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Abstract: This editorial introduces the Special Issue, entitled “Deep Learning Applications with
Practical Measured Results in Electronics Industries”, of Electronics. Topics covered in this issue
include four main parts: (I) environmental information analyses and predictions, (II) unmanned aerial
vehicle (UAV) and object tracking applications, (III) measurement and denoising techniques, and
(IV) recommendation systems and education systems. Four papers on environmental information
analyses and predictions are as follows: (1) “A Data-Driven Short-Term Forecasting Model for Offshore
Wind Speed Prediction Based on Computational Intelligence” by Panapakidis et al.; (2) “Multivariate
Temporal Convolutional Network: A Deep Neural Networks Approach for Multivariate Time Series
Forecasting” by Wan et al.; (3) “Modeling and Analysis of Adaptive Temperature Compensation
for Humidity Sensors” by Xu et al.; (4) “An Image Compression Method for Video Surveillance
System in Underground Mines Based on Residual Networks and Discrete Wavelet Transform” by
Zhang et al. Three papers on UAV and object tracking applications are as follows: (1) “Trajectory
Planning Algorithm of UAV Based on System Positioning Accuracy Constraints” by Zhou et al.;
(2) “OTL-Classifier: Towards Imaging Processing for Future Unmanned Overhead Transmission
Line Maintenance” by Zhang et al.; (3) “Model Update Strategies about Object Tracking: A State
of the Art Review” by Wang et al. Five papers on measurement and denoising techniques are as
follows: (1) “Characterization and Correction of the Geometric Errors in Using Confocal Microscope
for Extended Topography Measurement. Part I: Models, Algorithms Development and Validation” by
Wang et al.; (2) “Characterization and Correction of the Geometric Errors Using a Confocal Microscope
for Extended Topography Measurement, Part II: Experimental Study and Uncertainty Evaluation” by
Wang et al.; (3) “Deep Transfer HSI Classification Method Based on Information Measure and Optimal
Neighborhood Noise Reduction” by Lin et al.; (4) “Quality Assessment of Tire Shearography Images
via Ensemble Hybrid Faster Region-Based ConvNets” by Chang et al.; (5) “High-Resolution Image
Inpainting Based on Multi-Scale Neural Network” by Sun et al. Two papers on recommendation
systems and education systems are as follows: (1) “Deep Learning-Enhanced Framework for
Performance Evaluation of a Recommending Interface with Varied Recommendation Position and
Intensity Based on Eye-Tracking Equipment Data Processing” by Sulikowski et al. and (2) “Generative
Adversarial Network Based Neural Audio Caption Model for Oral Evaluation” by Zhang et al.
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1. Introduction

Machine learning and deep learning techniques have been the crucial tools when it comes
to the feature extracting and event estimating for developing applications in the electronics
industries [1–8]. Some techniques have been implemented in the embedded systems and applied
to industry 4.0 applications, industrial electronics applications, consumer electronics applications,
and other electronics applications. For instance, supervised learning techniques, including neural
networks (NN) [9–19], convolutional neural networks (CNN) [20–26], and recurrent neural networks
(RNN) [27–32], can be adopted for prediction applications and classification applications in
the electronics industries. Unsupervised learning techniques, including restricted Boltzmann
machine (RBM) [33,34], deep belief networks (DBN) [35], deep Boltzmann machine (DBM) [36],
auto-encoders (AE) [37,38], and denoising auto-encoders (DAE) [39], can be used for denoising and
generalization. Furthermore, reinforcement learning techniques, including generative adversarial
networks (GANs) [40,41] and deep Q-networks (DQNs) [42], can be used to obtain generative
networks and discriminative networks for contesting and optimizing in a zero-sum game framework.
These techniques can provide the precise prediction and classification for electronics applications.
Therefore, the aim of this Special Issue is to introduce the readers the state-of-the-art research work on
deep learning applications with practical measured results in electronics industries.

This Special Issue had received a total of 45 submitted papers with only 14 papers accepted.
A high rejection rate of 68.89% of this issue from the review process is to ensure that high-quality papers
with significant results are selected and published. The statistics of the Special Issue are presented
as follows.

• Submissions (45);
• Publications (14);
• Rejections (31);
• Article types: research article (13); review article (1).

Topics covered in this issue include the following four main parts: (I) environmental information
analyses and predictions, (II) unmanned aerial vehicle (UAV) and object tracking applications,
(III) measurement and denoising techniques, and (IV) recommendation systems and education systems.
Four topics with accepted papers are briefly described below.

2. Environmental Information Analyses and Predictions

Four papers on environmental information analyses and predictions are as follows:
(1) “A Data-Driven Short-Term Forecasting Model for Offshore Wind Speed Prediction Based on
Computational Intelligence” by Panapakidis et al. [43]; (2) “Multivariate Temporal Convolutional
Network: A Deep Neural Networks Approach for Multivariate Time Series Forecasting” by
Wan et al. [44]; (3) “Modeling and Analysis of Adaptive Temperature Compensation for Humidity
Sensors” by Xu et al. [45]; (4) “An Image Compression Method for Video Surveillance System in
Underground Mines Based on Residual Networks and Discrete Wavelet Transform” by Zhang et al. [46].

Panapakidis et al. from Greece and Cyprus in “A Data-Driven Short-Term Forecasting Model for
Offshore Wind Speed Prediction Based on Computational Intelligence” considered that the time series
data of wind speed has the characters of high nonlinearity and volatilities. Therefore, an adaptive
neuro-fuzzy inference system (ANFIS) and a feed-forward neural network (FFNN) were constructed to
analyze the nonlinearity and volatilities of wind speed for short-term wind speed prediction. In their
experiments, five cases were selected to predict the wind speeds of the 1-min-ahead and 10-min-ahead
prediction horizons for the evaluation of the proposed method. The results show that all of mean
absolute range normalized errors (MARNEs) of each case by the proposed method were lower than
the MARNEs of each case by other methods (e.g., regression neural network, regression trees, support
vector regression, etc.) [43].
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Wan et al. from China in “Multivariate Temporal Convolutional Network: A Deep Neural
Networks Approach for Multivariate Time Series Forecasting” considered that the long-term
multivariate dependencies of time series data are hard to be captured. Therefore, a multivariate
temporal convolution network (M-TCN) was proposed to combine convolutional layers and residual
block for extracting the spatio-temporal features of environmental data. In the experiments, two
benchmark datasets including a Beijing PM2.5 dataset and an ISO-NE Dataset were used to compare
the M-TCN with other methods for evaluating the proposed method. The results show that the root
mean squared errors (RMSEs) of each case by the M-TCN were lower than the RMSEs of each case with
other methods (i.e., long short term memory (LSTM), convolutional LSTM (ConvLSTM), Temporal
Convolution Network (TCN) and Multivariate Attention LSTM-FCN (MALSTM-FCN)) [44].

Xu et al. from China in “Modeling and Analysis of Adaptive Temperature Compensation for
Humidity Sensors” considered that the nonlinear compensation of sensing data is required because the
humidity sensitive materials may be sensitive to temperature with nonlinear relationships. Therefore,
a genetic simulated annealing algorithm (GSA) was proposed and adopted into a back propagation
neural network (BPNN)-based nonlinear compensation model to compensate the sensing data of
different temperature ranges. In their experiments, 150 practical datasets were collected by a humidity
sensor and used to train the proposed nonlinear compensation model; furthermore, 15 practical datasets
were collected and analyzed to test the trained nonlinear compensation model for the performance
evaluation of the proposed method. The results show that the errors the proposed method were lower
than the errors of other methods (i.e., genetic algorithm-BPNN (GA-BPNN) and artificial fish-swarm
algorithm-BPNN (AFSA-BPNN)) [45].

Zhang et al. from China in “An Image Compression Method for Video Surveillance System
in Underground Mines Based on Residual Networks and Discrete Wavelet Transform” considered
that the image compression can be used to transfer a large number of digital images through lower
bandwidth underground channels for the applications of underground mines. Therefore, a neural
network containing an encoder module and a decoder module with residual units was constructed,
and a metric termed discrete wavelet structural similarity (DW-SSIM) was proposed for the loss
function of the neural network. In the experiments, this study collected the images from the COCO
2014 dataset and the images of underground mines for training and testing. The results show that the
peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) of the proposed method were
higher than the PSNR and the SSIM of other methods (e.g., denoising-based approximate message
passing (D-AMP), ReconNet and total variation augmented Lagrangian alternating direction algorithm
(TVAL3)) [46].

3. UAV and Object Tracking Applications

Three papers on UAV and object tracking applications are as follows: (1) “Trajectory Planning
Algorithm of UAV Based on System Positioning Accuracy Constraints” by Zhou et al. [47];
(2) “OTL-Classifier: Towards Imaging Processing for Future Unmanned Overhead Transmission
Line Maintenance” by Zhang et al. [48]; (3) “Model Update Strategies about Object Tracking: A State of
the Art Review” by Wang et al. [49].

Zhou et al. from China in “Trajectory Planning Algorithm of UAV Based on System Positioning
Accuracy Constraints” considered that the location information cannot be accurately determined by
UAVs with the limitation of system structure. Therefore, this study considered multi-constraints (e.g.,
vertical errors, horizontal errors, and flight distance) and proposed an improved genetic algorithm
and an improved sparse A* algorithm to find the shortest trajectory length. In their experiments, two
practical case studies were selected to evaluate the improved genetic algorithm and the improved
sparse A* algorithm. The results show that the trajectory length could be reduced by 57.79% by the
proposed methods [47].

Zhang et al. from China in “OTL-Classifier: Towards Imaging Processing for Future Unmanned
Overhead Transmission Line Maintenance” considered that the transmission line-based robots equipped
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with cameras can only travel a line to inspect for maintenance. Therefore, an overhead transmission line
classifier based on ResNet (deep residual network) and Faster-RCNN (faster regions with convolutional
neural network) was proposed to analyze the images from robots for classification and inspection.
In the experiments, 1558 images, which include 406 positive samples and 1152 negative samples, were
collected for evaluating the proposed classification method. The results show that the area under
curve (AUC) of the proposed classification method was higher than support vector machine (SVM).
Furthermore, the precision-recall (PR) curve of the proposed classification method (i.e., ResNet) was
also higher than the PR curve of the combination of VGG and Faster-RCNN [48].

Wang et al. from China in “Model Update Strategies about Object Tracking: A State of the Art
Review” considered that tracking model update strategies were important factors for the robustness
of image recognition. Therefore, the study conducted the literature review of target model update
occasions, target model update strategies, and background model updates. Four update strategy
types, which include (1) update strategies based on correlation filters, (2) update strategies based on
dictionary learning and sparse coding, (3) update strategies based on bag-of-words, and (4) update
strategies based on neural network models, were summarized and presented. The experimental results
of different update strategies from recent publications were discussed, and it was concluded that
the local representation, target re-detection, and background models were important factors for the
improvement of object tracking [49].

4. Measurement and Denoising Techniques

Five papers on measurement and denoising techniques are as follows: (1) “Characterization
and Correction of the Geometric Errors in Using Confocal Microscope for Extended Topography
Measurement. Part I: Models, Algorithms Development and Validation” by Wang et al. [50];
(2) “Characterization and Correction of the Geometric Errors Using a Confocal Microscope for
Extended Topography Measurement, Part II: Experimental Study and Uncertainty Evaluation”
by Wang et al. [51]; (3) “Deep Transfer HSI Classification Method Based on Information Measure
and Optimal Neighborhood Noise Reduction” by Lin et al. [52]; (4) “Quality Assessment of Tire
Shearography Images via Ensemble Hybrid Faster Region-Based ConvNets” by Chang et al. [53];
(5) “High-Resolution Image Inpainting Based on Multi-Scale Neural Network” by Sun et al. [54].

Wang et al. from Spain and China in “Characterization and Correction of the Geometric Errors
in Using Confocal Microscope for Extended Topography Measurement. Part I: Models, Algorithms
Development and Validation” and “Characterization and Correction of the Geometric Errors Using
a Confocal Microscope for Extended Topography Measurement, Part II: Experimental Study and
Uncertainty Evaluation” considered that the measurement accuracy and error compensation are
important issues for measuring machines. Therefore, Wang et al. proposed a mathematical model
based on system kinematics for building the scale calibration of the X-coordinate and Y-coordinate
in Part I; two experiments were designed based on Monte Carlo method to evaluate the proposed
mathematical model and measure different target areas in Part II. In their experiments, 35 cylinders of
point cloud were established in a 5 × 7 area and generated for evaluating the proposed mathematical
model. The results show that the mean residuals and squared residuals of the proposed method were
higher than those of other methods [50,51].

Lin et al. from China in “Deep Transfer HSI Classification Method Based on Information Measure
and Optimal Neighborhood Noise Reduction” considered that high redundant spectral information in
the hyperspectral images (HSIs) may interfere with the accuracy of image classification. Therefore, a
deep learning method based on a dimensionality reduction method and convolutional neural networks
was proposed to improve the accuracy of HIS classification. In the experiments, the dataset of Indian
Pines and Salinas which were obtained by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensors were collected for evaluating the proposed method. The results show that the accuracy of
the proposed method was higher than that of other methods (e.g., principal component analysis
(PCA)) [52].
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Chang et al. from Taiwan and India in “Quality Assessment of Tire Shearography Images via
Ensemble Hybrid Faster Region-Based ConvNets” considered that the bubble defect detection is an
important issue to filter out defective tires for the improvement of driving safety. Therefore, the
combination of ensemble convolutional neural network and Faster-RCNN was proposed to detect
bubble defects in the shearography images of tires. In their experiments, for the evaluation of the
proposed method, 3279 tire images were selected as training data; 797 tire images were selected as
testing data. The results show that the accuracy, sensitivity and specificity of the proposed method
were higher than those of other methods (e.g., SVM, random forest, Haar-like AdaBoost, etc.) [53].

Sun et al. from China in “High-Resolution Image Inpainting Based on Multi-Scale Neural Network”
considered that the blurred textures and the unpleasant boundaries may be obtained by the image
inpainting method based on GAN in the cases of high resolution images. Therefore, this study applied
the super-resolution using a generative adversarial network (SRGAN) to inpaint image and extract the
features of textures for the improvement of image recognition. In the experiments, COCO and VOC
datasets which included 135,414 images as training data and 200 images as testing data were selected
to evaluate the proposed method. The results show that the PSNR and SSIM of the proposed method
were higher than the PSNR and SSIM of other methods [54].

5. Recommendation Systems and Education Systems

Two papers on recommendation systems and education systems are as follows: (1) “Deep
Learning-Enhanced Framework for Performance Evaluation of a Recommending Interface with Varied
Recommendation Position and Intensity Based on Eye-Tracking Equipment Data Processing” by
Sulikowski et al. [55] and (2) “Generative Adversarial Network Based Neural Audio Caption Model
for Oral Evaluation” by Zhang et al. [56].

Sulikowski et al. from Poland in “Deep Learning-Enhanced Framework for Performance
Evaluation of a Recommending Interface with Varied Recommendation Position and Intensity Based on
Eye-Tracking Equipment Data Processing” considered that high correlations may exist between users’
gaze data and interests in human-computer interaction for recommendation inferences. Therefore,
this study collected eye-tracking data to train a deep learning neural network model for building an
e-commerce recommendation system. In the experiments, 15,922 fixation records were generated by
eye-tracking devices from 52 participants. The results show that the accuracies of training dataset and
testing dataset were 98.4% and 98.2%, respectively [55].

Zhang et al. from China in “Generative Adversarial Network Based Neural Audio Caption Model
for Oral Evaluation” considered that the massive human work is required by oral evaluation for testing
children’s language learning. Therefore, an automated expert comment generation method based
on gated recurrent units (GRUs), LSTM networks and GANs was proposed to extract the features of
orals and generate expert comments. In their experiments, the proposed neural audio caption model
(NACM) and the proposed GAN-based NACM (GNACM) were implemented and compared; several
oral audios from the children of 5-6 years old were collected for evaluating the proposed models.
The results show that scores of GNACM were higher than the scores of NACM; furthermore, the
average response time of GNACM was lower than that of NACM [56].

6. Conclusions and Future Work

Four main parts, including (I) environmental information analyses and predictions, (II) UAV and
object tracking applications, (III) measurement and denoising techniques, and (IV) recommendation
systems and education systems, are collected and discussed in this Special Issue. These articles utilized
and improved the deep learning techniques (e.g., ResNet, Fast-RCNN, LSTM, ConvLSTM, GAN, etc.)
to analyze and denoise measured data in a variety of applications and services (e.g., wind speed
prediction, air quality prediction, underground mine applications, neural audio caption, etc.). Several
practical experiments were given in these articles, and the results indicated that the performance of
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the improved deep learning methods could be higher than the performance of conventional machine
learning methods [43–56].

In the future, the federated learning techniques can be considered to train deep learning and
machine learning models across multiple decentralized servers for data privacy and data security in
electronics industries. Furthermore, the optimization techniques (e.g., gradient descent algorithm,
Adam optimization algorithm, particle swarm optimization algorithm [57,58], etc.) can be improved
for finding the global optimal solution.
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