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Abstract: Voltage-to-time and current-to-time converters have been used in many recent works as a
voltage-to-digital converter for artificial intelligence applications. In general, most of the previous
designs use the current-starved technique or a capacitor-based delay unit, which is non-linear,
expensive, and requires a large area. In this paper, we propose a highly linear current-to-digital
converter. An optimization method is also proposed to generate the optimal converter design
containing the smallest number of PMOS and sensitive circuits such as a differential amplifier.
This enabled our design to be more stable and robust toward negative bias temperature instability
(NBTI) and process variation. The proposed converter circuit implements the point-wise conversion
from current-to-time, and it can be used directly for a variety of applications, such as analog-to-digital
converters (ADC), used in built-in computational random access (C-RAM) memory. The conversion
gain of the proposed circuit is 3.86 ms/A, which is 52 times greater than the conversion gains of
state-of-the-art designs. Further, various time-to-digital converter (TDC) circuits are reviewed for the
proposed current-to-time converter, and we recommend one circuit for a complete ADC design.

Keywords: automation of vehicles; internet of things; current-to-time converter; speed; reliability
NBTI; PBTI; ADC; life-time

1. Introduction

Machine and deep learning techniques have been the main driving force of the autonomous
vehicles industry in recent years [1,2]. Using robots driven by those techniques has dramatically
boosted up the productivity and reduced the cost of those industries [3]. Limited hardware and
software resources have constrained the efficiency and performance of deep learning architecture
design. Therefore, improving the capabilities of hardware components such as high-speed processors
and large space memories is needed to provide more opportunities for high performance deep learning
architectures [3]. Autonomous driving systems usually include many interconnected hardware
components such as sensors, computer vision, and planning and control subsystems, as shown
in Figure 1 [3]. These systems are primarily controlled by deep learning algorithms for object detection
and classification, lane detection, and instant and semantic segmentation. A convolution neural
network (CNN) is the main data-processing unit in deep learning architectures. CNNs are used to
automatically learn object features through implementing convolution operation across deep layers of
the network using shared weights that are automatically learned by the network [4,5].

Fully connected (FC) layers form part of the CNN architecture and are usually used for softmax
classification and bounding box regression [6]. FC layers usually contain a large number of neurons,
which are fully connected with previous layers through weights. Figure 2 shows a single FC layer
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architecture [7]. The huge number of weights involved in many modern CNN architectures makes
their implementation on a general purpose processor highly challenging due to the high memory
and bandwidth requirements [4,7,8]. CNN uses dot and sum operations extensively. To alleviate
these problems, [9] proposed an in-computational memory (In-CM), which provided a possibility
to implement sum of product calculations based on resistive random access memory. The basic
architecture of 4× 4 array for this type of memory is shown in Figure 2 [10]. Since this memory
implements the computation in the analog domain, analog to digital (ADC) and digital to analog
converters (DAC) need to be included in the design as shown in Figure 2 [10–12]. As shown in
Figure 2, a DAC converter is used to convert the input digital bits into analog values. The resultant
sum of product is then converted into digital values using ADC converters. Conventional flash-type
ADC converters have been used in many previous works [11,12]. However, using this type of ADCs
at the outputs of the FC layer is not efficient due to the required large design area. In addition,
the computational complexity of the FC layer increases the power consumption of the ADC converters.
One other limitation of using the conventional ADC converters is that they are highly impacted
by process variation and the required symmetric transistor size. The symmetric transistor size is
achieved by specific layout techniques, such as finger and common centroid layout, etc. [13]. Therefore,
providing a more efficient design that requires less area and power requirements is needed for the
target computational memory.
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Figure 1. Control circuit, input sensor and output for the autonomous vehicles.
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Figure 2. Basic CNN architecture and use of built-in computational memory.

In the last few decades, there has been tremendous progress in CMOS processes, which caused
large reductions in device dimensions. This has dramatically affected the operating voltage ranges of
ADC converters, which must be accounted for in the design [14]. Therefore, traditional ADC converters
have been affected by many challenging factors in terms of stability and reliability. Several types
of voltage-to-time (VTC) and current-to-time (CTC) converters have been proposed for high-speed
applications. However, they have very low conversion gains and consume more area and power [15,16].
All of the VTC and CTC designs that have been proposed in recent studies are based on the principle of
using the input current or voltage to amplify the output delay. In our proposed VTC design, the input
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current is converted into the corresponding discharge current. Developing a linear relationship
between the output voltage and the input current/voltage is another crucial challenge in VTC/CTC
design [15,17,18]. This linear relationship is necessary to produce a linear output delay. Producing a
significant amplification in the output delay with a small change in input current/voltage is another
issue that should be considered. Some modern VTC designs involved using a reference voltage,
which is compared with the decision on this voltage and the output delay [15,17,19]. In addition,
these designs require the capacitor to be completely discharged before the next input sample, which is
difficult in actual situations. Moreover, including this capacitor results in an increased chip design
area. Zhang et al. [18] used a current-starved inverter approach to design a VTC converter. However,
this method has a very low initial delay and a poor conversion gain. A pre-skewed bi-directional gated
delay line has been also proposed in [16] to design a sigma delta-based time-to-digital converter.

The time-to-digital converter (TDC) is the second stage in the ADC design, where it is used to
generate the digital output. In addition to this, the continuous scaling of device dimensions due to
CMOS processes causes a dramatic reduction in the input voltage range. Since the threshold voltage
and impact of noise in MOSFET depend on device parameters, the threshold voltage and noise of the
MOS transistor will not be reduced with the same factor. Hence, the signal-to-noise ratio (SNR) of the
TDC will eventually deteriorate. On the other hand, transistor scaling makes their structures simpler,
which consequently increases the speed but reduces the linearity [20]. Since the time resolution of the
TDC increases with reducing the device dimensions, the VTC linearity increases [20].

Reliability is another major issue to consider in VTC design. Some of the effects that degrade the
reliability of VTC include time-dependent dielectric breakdown (TDDB) and negative and positive bias
temperature instability (NBTI and PBTI), whose effects become even larger below 2 nm gate oxide [21].
The BTI effect is generated by the presence of hydrogen bonds at the dielectric and semiconductor
interfaces in modern semiconductor devices such as MOSFET and FinFET. These suspended bonds
get broken under electrical stresses at elevated temperatures and hydrogen ions trap into the oxides.
This causes an increase in the threshold voltage of the device [21]. Moreover, traditional VTC designs
involve using many PMOS transistors, which are less reliable due to NBTI [15,17,19]. Hence, in this
paper, we propose a modified cascaded current mirror-based current-to-voltage converter. The working
principle of the proposed circuit depends on the current-starved procedure. This is the procedure
where the input current/voltage controls one of the path currents within a circuit. CTC/VTC is very
sensitive to the noise voltages, as well as MOSFET device parameter variation due to process voltage
and temperature (PVT) variations. Hence we performed the noise voltage and PVT analyses, and we
suggest suitable operating conditions. Additionally, we propose a size-based optimization method for
the proposed converter. The major contributions of this paper are as follows:

• Propose a current-to-voltage converter;
• Process variation and reliability analysis of the proposed CTC;
• Design a time-to-digital converter;
• Physical design and timing analysis of the proposed design;
• Review of state-of-the-art time-to-digital converters.

The rest of the paper is organized as follows: In Section 2, we describe the proposed CTC circuit
and design procedures. In Section 3, we discuss the small signal analysis for the proposed CTC.
In Section 4, we do the BTI and process variation. In Section 5, we review various time-to-digital
converters. Section 6 concludes the work.

2. Proposed CTC

Figure 3 shows different CTC and VTC circuits and their transfer characteristics. The circuit
in Figure 3a is the basic structure of a VTC, which is based on a voltage-controlled delay unit
(VCDU). At the falling edge of the controlling clock (clk), the node capacitor (vo) gets charged by VDD.
The charging time of (vo) can be controlled by the conductance of the PMOS (M1). During the rising
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edge of the clock (clk), the node capacitor discharges through the transistors M2, M3, and M4. Since
Vin controls the conductivity of the M3 transistor, it is used to control the discharge current of the
node capacitor. Therefore, the rising time of the output voltage is controlled by Vin. Ideally, the rising
time of the output voltage should linearly change with an input voltage of Vin. However, the transfer
characteristics of the MOSFET are nonlinear following the square law. Therefore, developing the
desired linear relationship cannot be possibly achieved using the circuit configuration in Figure 3a.
Figure 3b shows a circuit configuration that provides a possible way to achieve such a linear
relationship. In this configuration, a current mirror (CM) made up of two transistors is used to
replace the M3 transistor in Figure 3a. This makes the current flowing in M3 of Figure 3b the same as
the input mirror current (Iin). Due to the high impedance of the current mirror, the largest portion of
the total current will flow through the M4 transistor and hence a very small conversion gain will be
provided. Therefore, an improved design is shown in Figure 3c, which is further modified in Figure 3d.
An additional resistance R has been used to generate a linear current source, which is necessary to
maintain the M3 transistor in the saturation region. This will emphasize the linearity of the output
delay. However, including such a resistance requires a challenging fabrication process. Therefore,
the resistor has been replaced by a diode-connected active current source as shown in Figure 3e.
The circuit configuration in Figure 3e also includes a cascaded current mirror that is needed to achieve
maximum conversion gain. A PMOS-based circuit also can be designed using the same technique as
shown in Figure 3f.
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Figure 3. Circuit diagrams of the conventional and proposed CM based VTCs and proposed CTCs.
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3. Small Signal Model and Simulation Results

Figure 4a shows the small-signal equivalent circuit diagrams of the proposed CTC. The output
capacitor (CL) charges and discharges at the rising and falling edges of the control clock (clk),
respectively. As mentioned earlier, the discharging time is important for the proposed CTC because
we are controlling the rise time of the CTC. A model for the discharging time is shown as follows:

to = t1 + gm1 + (gm3 + gm5)Iin + bφ (1)

where gm1, gm3, and gm5 are the trans-conductance of the M1, M3, and M5 transistors, respectively. bφ

is the y-intercept of line as shown in Figure 5. Now conductance can also be given as the slope of the
curve as shown in the Figure 5. The delay behavior of the output for the proposed CTC is modeled as:

δto = to − t1 = gm1 + (gm3 + gm5)Iin + bφ. (2)

The linear relationship between input current (Iin) and output voltage (vo) very much depends
on the resistance value of the diode-connected M3 transistor, which is shown in Figure 6 (this is a
simulation result). M3 is working as a biasing current source for the cascaded current source, which
is the next unit for the proposed CTC. In Figure 6, curves become straighter with the increase in
device length because MOSFET resistance increases with the increment in channel length. In Figure 6,
the high value of resistance of the M3 transistor helps to increase linearity because the long channel
device limits the second-order and nonlinear effects such as short channel, subthreshold, channel
length modulation, and gate-induced drain leakage (GIDL). Linearity is also dependent on the width
of the M3 transistor, because it is inversely proportional to resistance, which is shown in Figure 7.
A wide width transistor also reduces the nonlinearity in the drain current due to the short channel
effect. In Figure 3e, as per the working principle, the current mirror copies the input current on
the output node (n1). Further, the cascaded current mirror reduces the channel length modulation
and increases output resistance. It also reduces the errors in output currents because of the internal
property of the current mirror. The discussed modification in the proposed CTC makes it more efficient
than the state-of-the-art designs. The simulation results of the proposed CTC are shown in Figure 8.
Simulation results show the linear change in the Vo node voltage for different input currents. The step
size in the output is almost symmetric with the symmetric change in the input current, because the
strong M3 transistor biases the cascaded current mirror and the cascaded state also provides extra
linearity. The proposed work is part of the ADC and the conversion gain is the main parameter for
us. We tried to increase the conversion gain. The detailed comparison of the conversion gain with the
state-of-the-art experimental result is shown in Table 1 [15,22]. The characteristics of the proposed
CTC are shown in Figure 5. The conversion gain of the proposed CTC is 3.86 ms/A, which is 52 times
larger than the state-of-the-art design [15]. The robustness of the proposed design is discussed in the
following section.



Electronics 2020, 9, 490 6 of 14

+

−
vgs5

vo

(gm1xvgs1) (gm2xvgs2)

ro1
ro2

ro3

ro4 ro5
(gm5xvgs5)

(a)

CL
RD

RM

Vin

(b)

Figure 4. (a) Small signal equivalent circuit diagram of the proposed CTC; (b) Simplified electrical
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Table 1. Caparison of the conversion gain with state-of-the-art works.

S.No. VDD Gain (Deltat/Deltain) Reference

1 1.2 1.95 ns/V [15]
2 1 25 ps/100 mV [22]
3 1 3.86 ms/A this work

4. Robustness Analysis

We have used the current mirror circuit in order to design the CTC, which is sensitive towards the
MOSFET device parametric variation due to the process, temperature, and supply voltage variations.
We used only four transistors for the current mirror circuit, which is not a large area penalty, and hence
we can increase the sizing of this transistor. To check the robustness of the proposed CTC circuit, we
analyzed the effects of nonidealities on the output delay. We have considered nonidealities in the
W, L, and threshold voltage variation of the MOSFET. We have assumed a 10% global variation in
the threshold voltage. We have used 5000 Monte Carlo (MC) simulations at a six sigma deviation
for the process variation analysis. Figure 9 shows the simulation results for 100 µA, 1000 µA, and
6000 µA input currents. The results show very little deviation (σ) from the mean value, which means
that the design is stable and robust. We have chosen these values because the built-in computational
random access (C-RAM) with 64 columns and all store data in high logic produces a maximum 3000 µA
current. Hence, ADC can be used in built-in C-RAM designed using the proposed CTC. C-RAM is the
important block of the CNN accelerators that is used in an autonomous vehicle.
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Output delay with temperature variation is shown in Figure 10. The simulation results show
the sensitivity with temperature variation. Results show that the CTC is very much sensitive to
temperature variation. Hence, the specifications, i.e., the initial conditions of the CTC, will change
with temperature. However, it is showing a linear shift in delay with temperature; thus, it can be
repaired. Further, Figure 11 shows the change in output delay with a 10% variation in supply voltage,
and results show a minimal difference. Hence the circuit can tolerate the supply voltage variations.
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Figure 9. Process variation analysis using 5000 Monte Carlo simulations.
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We next tested the reliability of the proposed CTC using the Mosera Model. The performance of
the CTC decreases due to the reliability degradation sources such as NBTI and PBTI. The increment in
the threshold voltage of the P-type MOSFET due to NBTI is due to the diffusion of hydrogen ions into
the gate oxide. It gets accelerated under the electric filed due to direct current (DC) and alternating
current (AC). The shift in threshold voltage due to DC stress is given by:

∆|Vth| = KDCtn (3)

where KDC is approximately
√

k f N0
2kr

(DH)
n, k f is the hydrogen generation constant, kr is the annealing

constant, NO is the initial trap charge density, and DH is the hydrogen diffusion constant. n depends
on the different device sizes and material parameters. n is ≈0.25 for the FinFET and MOSFET devices.
The shift in threshold voltage due to AC stress is given by:

∆|Vth| = αKACtn (4)

where KAC is the technology-dependent parameter and it is equal to the KDC. The α is a prefactor,
and the value of the prefactor depends on the operating frequency and the gate input probability
(α). Moreover, it is reported that the lifetime is four times larger in AC than in DC stress. In the
state-of-the-art design, charging and discharging of the output capacitors is done by PMOS [15].
From the literature, NBTI is the major reliability source that increases the threshold voltage of the
PMOS transistors. Hence, we can conclude that state-of-the-art designs are not reliable. The simulation
results for reliability due to NBTI and hot carrier injection (HCI) are compared in Figure 12. The figure
compares the voltage-to-time characteristics for ten-year DC stress. The proposed circuit shows a
maximum 8.6% shift in results for ten-year stress, which is much smaller than the most advanced
available state-of-the-art designs [15].
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5. Time-To-Digital Conversion

The CTC provides the time interval for the input current; it next needs a device that can provide
digital data. We need a time-to-digital converter circuit for the digital output. TDC is also known as a
data converter, i.e., it moves between different number domains. TDC is accountable for converting a
time interval into a digital coded number. The TDC can be designed with various methods such as
single counter, Flash TDC, vernier oscillator and a cyclic pulse-shrinking-based vernier-oscillator.

The single counter is the simplest type of TDC, which is shown in Figure 13 [23]. This TDC
counts clock pulses for the time interval between rising edges of the start and stop signals. The clock
frequency of the counter is higher than the clock frequency of the CTC. Even though, the proposed
circuit provides a 15 ps delay for every 100 µA input current, a 15 ps delay is not sufficient for
conventional counter-based TDCs. Hence series-connected CTCs are used for the sufficient delay
generation. First, we have designed a counter-based TDC using the best available T-flip-flop and the
same is shown in Figure 14 [24]. This is a three-stage circuit and it uses nine transistors. The output
characteristic of the designed clock frequency for 2 GHz is shown in Figure 15. This counter can
support a maximum of 4 Ghz frequency with a 60 pico-second rise and fall time. The resolution of
this circuit depends on the frequency of the reference clock and can be no higher than a clock period.
The counter-based TDC consists of delay units, control logic, and an 8-bit counter. The layout of the
counter-based TDC is shown in Figure 16. The dimensions of the layout are 17.37× 3.95 µm, which is
much smaller than the best available state-of-the-art design [15]. The exact area compression is not
possible to define because the published result is on different technology nodes and hence we are using
approximate information for the area comparison. However the very high frequency-based flip-flop
design and the stability of the on-chip clocks limit this design.
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Figure 13. Schematic diagram of the asynchronous counter-based time-to-digital converter [23].
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Figure 16. Microchip of the counter-based time-to-digital converter (TDC). It consists of a delay unit, a
control unit, and an 8-bit counter.

Flash TDC is another type of data converter. The block diagram of the Flash TDC is shown
in Figure 17 [18]. In this design, each delay unit generates a τ delay. The chain of delay units produces
an incremental delay and every output is τ time. It is a very fast and efficient design but initial
tuning of this design is difficult. Further, a Vernier delay line-based flash TDC is proposed to increase
the resolution [20]. This type of TDC is well suited for on-chip timing measurement on every clock
cycle. A component-invariant Vernier oscillator TDC with a phase detector is proposed to generate
the perfect square waves based on the very small input frequency. It uses two ring oscillators for
the synchronization. It also uses the start and stop signals as the counter-based TDC was to enable
the oscillators. The block diagram of the Vernier oscillator-based TDC is shown in Figure 18 [20].
The limitation of this architecture is that it takes many cycles to complete a single measurement. This
why the Vernier oscillator requires a long conversion time.

Further, the pulse-shrinking-based TDC can be used to reduce the long conversion gain [25].
It can also be further modified by the ring oscillator to quantize a time interval based on a very
small frequency difference between the two oscillators. It is also further modified by the cyclic
pulse-shrinking circuit, which is shown in Figure 19 [25]. It uses a delay line in the feedback loop
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to design a TDC. In Figure 19, the counter counts the width of the input pulse. In this design,
the delay unit can be designed by the chain of inverters and the counter counts the clock until the
input pulse disappears.
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Figure 17. Flash-type TDC block diagram [18].
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6. Conclusions

In order to design a high-performance time-to-digital converter, a high and linear conversion
gain-based current-to-time converter is required. To the best of our knowledge, there is no design found
for a linear time-to-digital converter (TDC) in the available literature. In this work, a current-to-time
converter (CTC) has been proposed for the TDC. It can use any of the applications where a
linear-controlled delay is required. The simulation results revealed that the proposed design is
compact, stable, and reliable. High conversion is required to increase the resolution of the TDC and
the conversion gain of the proposed CTC is 52 times higher than the state-of-the-art design. The total
area of the design is 17.37 × 3.95 µm, which is also smaller than the state-of-the-art design. It also
displays the smallest effect of reliability and stability degradation sources such as NBTI and process
variation. It can also be used for autonomous vehicles, aerospace and defense applications. We have
also reviewed various time-to-digital converters for the proposed CTC and we have found that the
pulse shrinking-based TDC is the best solution.
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