older adults and the causes of serious injuries using the TUG test.
The authors recognized different activities with 52 features quantifying the temporal, spatial, turning,
and rotational characteristics [73]. The reported precision of the TUG test was a minimum accuracy of
78.11% in recognition of the different activities, and a minimum accuracy of 72.31% in recognition of
the different phases of the test [73].

Galán-Mercant et al. [74] developed a method to measure and describe the angular velocity and
acceleration variations and the trunk deviation with the Extended TUG test, to analyze the changes
between healthy and frail individuals, and to identify the different activities. The significant difference
between the groups in the sub-phases of sit-to-stand and stand-to-sit was in the vertical axis and
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vector, where the minimum acceleration in the stand-to-sit phase was –2.69 m/s2 in the frail elderly
and –5.93 m/s2 in the non-frail elderly [74].

The authors of [75] used the smartphone application using inertial sensors as a measurement
device to measure. They described the magnitude of acceleration values with frail and non-frail
individuals. The features extracted are the maximum and minimum values of the acceleration of each
axis [75]. Finally, they reported that the most significant differences were verified in the use of the
accelerometer with eyes closed and the feet parallel with a maximum acceleration on the lateral axis
of (p < 0.01), minimum acceleration peak on the lateral axis (p < 0.01), and peak acceleration of the
resulting vector (p < 0.01) [75].

3.4. Other Diseases

The authors of [58] extracted several features for the recognition of the different phases of the
Instrumented TUG test, including RMS, standard deviation, median deviation, interquartile range
(IQR), skewness, kurtosis, number of times the magnitude signal crosses the mean value, maximum
and second maximum frequencies of the fast Fourier transform (FFT), maximum and second maximum
amplitudes of the FFT, minimum, maximum, average of the peak height, energy, and entropy.

The authors of [62] developed a customized three-segment form to quantify body forces and
evaluate the optimization of each sit-to-stand transition. The evaluation of the model was performed
by testing the action and optimal transition time for 10 older adults, comparing their best performance
with the best performance of the model to use the results to evaluate possible improvements in the
mobility of individuals [62]. They calculated the real angles and the averages of the sit-to-stand
transition time and the actions of 10 geriatric patients 80 years old [62]. Using mobile phone inertial
sensors and a smartphone mounted on the chest, the total power and action of each stand up during the
test verified the force action derives between 170 joules at 0.2 seconds and 250 joules at 2 seconds [62].

Madhushri et al. proposed a smartphone application for assessing flexibility in the aged population
using inertial sensors [67]. They also presented a set of applications to evaluate the implementation of
the Smart Insole TUG test with older adults, extracting several parameters from the inertial sensors [67].
The parameters extracted include the duration of the TUG test, the sit-to-stand transition, the lean
forward phase, the stand-to-sit shift, the prepare-to-sit period, the sit-down phase, and the lift up
phase, the total time of walk, the maximum change of trunk angle during the lean forward phase, the
maximum angular velocity during the lean forward and the lift up phases, the total number of steps
during walking, and before turn [67]. The average error for the implementation of the Smart Insole
TUG test is around 2% [67].

The authors of [76] implemented the TUG test with inertial sensors for the assessment of the
disability status in people with sclerosis disease, measuring the time of the different phases, the angular
velocity peaks as well as other spatiotemporal and statistic features. Moreover, this study also examines
the reliability of the TUG test [76]. The authors tried to verify the existence of some diseases like
Parkinson’s and its evaluation [76].

The authors of [78] explored options using wearables, which can provide more objective
information for the evaluation of hospitalized neurological patients, with an assessment procedure that
gets acceptance in the communities. Based on the TUG test, the authors validated the use of inertial
sensors embedded in a smartphone, extracting the angles of the movement [78].

4. Discussion

As it emerges from this systematic review, we can verify the importance that mobile devices have
for studies related to the health of elderly subjects. Among the most evaluated variables or features, it
has been identified that the studies in this area go a long way towards temporal measures, such as
duration, and for angular measures, such as the angular velocity. Finally, it should be noticed that the
sensors embedded in mobile devices are an inexpensive way to carry out studies of this importance,
i.e., the accelerometer, gyroscope, and magnetometer. Also, they reported a high level of efficiency and
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they are used in numerous research studies. However, several artificial intelligence methods such as
machine learning can be used for enhanced TUG test data analysis.

The TUG test consists of the execution of different activities. After the analysis, it was verified
that the most used sensor in the literature is the accelerometer. Also, the most used features in the
research are the duration of the test, the average of the angles obtained with the raw data, the edges
of the movement, the number of steps, the maximum change of the trunk angle, the threshold, and
the full contact time. In the normal TUG test, the most widely used features for the measurement of
the different parameters of the test are the duration, the mean and standard deviation, and the RMS
of the raw data extracted from the embedded sensors the mobile device (Table 2). Secondly, in the
Extended TUG test, the most used features for the measurement of the different parameters of the test
are the duration, the acceleration, and the number of steps extracted from the data acquired by the
sensors available in the mobile devices (Table 2). Finally, in the Smart Insole TUG test, the most used
features for the measurement of the different parameters of the test are the duration and the stride
length extracted from the data acquired by the sensors available in the mobile devices (Table 2). The
most used features are highlighted in Table 2.

Table 2. Features relative to the different types of Timed-Up and Go tests.

Features Interpretation Number of Studies

TUG Extended TUG Smart Insole TUG
Duration

Quantitative

6 3 6
Number of steps 2 1

Stride length 2
Step time 1

Orientation 1

Position 1

Step length 1

Cadence 1

Turning duration 1

Time to perform turn-to-sit 1

Reaction time 1

Contact times (i.e., initial, forefoot, rearfoot,
full, foot-ground, and non-foot-ground) 1

Distance 1

Threshold 1

Standard deviation of the step time

Quantitative +
Statistic

1

Cadence standard deviation 1

Cadence coefficient of variation 1

Mean cadence 1

Averages of time 1

Mean stride length 1

Medio-lateral and medio-lateral interstride
autocorrelations 1

Maximum change of the trunk angle 1
Acceleration

Dynamic balance

2
Maximum angular velocity 2 1 1

Average speed 1

Averages of the sit-to-stand transition 1

Real velocity 1

Average velocity 1

Angular velocity of arm-swing 1
Gait speed

Gait properties

2
Gait duration 1

Gait cycle time 1

Gait cycle count 1

Gait cycle pace 1
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Table 2. Cont.

Features Interpretation Number of Studies

TUG Extended TUG Smart Insole TUG
Real angles of the sit-to-stand transition

State transitions
2

Range of sit-to-stand transition 1

Jerk 1
Mean of raw data

Raw statistic

3
Standard deviation 3

Root mean square (RMS) 3 1
Signal energy 2

Signal magnitude area (SMA) 2
Signal vector magnitude (SVM) 2

Spectral entropy 2
Variance 1

Number of peaks 1

Median deviation 1

Interquartile range (IQR) 1

Skewness 1

Kurtosis 1

Number of times the magnitude signal crosses
the mean value 1

Maximum frequency of the FFT 1

Maximum amplitude of the FFT 1

Minimum average 1

Maximum average 1

Average of the peak height 1

Energy 1

Entropy 1

Angles 1

Maximum change of trunk angle 1

The Interpretation column in Table 2 shows the category of the feature: quantitative, which
explains some aspects of the TUG test or another physical characteristic; quantitative + statistic, which
denotes a derived quantitative feature with some statistical operation; dynamic balance, which mainly
describes the dynamic balance of the person; gait properties, which can help in describing the gait
specifics and can help in identifying some gait abnormalities; state transitions, which contribute to
better discerning different states and transitions from between them; and raw statistic, which denotes
features calculated with a statistical function directly on the raw sensory data.

The main strengths of the methods rely in the capability to demonstrate that it is possible to
establish that people with different diseases can perform this test, obtaining different results. The data
acquired from the sensors allows accurate calculation of different results of this test, where the use of
low-cost sensors may help in the obtention of results by the healthcare professionals belonging to the
physiotherapy domain.

There is no information available regarding the confidentiality and protection of data acquired
during the experiments. We performed a rigorous evaluation of each study to verify the existence of a
validation of the study protocol by a human subject research ethics committee, but the information
was not conclusive. Thus, we contacted the authors and research group to obtain more clarifications
about the data protection of each study, but we have not yet received the responses.

The results of this review demonstrate that the data acquired from the sensors available in
off-the-shelf mobile devices may be used to identify patterns in the acquired data depending on
different diseases. Consequently, it is possible to reveal patterns of the diseases related to the test by
grouping persons with different diseases. On the one hand, the results show that the data acquired
from the sensors available in off-the-shelf mobile devices facilitate the detection of different diseases
such as Parkinson’s disease, amyotrophic lateral sclerosis, post-stroke, and orthopedic disturbances.
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On the other hand, the TUG test can be performed reliably by the patients without having to visit
physiotherapists. Likewise, physiotherapists can monitor the progress of a disease by having an
integrated and reliable log of patient’s TUG test results for an extended period of time.

However, there is no correlation between the most used features for each type of analysis and each
study. Also, any research uses the most used features at the same time, and the studies have different
purposes, including the measurement of various parameters and recognition of the different activities.

The measurement of the general TUG test has some limitations, as presented in [45]. By
instrumenting the TUG test with sensors and by extracting multiple features in addition to the duration,
we aim to overcome these issues:

• Falling risk in healthy older populations may not affect the measurement of the duration;
• The user may perform the different phases with other involuntary movements or trajectories;
• The effects of the medication therapy and movement deficiencies may not be detected;
• The high reliability and discrimination of the health may not be evaluated in only 3 meters;
• The measurement of the results of the test depends on the personal and environmental conditions;
• The conditions of the chair may also introduce the possibility of different results.

Generally, all studies use multiple features in a single recognition model. Despite the fact that
some features are redundant to some extent, which could be intuitively understood solely by their
mathematical definition, the recognition systems use them. The motivation is that while only a few
of them are most important for recognition of a task, for an alternative task, some others would be
useful. For example, for simply scoring the TUG test, the duration is usually enough. However, for fall
detection, other features become important. Even more features are required for detection of more
complex Activities of Daily Living.

Even though most studies do not provide specific ranges of the values of certain features to
help in understanding the classifications, for any “black box” classification model, there are methods,
such as local interpretable model-agnostic explanations (LIME) [81] or SHAP (shapley additive
explanations) [82], which efficiently provide insights in the classification process.

Several studies have been performed, but a framework for the use of the TUG test for the
recognition of different diseases and automation of the calculation of the various parameters of the test
with low-cost sensors is still not available. Finally, the creation of a standard for the evaluations of the
physical conditions with this type of test is essential.

As a result of the review of the related works, we believe that a standard for conducting the
TUG test on mobile devices can be defined. Most importantly, multiple approaches show that
simple statistical features based on the raw time-domain data is sufficiently accurate. Therefore, such
computation is feasible on mobile devices with limited computing and battery capacity. For this test,
more complex approaches, such as ones relying on deep learning models, are not recommended.
Another recommendation is that mobile devices performing this test need to be integrated with the
electronic health records of patients and to be available for their doctor, when required and after the
approval of the patient. Of course, this raises many other technical challenges related to privacy
and security. However, this can be proved instrumental in allowing the doctor to identify complex
emerging patterns, such as progress of a disease, and to be able to act upon it proactively, instead
of reactively.

5. Conclusions

This systematic review analyzes, verifies, and identifies the use of inertial sensors available in the
mobile devices to detect movements and reactions during the TUG test. The use of sensors together
with these tests allows drawing essential conclusions about how to prevent falls in the elderly or those
with a disabling disease, and how measures can be created that can help avoid these events. In general,
several approaches to the topic of typical use of technology (mobile devices and sensors) and health
areas are reported in the literature. Motion sensors with more demanding architecture can capture
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more data more accurately and with greater efficiency. Thus, combined with a constant evolution
of mobile technology and mobile devices, it is possible to achieve a continually growing number of
events previously mentioned due to the increased life expectancy. Finally, the test that was the central
target of this analysis is an adequate test, with excellent use for its ease of implementation and it does
not require large equipment or technological devices to be carried out. Along with mobile devices
using open source technologies, the TUG is very accessible to all.

Twenty-eight studies were examined, and the main findings are summarized as follows:

• (RQ1) Most of the low-cost IMU sensors used in the TUG tests are the gyroscope, magnetometer,
and accelerometer. These sensors are widely used in the physiotherapy domain and can be used
to detect all the five phases of the TUG test, which can be identified by sensors available onboard
off-the-shelf mobile devices. Moreover, mobile sensors can be a low-cost approach for the TUG
test and consecutively to clinical diagnostics of several diseases. The data collected by mobile
sensors can be analyzed to create patterns for the evaluation of different diseases.

• (RQ2) The methods and features most used to measure the results are related to the time of the
TUG test, the angular velocity and the angular analysis of the body movements, and the number
of steps performed.

• (RQ3) One of the main purposes of the TUG test is to help in the recognition of the probability of the
risk of falls, where eight studies present the relation between it and the TUG test in elderly people.

In conclusion, the literature review identified numerous studies reporting applicability of the
TUG test for multiple evaluations in the medical domain, namely for detection of different diseases
such as Parkinson’s disease, amyotrophic lateral sclerosis, post-stroke, and orthopedic disturbances.
The reviewed studies claim that the embedded sensors on mobile devices increase the reliability of
the test. Therefore, the ubiquitous mobile devices present a low-cost, efficient, and reliable tool for
performing the TUG test.

In the future, personal digital life coaches can be designed to evaluate different parameters of
the subjects’ physical conditions for medical and recreational use. Such systems, depending on the
application scenario, would rely on multiple machine learning algorithms to cope with computational
and battery limitations, while aiming to provide exceptional accuracy.
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