
electronics

Article

WGAN-E: A Generative Adversarial Networks for
Facial Feature Security

Chunxue Wu 1 , Bobo Ju 1, Yan Wu 2, Neal N. Xiong 3 and Sheng Zhang 1,*
1 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology,

Shanghai 200093, China; wcx@usst.edu.cn (C.W.); xh11407130@Outlook.com (B.J.)
2 O’Neill School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington,

IN 47405, USA; yanwu8910@gmail.com
3 Department of Mathematics and Computer Science, Northeastern State University, Tahlequah, OK 74464,

USA; xiongnaixue@gmail.com
* Correspondence: zhangsheng_usst@aliyun.com; Tel: +86-021-55271311

Received: 17 February 2020; Accepted: 10 March 2020; Published: 15 March 2020
����������
�������

Abstract: Artificial intelligence technology plays an increasingly important role in human life. For
example, distinguishing different people is an essential capability of many intelligent systems. To
achieve this, one possible technical means is to perceive and recognize people by optical imaging of
faces, so-called face recognition technology. After decades of research and development, especially the
emergence of deep learning technology in recent years, face recognition has made great progress with
more and more applications in the fields of security, finance, education, social security, etc. The field
of computer vision has become one of the most successful branch areas. With the wide application
of biometrics technology, bio-encryption technology came into being. Aiming at the problems of
classical hash algorithm and face hashing algorithm based on Multiscale Block Local Binary Pattern
(MB-LBP) feature improvement, this paper proposes a method based on Generative Adversarial
Networks (GAN) to encrypt face features. This work uses Wasserstein Generative Adversarial
Networks Encryption (WGAN-E) to encrypt facial features. Because the encryption process is an
irreversible one-way process, it protects facial features well. Compared with the traditional face
hashing algorithm, the experimental results show that the face feature encryption algorithm has
better confidentiality.

Keywords: facial feature; generative adversarial networks; Wasserstein GAN; face
recognition; neurocryptography

1. Introduction

The general methods of facial feature extraction are: Gabor features, Haar-like features (HAAR),
Histogram of Oriented Gradient (HOG), and Local Binary Pattern (LBP) [1]. The advantage of the
traditional face recognition method is that it runs more quickly under the CPU. The disadvantage
is that the recognition rate is relatively low, because features need to be specified manually and are
not “autonomous” as in deep learning. Recently, the face recognition process based on deep learning
mainly uses convolutional neural networks [2,3]. The disadvantage is that it runs very slowly under
the CPU [4,5].

In recent years, biometric technology has made great progress and has gradually penetrated
all aspects of human life. However, with the continuous deepening of the application of biometric
technology, its inherent security and privacy protection issues have gradually been exposed. The
biological characteristics of the human body are fixed. Once they are lost and used by criminals for
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illegal purposes, it can have unimaginable consequences. Therefore, Biometric Encryption (BE) came
into being [6].

Cryptography pays extensive attention to the confidentiality and integrity of information.
Cryptographic mechanisms are often described as programs or Turing machines. In these terms, an
attacker is also described as the boundary between its complexity (e.g., limited to polynomial time)
and chance of success (e.g., limited to probability). A cryptographic mechanism is considered secure if
it can reach polynomial time and cannot be deciphered. For example, if no one can extract information
from encrypted facial features, the encryption algorithm is secure. This definition is more standardized
by modern cryptography [7].

Biometric cryptography is a process that binds keys and biometrics together. Therefore, after the
biometrics are submitted to the system, both the keys and biometrics should be guaranteed to not be
decipherable from the template stored in the system [6]. This concept was first proposed by Tomko et
al. in 1994 and was patented in combination with fingerprint feature encryption. In 1998, Nichols et
al. first proposed the concept and implementation method of key and biometric binding. In China,
Wang et al. introduced the concept of encryption to biometrics in 1999 and conducted groundbreaking
research. In 2001, Ratha et al. introduced the concept of revocable biometric authentication. Adjustable
single-parameter conversion capabilities are used to exchange raw biometric data. If the conversion
template is stolen, only the parameters are changed and a new template can be generated.

With the development of computers, electronics, and modern communication technologies, the
issue of security and confidentiality of information transmission and storage has become an important
research field. A powerful measure to ensure information security is to encrypt information using
cryptographic algorithms. There are multiple data encryption algorithms. In cryptography, serial
cipher is a very important encryption method. The serial cipher is based on the idea of “one time and
one secret”. The linear shift register and circuit combination are used to generate a pseudo-random
sequence to encrypt the information. Therefore, the serial password has the characteristics of fast
encryption. At present, the proposed sequence cipher algorithm basically uses the XOR of the key
sequence and the plaintext to obtain the ciphertext. It is difficult for cryptanalysts to decrypt using the
plaintext redundancy. The sequence ciphers also have the characteristics of disturbing the statistical
characteristics of the plaintext and the absence of data expansion and error transmission, and they
are suitable for secure communication. Therefore, serial ciphers maintain a unique advantage in
practical applications, especially in military, diplomatic, and important confidential transmissions, and
are considered the mainstream of current international cryptosystem applications. Since the neural
network can perform nonlinear function mapping on the input space and the output space according
to different training conditions, the neural network technology can be used to generate a key sequence
for data sequence encryption. Neural network-based sequence encryption can achieve face feature
encryption [8].

The rest of the paper is arranged as follows. Section 2 introduces the existing contributions of
the predecessors in neural cryptography and the advantages and disadvantages of these methods,
and derives a novel method to encrypt re-encoded facial features using generative adversarial neural
networks. In Section 3, we detail our experimental model. Section 4 gives the relevant experimental
process in detail and analyzes the reliability of the experimental results. Finally, in Section 5, we explain
the conclusions and future work.

2. Related Work

Manual authentication is a security task that restricts access to a physical location or computer
network to only authorized personnel. This can be done by equipping authorized users with a
password, token, or using their biometric technology. Unfortunately, the first two are poorly secured
because they are easily forgotten and stolen; even biometrics suffer from some inherent limitations
and specific security threats. A more practical approach is to use a combination of two or more factor
authenticators for the benefits of security or convenience or both. Compared with only biometric



Electronics 2020, 9, 486 3 of 20

technology, tokenized pseudorandom numbers and user-specific biometrics (BioHashing) have obvious
functional advantages, namely zero equal error rate. The main disadvantage of the basic BioHashing
method is that when “impersonator B” steals A’s pseudo-random number and attempts to authenticate
to A, it shows lower performance. Lumini et al. introduced some improvements [9]. This research
uses the basic BioHashing method to maintain a very low equal error rate when no one steals the hash
key, and can achieve good performance when the “impersonator” steals the hash key.

Kuan et al. introduced a novel method that can use BioPhasor hybrid and 2N discretization
technology to securely calculate the biometric hash on a dynamic hand signature [10]. Using BioPhasor
as a hybrid process provides a one-way transformation, making it impossible to accurately recover
biometric vectors from damaged hashes and stolen tokens. The results show that, for stolen tokens
(worst-case scenario) with random and skilled forgery methods, the proposed method can produce
stable and distinguishable bit strings, and the equal error rate (EER) is 0% and 9.4%, respectively.
The counterfeit has an equal error rate of 0% in the token (best) scheme.

A consistent encryption key from noisy data, such as a biometric template can be derived with
the help of some additional information called a sketch. The main difficulty is that many biometric
templates are represented as points in a continuous domain with an unknown distribution, and known
results can only work in the discrete domain, or lack a rigorous analysis of entropy loss. Qiming
Li et al. suggested not to study methods to directly solve these problems, but instead to study the
relative entropy loss of any given scheme, which would limit the additional number of bits that can be
extracted if the best parameters are used. They gave a general scheme and showed that the relative
entropy loss due to suboptimal discretization is at most nlog3, where n is the number of points and the
boundaries are tight [11].

With regard to deep learning and neural networks for image, text, and speech encryption, a great
deal of research has been done by predecessors [12–14]. Their research confirms the effectiveness and
advancement of neural networks for encryption algorithms from various angles.

As a proof of concept, Chen He et al. proposed a method based on deep learning to attack
chaotic-based image encryption algorithms [15]. The method firstly projects the chaotic encrypted
image into the low-dimensional feature space, and retains a large amount of basic information of the
original image in the low-dimensional feature space. Using a low-dimensional feature, a deconvolution
generator is used to generate a perceptually similar decrypted image, thereby approximating the planar
image in a high-dimensional space. Compared with the traditional image encryption attack algorithm,
this method does not require time-consuming manual analysis and inference of the key.

The Stacked Auto-Encoder (SAE) is a deep learning algorithm for unsupervised learning. It has
a multi-layered structure that projects a vector representation of the input data into a lower vector
space. These projection vectors are a dense representation of the input data. Therefore, SAE can be
used for image compression. Using chaotic logic mapping, the compressed logical map can be further
encrypted. Fei Hu et al. recommend using SAE and chaotic logic mapping for image compression and
encryption [16].

Deep learning as a service (DLaaS) has become a promising method for promoting deep neural
networks (DNNs) for various purposes. However, using DLaaS can also lead to potential privacy leaks
from clients and cloud servers. This privacy issue has led to research interest in the privacy protection
reasoning of DNN models in cloud services. Peichen Xie et al. proposed a practical solution called
BAYHENN’s secure DNN reasoning [17]. It protects both client privacy and server-side privacy. The
key strategy of this research solution is to combine homomorphic encryption and Bayesian neural
networks. Specifically, the study uses homomorphic encryption to protect raw client data and Bayesian
neural networks to protect DNN weights in cloud servers.

Théo Ryffel et al. detailed a new framework for protecting deep learning privacy and discussed its
advantages [18]. The framework values data ownership and security processing and introduces valuable
representations based on command chains and tensors. This abstraction allows for complex privacy
protection structures such as federated learning, secure multiparty computing, and differential privacy.
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When deep learning is applied to sensitive datasets, there are many privacy-related implementation
issues. These issues are particularly evident in the medical, financial, legal, and government industries.
Homomorphic encryption allows the server to infer the input of the client’s encryption [19]. For any
model depth, there is no complete implementation of the generic deep learning operation using
homomorphic encryption. Related scholars have proposed a new method to effectively implement
multiple deep learning functions by using bootstrap homomorphic encryption. The findings provide
a promising direction for user-regression of privacy-protected representation learning and data
control [20].

With the rapid development of current Internet networks and online applications, network traffic
classification becomes more and more important. Much of the research on this topic has led to many
different approaches. Most of these methods use predefined features extracted by experts to classify
network traffic. In contrast, Mohammad Lotfollahi et al. proposed a deep learning-based approach
that integrates feature extraction and classification into a single system [21]. The proposed solution,
called Deep Packet, can handle two traffic characteristics, one is to classify network traffic into major
classes (such as FTP (File Transfer Protocol) and P2P (peer to peer lending)), and the other is to require
end-user application identification (such as BitTorrent).

As neural networks are applied to increasingly complex tasks, they are often trained to meet
the ultimate goal of transcending simple functional specifications and address multi-agent problems.
Through these efforts, Google Brain discovered that neural networks can learn to protect communication
security [22]. However, neural networks are not good at cryptography. It is worth noting that, under
neural network encryption, a single neuron cannot learn the XOR, but a multilayer network can do
it. However, neural networks can learn how to protect the confidentiality of data from other neural
networks: they discover how to encrypt and decrypt forms without having to teach a specific algorithm
for these goals.

Martin Arjovsky et al. introduced an algorithm of Wasserstein GAN (WGAN), which is an
alternative to traditional GAN training [23,24]. In this new model, they demonstrated that WGAN
can improve learning stability, get rid of pattern collapse and other issues, and provide meaningful
learning curves for debugging and hyperparametric search. In addition, the study demonstrates that
the corresponding optimization problem is reasonable and provides a wide range of theoretical work,
highlighting the deeper connections to other distances between distributions.

WGAN has made progress in stabilizing GAN, but sometimes it can only generate bad samples
or fail to converge. Ishaan Gulrajani et al. found that these problems were usually due to the use of
weight-cutting in WGAN to impose Lipschitz constraints on critics, which could lead to bad behavior.
Thus, Gulrajani et al. proposed an alternative method of weight reduction: penalizing the critics’
gradient specification relative to their input [25]. The proposed method performs better than the
standard WGAN and can stably train multiple GAN architectures with almost no hyperparameter
adjustment, including 101-layer ResNet (Residual Neural Network) and a language model with
continuous generators.

This study introduces face feature extraction. The re-encoded facial features are then encrypted
using a model trained against the neural network WGAN-E.

3. Face Feature Description and Neural Network Encryption Model

3.1. Face Feature Description

The LBP primitive operator introduced by Ojala et al. is a powerful texture description method.
The operator marks the pixels of the image as a 3 × 3-neighbor of each pixel and considers the result
as a binary number. LBP can also be used as a biometric description. The principle of the basic LBP
operator is shown in Figure 1. Later, the method was extended to allow the use of circular areas
of different sizes and bilinear interpolation of pixel values, allowing for any radius and number of
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pixels nearby. For neighboring regions, the study uses the symbol LBP(P, R), which means that the
P-sampling point on the circle of the radius of (see Figure 2) is an example of a circle (8, 2) [1].Electronics 2020, 9, x FOR PEER REVIEW 5 of 20 
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combined with Figure 1.

This study uses the following notation for the LBP operator: LBPu2

P,R. The subscript indicates the
use of operators near (P, R). Superscript u2 means that only the unified mode ((P,R) = (8,2) is used
uniformly to calculate LBP and all remaining modes are marked as one tag.

The histogram of the marked image fI(x, y) can be defined as

Hi =
∑
x,y

I
{
fI(x, y) = i

}
, i = 0, · · · , n− 1 (1)

where n is the number of different tags generated by the LBP operator

I{A} =

1 A is true

0 A is false
(2)
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This is a distribution of edges, spots, and planar regions over the entire image. For valid facial
representations, it should also keep spatial information. For this purpose, the image is divided into
regions R0, R1, · · · , Rm−1 and the spatially enhanced histogram is defined as

Hi, j =
∑
x,y

I
{
f (x, y) = i

}
I
{
(x, y) ∈ R j

}
, i = 0, · · · , n− 1, j = 0, · · · , m− 1 (3)

In this histogram, the effective description of the face is: the histogram of the label contains
pixel-level information, and the information generated by the label and region level is added together.
This information establishes a globally described face description of the regional histogram.

3.2. Principles of Encryption and Decryption

A complete cryptosystem includes plaintext space, key space, and algorithms. Using the associative
memory neural network for encryption, this study only uses the iteration of the network, regardless of
whether it can be added to the stable point of the network. This study only needs to extract a given
face feature input network and train it with a specified number of iteration steps. It not only can be
encrypted, but is also simple and easy. The disadvantage is that there is a certain key redundancy
along with the improvement of security.

Since there are many noise-added samples and redundant attractors in the associative memory, if
these data were separated from a specific neural network and number of iterations, the data would
be meaningless. Therefore, this study proposes a method for neural network encryption using noisy
samples and redundant attractors.

Encryption principle: There are two types of cryptosystems, single key and dual key. This article
uses the traditional single key system, that is, the confidentiality of the system depends on the security
of the key. Of course, if the encryption is not publicly disclosed, then the security level of the algorithm
and key system is high. In the traditional encryption system, the operations of the encryption algorithm
and the decryption algorithm are performed under the control of a set of keys, which are called
encryption key and decryption key, respectively.

Encryption process: Assume that there is a plaintext of length 256. The packets are encrypted
and XORed according to the secret key generated by the above process, or other higher encryption
algorithms are used.

Decryption process: The receiver intercepts the vector after the plaintext according to the protocol
and compares the network parameters transmitted through the relatively secure channel. The 24th bit
of the vector is intercepted, and then 4 bits of information are intercepted according to the protocol
(each vector has three vectors). The algorithm needs to calculate the weights of the network and iterate
the positive samples in groups of four for five iterations to obtain the results. The numbers after the
24th one (or 4 × 33 + 24) are intercepted. A set of inputs is decomposed into the five five-dimensional
samples starting from the 55th bit, and the result of iterating three times is the key. The key and the
ciphertext are XORed to obtain the plaintext.

3.3. WGAN-E Encrypts Facial Feature Data

This section discusses how to use shared keys to protect the confidentiality of facial features.
It describes the organization of the system in this study and the role of various parts of the system.
It also illustrates the architecture of the neural network model used in this study.

The classic security scenario involves three aspects: Users, Servers, and B competitors. Generally,
A’s facial features need to be stored securely on the server, while B wants to steal A’s facial features.
Therefore, the required security attribute is confidentiality rather than integrity. Define an adversary
as a “passive attacker” who can intercept communications. However, beyond that, the adversary’s
permissions are very limited: it cannot start a session, inject messages, or modify messages during
transmission [25].
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This study begins with a particularly simple example of this scenario (Figure 3), in which A wants
to send a separate secret face feature FF (representing the Facial Feature, “Face Feature”) to the Server.
The face feature Facial Feature is the input to A. When A processes this input, it produces an output
EFF (representing Encrypt Facial Feature, “Encrypted Face Features”). Both Server and B receive the
EFF, process it, and attempt to recover the face feature FF. This study uses PB and PS to represent their
calculation results. A and Server have an advantage over B: they share a Key. This study uses K as an
additional input to A and Server. Assume that each face feature FF has a new Key, but, at least on this
abstract level, this study does not mandate that the Key and FF are the same length.Electronics 2020, 9, x FOR PEER REVIEW 7 of 20 
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Figure 3. A, Server, and B password system. The A network acts as a Generator here, and the B
and Server networks act as Discriminators. Facial features use the key and A network to obtain the
encrypted face features, and B and Server are used to restore the encrypted face features to face features.

For the face feature encryption process, A, Server, and B are neural networks. Their structure
is described in Section 3.4. They all have parameters, which are recorded as ωA, ωServer, and ωB,
respectively. Because ωA and ωServer do not need to be equal, even if A and Server have the same
structure, encryption and decryption are not necessarily the same function. For neural networks, A,
Server, and B are all in a tuple of values, not a sequence of bytes. In other words, Key, FF, FFServer, FFB,
and EFF are all tuples of values. Note that with this formula, EFF, FFB and FFServer can be composed
of arbitrary values, even if FF and Key consist of 0 and 1. In practice, the implementation of this study
limits these values to the range, but allows intermediate values.

Although this setting is basic, it is sufficient for the basic plan. Especially considering that A
and Server use Key as a one-time key between facial features FF and encrypted facial features EFF.
However, this study does not require A and Server to operate in this way. In fact, in the three-part
experiment, other options were found. For the sake of simplicity, this study not only ignores the
process of generating keys, but also ignores the randomness of probability encryption (Goldwasser
and Micali, 1984) [25]. These enhancements may be the subject of further work.

The goal of B is simple: accurately reconstruct FF (in other words, minimize the error between FF
and FFServer). A and Server want to communicate clearly (minimize the error between FF and FFServer),
as well as hide their communication with B. Note that, according to the modern password definition
(Goldwasser and Micali, 1984), this study does not require the encrypted face feature FF to “seep
random” to B. Encrypted face features may even contain explicit metadata to identify it. Therefore, for
B, distinguishing between FF and random values extracted from a distribution is not a goal. In this
regard, B’s goal is in stark contrast to the opponents of GANs [26]. On the other hand, this study can
try to redefine the goal of B to distinguish the encrypted face features composed of two different files.

With these goals in mind, this study does not separately train A and Server to implement some
known cryptosystems (Dourlens, 1996), but jointly trains A and Server to allow them to communicate
successfully without pre-designated concepts. In the case of defeat for , as with the definition of GANs,
this study hopes that A and Server defeat the most likely B, not a fixed B. Of course, A and Server may
not win every plaintext and every keyword, because knowledge of certain face features and keys may
be fixed in B. (For example, B can output the same facial features, at least once is correct.) Therefore,
this study assumes a distribution on the face features and keys, and describes the goals of A and Server
based on the expected values [27].



Electronics 2020, 9, 486 8 of 20

This study uses A(ωA, FF, Key) to represent the output of A on input FF and Key,
S(ωServer, EFF, Key) to represent the output of Server on input FF and Key, and B(ωB, EFF) to represent
the output of B on input C. At the same time, the distance function d is introduced in the face feature,
although the exact choice of this function may not be important. For the specific operation, this study

takes the L2 distance d2(FF, FF′) =
√ ∑

i=1,N

(
FFn

1 − FFn
2

)2
(Euclidean distance), where N is the length of

the face feature. This study defines the loss function for each instance for B:

LB(ωA,ωB, FF, Key) = d(FF, B(ωB, A(ωA, FF, Key))) (4)

Intuitively, LB(ωA,ωB, FF, Key) represents how much B is wrong when the face feature is FF and
the key is Key. This study also defines the distribution of a loss function for the face feature and key
through the expected value for B:

LB(ωA,ωB) = EFF, Key(d(FF, B(ωB, A(ωA, FF, Key)))) (5)

This study obtains the “best B” by minimizing this loss:

OB(ωA,ωServer) = argminωB(LB(ωA,ωB)) (6)

Similarly, this study defines a sample reconstruction error for Server and extends it to a distribution
of face features and keys:

Lserver(ωA,ωServer, FF, Key) = d(FF, Server(ωServer, A(ωA, FF, Key), Key)) (7)

LServer(ωA,ωServer) = EFF,Key(d(FF, B(ωServer, A(ωA, FF, Key)))) (8)

This study defines the loss function of A and Server by combining the optimal values of LServer

and LB:
LAServer(ωA,ωServer) = LServer(ωA,ωServer) − LB(ωA, OB(ωA)) (9)

This combination reflects A and Server’s desire to minimize Server rebuild errors and maximize
“optimal B” rebuild errors. The use of simple subtraction is somewhat arbitrary, the following study
will describe useful variants.

By minimizing LAServer(ωA,ωServer), this study obtains “Best A and Server”:

(OA, OServer) = argmin(ωA,ωServer)
(LAServer(ωA,ωServer)) (10)

We write “optimal” in quotes because there is no need for a global minimum. In general, there
are many optimal solutions for A and Server. As a simple example, assume that the key has the same
size with the face feature and the encrypted face feature, A and ServerXOR may obtain face features
and encrypted face features, respectively, the key to the arrangement, and all the permutations, is:
the same is good, as long as A and Server are the same. By way of building the network of this study
(see Section 3.4), all permutations may occur.

Training begins with random initialization of the A and Server networks. The purpose of training
is to go from this state to (OA, OB), or close to (OA, OB). Next, we explain the training process [25,26,28].
Algorithm 1 describes the implementation principle of WGAN-E.
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Algorithm 1 WGAN-E, a neural cryptography algorithm. All experiments in the study used default values
α = 0.001, c = 0.04, m = 2000, ncritic = 25, λ = 10, β1 = 0, β2 = 0.9.

Require: c, the clipping parameter. m, the batch size. β1 β2, hyperparameters parameters. ncritic, the number of
iterations of the critic per generator iteration. The gradient penalty coefficient λ, Adam hyperparameters α (the
learning rate). w0, initial critic parameters. θ0, initial generator’s parameters. x, face image data vectors. z, face
LBP data vector.

1: while θ has not converged do
2: for t = 0, . . . , ncritic do

3: for i = 1, . . . , m do
4: Sample

{
x(i)

}m

i=1
∼ Pr a batch from the real data.

5: Sample
{
z(i)

}m

i=1
∼ p(z) a batch of prior samples.

6: a random number ε ∼ U[0, 1].
7: x← Gθ(z)
8: x̂← εx + (1− ε)x
9: L(i) ← Dw(x) −Dw(x) + λ(‖∇x̂Dw(x̂)‖2 − 1)2

10: gw ← ∇w

[
1
m

m∑
i=1

fw
(
x(i)

)
−

1
m

m∑
i=1

fw
(
gθ

(
z(i)

))]
11: w← w + α ·RMSProp(w, gw)

12: w← clip(w,−c, c)
13: end for

14: w← Adam
(
∇w

1
m

m∑
i=1

L(i), w,α, β1, β2

)
15: end for
16: Sample

{
z(i)

}m

i=1
∼ p(z) a batch of prior samples.

17: gθ ← −∇θ 1
m

m∑
i=1

fw
(
gθ

(
z(i)

))
18: θ′ ← θ− α ·RMSProp(θ, gθ)

19: θ← Adam
(
∇θ

1
m

m∑
i=1
−Dw(Gθ(z)),θ′,α, β1, β2

)
20: end while

3.4. WGAN-E Neural Network Structure

A, Server, and B Architecture: This study aims to create a neural network architecture that fully
learns XOR and other hybrid functions, but does not strongly encode any particular form of the
algorithm [29,30].

To this end, the study selected the following “mixing and conversion” architecture. It has a first
fully connected (FC) layer where the number of outputs is equal to the number of inputs. Face features
and keys are entered into this FC layer. Because each output bit can be a linear combination of all input
bits, this layer is enabled—but not enforced—to mix between key and face features. In particular, this
layer can swap bits. Before the FC layer is a series of convolutional layers, the last layer producing
an output suitable for the size of the face feature or the encrypted face feature. These convolutional
layers for learning apply some functions to the bit groups that are mixed by the previous layer without
specifying what the function should be. It is worth noting that, in image processing applications,
the reverse order (convolution and FC) is more common. Neural networks developed for these
applications often use convolution to take advantage of spatial locations. For neurocryptography, this
study specifically wants localization. Although it will definitely manually pair each input face feature
manually using the corresponding key bits, this study suggests that doing so would be boring [22,31].
WGAN-E Neural network structure is shown in Figure 4.
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Figure 4. WGAN-E neural network structure. We used the ResNet-11 network to implement the
generation network and discriminator network. The face feature encryption process is trained by the
deconvolution operation of ResNet-11. With the convolution operation of ResNet-11, the encrypted
face features can be restored.

This study avoids imposing more restrictions to simplify the problem. For example, we do not
associate A with the Server parameter, as we thought both A and Server should learn the same function,
such as XOR.

4. Experiment and Analysis of Results

The training and test dataset used is the LFW (Labeled Faces in the Wild) dataset. This is a
commonly used test set for face recognition. The face pictures provided in it are all derived from
natural scenes in life, so the recognition difficulty is increased, especially due to factors such as multiple
poses, lighting, expressions, age, and occlusion. Photos of the same person also vary widely. In some
photos, more than one face may appear. For these multi-face images, only the center coordinate face is
selected as the target, and other areas are regarded as background interference. There are 13,233 face
images in the LFW dataset. Each image gives the corresponding person name. There are 5749 people,
and most of them have only one picture. The size of each picture is 250 × 250, most of which are color
images, but there are also some black and white face pictures.

4.1. Data Preprocessing

The original LBP face features are not directly training. We need to improve these facial features
(as shown in Figure 5). The improved methods of this study are as follows. Improvements to LBP face
features: We note that LBP face features are composed of 8-bit binary tuples, thus it is only necessary
to insert random 8-bit random between these tuples to generated key. In particular, the face features
mentioned below refer to the modified face features.
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Figure 5. Improvements to shape-indexed face features.

Our training method is based on Adam (Adaptive Moment Estimation). In practice, our training
methods are very different from those of GANs [32,33]. Our training methods have been improved in
several ways, and some improvements have been made to the goals of Section 3.3. Next, we introduce
these improvements and give further details.

First, training relies on hundreds of “small-batch” calculations. We do not calculate “best B” for
given datasets. We simply approximate it, alternating B’s training with A’s and Server’s. Intuitively
speaking, training may be roughly as follows. A may initially create some encrypted face features,
but Server and B do not understand at all. By training a few steps, A and Server may find a way to
communicate so that Server can at least partially decrypt A’s facial features, but B cannot understand
this. In particular, A and Server may find some trivial conversions. However, after some training,
B may begin to learn to crack part of the facial feature data. With more training, A and Server may
find ways to improve encryption, especially that can better utilize key facial features for encryption.
B finally finds that it is impossible to easily crack the data of these key facial features. This kind of
alternation is a typical confrontation game; the theory of continuous adversarial game involves the
results of balancing, which may apply to our problem [34].

In addition, in the training of A and Server, we do not try to maximize the reconstruction error of
B. If B is completely wrong, B can flip all output bits completely at the next iteration. A more realistic
and useful goal for A and Server is to minimize the mutual information between B’s guess and real face
features. In the case of symmetric encryption, this goal is equivalent to making the answer generated
by B indistinguishable from random guessing. This approach is somewhat similar to the approach
designed to prevent overtraining of current opponents (Salimans et al., 2016) [33]. In addition, we
can also adjust the loss function so that it does not have a big impact on B, nor does it fix some minor
errors in Server.

Finally, once we stop training A and Server, they choose their own cryptosystem. This study
verifies that this work is good and tries to break the cryptosystem instance by training many Bs. Some
of these examples may come from the early stages of training.

4.2. Experimental Process

As a proof of concept, this study implements A, Server, and B networks that use N-bit random
face features and encrypted face features and generate N-entry floating-point encrypted face features,
N = 8, 16, 32, and 64 (in the previous study, two face feature formats have been normalized to an 8-bit
“0-1” format). Face features and keys are evenly distributed. The key is not intentionally reused, but
reappears due to random selection. The experiment considers a more interesting detail which allows
for different sizes of face features and keys. This study used TensorFlow (Abadi et al., 2016a; b) to
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perform our experiments. We used a Nvidia V100 GPU Server with memory size 32 GB for training.
The specific computing platform does not affect the results of the experiment.

The network of this study follows the “mix and convert” model, described in Section 3. The
network connects two n-bit inputs (face features and keys) to a 2N entry vector, using −1 (−1 for 0)
and 1 to represent the bit value. The convolutional layer is described in terms of window size, input
depth, and output depth. Each step has a “step”—the amount of movement of the window. Intuitively,
the layer slides out a size 2 window from the 2N output elements of the FC layer and outputs two
numbers: output depth and step. In addition to the last layer, we use a sigmoid nonlinear unit. In the
last layer, after reducing the output to N elements, we use a tanh nonlinear unit. tanh bringing the
value back to a range that can be mapped to a binary value. The Server network is the same as the A
network, and the B network only takes the encrypted face feature as input.

To train the network, this study used a “mini-batch” size, with one batch having 2000 facial
features. We used TensorFlow’s Adam (Kingma and Ba, 2014) optimizer to learn at a rate of 0.001 [31].
The entire training did not slow down the learning rate because we want A, Server, and B to continue
to react strongly to changes in other components until A and Server—hopefully—implement a solution
that has enough support for additional changes to B.

Training is alternated between A/Server and B. A and Server train a small batch and then train
for next small batches. We choose this ratio to give the adversary B a slightly calculated advantage
without over-training it, leading to it becoming too strong for the current parameters of A and Server.
From an empirical point of view, this value is very effective [35].

The the loss function of B is as described above: the L2 distance between the guess of B and
the face feature of the input. The loss functions of A and Server are more complex, as shown in
Sections 3.2 and 3.3. This function has two components, related to the server’s refactoring errors and
the eavesdropper’s success. The first component is the L2 distance between the Server output and
the input face feature. On the other hand, the latter is (N/2− B L2 error)2/(N/2)2. This definition
expresses the goal described in Section 3, i.e., B should not do better than random guessing. Therefore,
when half of the messages are wrong and half are correct, this component is minimized. We chose
a quadratic formula to emphasize B made a big mistake, and gave a few penalties when B correctly
guessed a few bits, occasionally, even if B’s guess is random. Using this formula allows us to have a
meaningful loss function for each example (rather than looking at larger batch statistics) and improve
the robustness of the training. The cost is that our last well-trained A and Server allow B to get more
information than a simple random guess. We have not yet achieved satisfactory results because the
linear (rather than quadratic) loss function is linear in B’s reconstruction error. The best solution is still
an open question [36].

The WGAN-E face feature encryption and decryption system working process is shown in Figure 6.
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Figure 6. WGAN-E face feature encryption and decryption system. Note: DB is database. A facial
feature is generated by LBP feature extraction to generate a series of codes for representing feature
values. These face feature codes are stored in the server after being encrypted by WGAN-E face features.
When face information needs to be identified, the facial features are extracted from the server and the
original facial features can be obtained by WGAN-E decryption.
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4.3. Analysis of Experimental Results

After successful training, the output result passes through a precision threshold (e.g., up to 0.05
bits of reconstruction error A and Server, rather than random guess prediction), we reset the B network,
train it five times from scratch, each step is 250,000, and record the best results through B. If A/Server
combination failed to achieve the target below threshold at 150,000 steps, and at the same time if
retraining B gains a substantial advantage, the solution to this problem is non-robust. Otherwise, we
think this is a successful training result.

Figures 7 and 8 show the number of successful runs, server rebuild errors, and B rebuild errors
with N = 8 face features and key training steps, using a small batch of 2000. Each point in the graph
is the average error in 2000 examples. The ideal result is that the server’s rebuild error drops to
zero, and B’s rebuild error reaches 8 (half the error). In this example, both refactoring errors are high.
After some time, A and Server began to communicate effectively, but, to a certain extent, B could
gradually improve their understanding. Then, in step 10,000, A and Server oppose B’s progress. By
15,000 steps, the training objectives were achieved. The remaining steps only slightly increased the B
reconstruction error.
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The training diagram in Figure 9 does not appear to be a typical success result of a neural network.
In this process, from the beginning to the end oscillation of the steps is not usually good. The dynamics
of this confrontational training seem to be more reminiscent of the evolutionary process. These
dynamics seem to depend on some random variations that make the pieces slightly mixed, but, once
there is some mixing, the gradient drop can push it further forward.
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The argument behind this interpretation is that training is not always successful. At N = 8, 3 out of
10 initial runs failed, and none of these failures caused a reconstruction error of S at the 0.05 threshold,
nor did the B reconstruction error exceed 7.3 bits (8 bits). To test the robustness of the other 14 A/B
combinations, we conducted five trainings on B and obtained B reconstruction errors from 4.67 to 6.97
with an average of 6.1. If we arbitrarily define success as keeping the server at 0.05-bit reconstruction
error and asking B to have at least six errors, on average, half of the training is successful (5 of 10 cases).

Although training with opponents is often unstable (Salimans et al., 2016), some additional
engineering of neural networks and their training might increase the overall success rate. For example,
with only 512 small batches, our success rate is only 1/3 (we use a small batch size of 200). In the future,
it may be worthwhile to study the effects of small batch sizes, as well as other parameters such as
learning rates.

For a successful training, we studied the changes in encrypted facial features caused by different
facial features/key pairs. Although we did not perform a detailed analysis of the human feature
encryption method, we did make some observations. First, it is key-dependent: changing the key and
keeping the result of the face feature constant leads to different encrypted face feature outputs. It is
also a necessary for successful communication. However, it is more than just XOR. In particular, the
output values are usually floating point values, not 0 and 1. In addition, the effect of changes to the
key or face feature bits propagates across multiple elements in the encrypted face feature, rather than
being limited to a single bit as in XOR. In a key, the flipping of a unit usually results in a significant
change in 3–6 of the 8 elements in the encrypted face feature, and the other elements will change less.

To evaluate the merits of a cryptographic algorithm, we should first consider whether it
meets certain security contraints, and then, the efficiency of the algorithm and the key distribution
and confidentiality.
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Algorithm security analysis (Table 1): The face feature encryption algorithm based on the GAN
proposed in this paper uses a different key sequence for each round of information, even if one of
the keys is known using the exhaustive key algorithm. That is, even though it obtained a round of
information, it could not obtain any other information. The key sequence of the algorithm is generated
according to the GAN and has more security features. Therefore, it has a more secure encryption effect,
further improving the security of the key, and improving the confusion of the key generation algorithm
to effectively resist password attacks.

Table 1. Algorithm security analysis (L, Low; M, Medium; H, High).

MD5 SHA1 HMAC AES DES RSA ECC WGAN

LBP M H L H L H H H

Gabor L M L M L M H H

ASM L M M H M H H H

SeetaFace M H L H L H H H

FaceNet H H M H M H H H

OpenFace M H L H L H H H

Sensitivity analysis of keys (Table 2): Initial sensitivity is the basic nature of the key system.
Minor changes are made to the initial conditions of the key system. The values of the bit change rate
are relatively large, and the initial sensitivity of the key system is very large. Due to the sensitivity
of the key system to the initial conditions, many uncorrelated, random generated key sequences can
be obtained.

Table 2. Sensitivity analysis of keys (L, Low; M, Medium; H, High).

MD5 SHA1 HMAC AES DES RSA ECC WGAN

LBP M H L H L M M H

Gabor M H L H L M M H

ASM M H L H L M M H

SeetaFace M H L H L M M H

FaceNet M H L H L M M H

OpenFace M H L H L M M H

Anti-cryptanalysis (Table 3): For this encryption algorithm, the password attacker may mainly
adopt the reconstruction algorithm/GAN method, so that it must know the initial state and the
connection matrix of the algorithm/GAN. If the plaintext total method is used to imitate the key
system, then it must solve how to use plaintext–ciphertext to solve the algorithm/GAN parameters, the
initialization state, and the external input initial value. If differential analysis and linear analysis are
used to decipher, it is very difficult to linearly approximate a nonlinear key system.
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Table 3. Anti-cryptanalysis (L, Low; M, Medium; H, High).

MD5 SHA1 HMAC AES DES RSA ECC WGAN

LBP L H M H M M H H

Gabor L M M H M M M H

ASM L H L H L M H M

SeetaFace L H M H M M H H

FaceNet L H M H M M H H

OpenFace L H M H M M H H

Efficiency analysis (Table 4): Since the algorithm can use parallel operations in the encryption
process, such as WGAN against neural network operations, in general, parallel operations are faster
than serial operations, especially for binary calculations. Under normal circumstances, the length of
the ciphertext is longer than that of the plaintext. This is mainly because the encryption of the plaintext
packet sometimes needs to be filled, and the encryption efficiency of the entire system is also very high.
Since the improved algorithm enhances the security factor, there is a certain decline in the execution
efficiency with the conventional encryption algorithm. Therefore, the improved algorithm exchanges
the execution efficiency for the algorithm security.

Table 4. Efficiency analysis (S, Slow [>1]; M, Medium [0.1–0.9]; F, Fast [0.01–0.09]; FR, Faster [<0.001]).

MD5 SHA1 HMAC AES DES RSA ECC WGAN

LBP FR S M FR F M S F

Gabor FR M F FR F M S F

ASM FR M F FR M F S F

SeetaFace F S M F F S S M

FaceNet F S S F FR S S M

OpenFace M S M F F M S M

Deciphering complexity analysis (Table 5): Let us first analyze the complexity of deciphering
the ciphertext. First, we must know the length of the ciphertext, so that we can get the network
sample. The decipher cannot know the dimension of the neural network and the number of samples.
To calculate only in the simplest case, only the confrontation network is used. We assume that the
total number of network samples is n. Considering that there are at least two samples of the network,
the sample dimension of the network should be between 2 and [n/2]. Since this study does not use
the stability point of the WGAN network, the cracker cannot know the number of times our sample
needs to be iterated, so we think that the calculation is very expensive and unsolvable in a limited
time without knowing the key. For the parameters of the network, we transmit several pairs of such
sequences, which are continuous during transmission. These parameters are the starting position of
the network, the network dimension, and the number of iterations required for the sample to generate
the key. If the transmission is dispersed, the parameters of the network are greatly increased.
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Table 5. Deciphering complexity analysis (L, Low; M, Medium; H, High).

MD5 SHA1 HMAC AES DES RSA ECC WGAN

LBP M H L H L H H H

Gabor M H L H L H H H

ASM M H L H L H H H

SeetaFace M H L H L H H H

FaceNet M H L H L H H H

OpenFace M H L H L H H H

Equal error rate (EER) is a biometric security system algorithm used to predetermine the threshold
values for its false acceptance rate and its false rejection rate. When the rates are equal, the common
value is referred to as the equal error rate. The value indicates that the proportion of false acceptances
is equal to the proportion of false rejections. The lower is the equal error rate value, the higher is the
accuracy of the biometric system. When the key is not known by the impostor, the EER is as showm in
Table 6. When the key has been hacked by the impostor, EER is as shown in Table 7.

Table 6. When the key is not known by the impostor, equal error rate.

BioHashing BioPhasor SecureSketch WGAN-E

LBP 0.02 0 0 0

Gabor 0.01 0.02 0 0

ASM 0 0.01 0.01 0

SeetaFace 0 0 0 0

FaceNet 0 0 0.01 0

OpenFace 0.01 0 0 0

Table 7. When the key has been hacked by the impostor, equal error rate.

BioHashing BioPhasor SecureSketch WGAN-E

LBP 0.71 0.85 0.80 0.56

Gabor 0.72 0.82 0.82 0.58

ASM 0.71 0.86 0.82 0.58

SeetaFace 0.70 0.81 0.77 0.52

FaceNet 0.70 0.82 0.78 0.53

OpenFace 0.70 0.81 0.77 0.53

5. Conclusions and Future Work

This paper uses neural networks to learn to protect the communication between face features and
servers. Learning is not limited to a specific set of cryptographic algorithms: it is based solely on the
privacy rules that the training objectives represent. The attacker is simulated by a neural network. In
addition, this study might be able to implement the process of replacing analog encrypted data with
reinforcement learning. Finally, we conclude that neural networks are useful not only for face feature
protection, but also for attacks. Although neural networks seem unlikely to be good at protecting
facial features (3 failures in 10 initial runs), they may be very effective in understanding metadata and
traffic analysis.
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Using multi-threaded code will greatly speed up the model efficiency because separate weighted
sum, neuron, multiply, or add operations can be performed on separate threads. However, even
without multithreading, on a processor with n cores, the study can run n repeated models on n
input instances and expect a flattening cost of n = 1. Implementing an efficient matrix multiplier can
also improve batch processing time and may allow for faster convolution operations. In addition
to multithreading, this study is also dedicated to designing virtual full adders and using GPU to
accelerate existing network models. Implementing homomorphic logic gates on GPU is valuable
because each of the research system’s operations can be paralleled in some form. Plaintext weights are
encrypted without noise to improve performance. In practice, the latest deep learning model uses
many additional features, such as residual network modules or a self-normalization activation function.
We should be able to extend our encryption system with most of the functions. This study will also
do some work to optimize the deep learning encryption model of embedded hardware, review the
problem scenario of this study and create a powerful analysis of execution. Deep learning solutions
could ensure user privacy. Over time, this may lead to a privacy-centric software development industry
that coexists with the expanding role of big data.

In this work, we demonstrate the problem of weight reduction in WGAN-E and introduce an
alternative in the form of a penalty clause in the critics’ loss, which does not present the same problem.
Using our approach, we demonstrate powerful modeling performance and stability across various
architectures. Another interesting direction is to adapt the penalty term to the standard GAN objective
function, which encourages discriminators to learn smoother decision boundaries and stabilize training.

In fact, we considered using AlexNet, VGG series, and ResNet series to conduct ablation
experiments for the selection of neural networks A, B, and Server in the experiment, and compare their
performance in the experiment. However, no matter how delicately the facial features are extracted or
how accurate the encryption and decryption are, the former two are not comparable to ResNet.

The server that decrypts the neural network does not guarantee that 100% of the decryption is
correct. This is a small defect in this system. However, when the data volume base is quite large,
such as the LFW dataset used in this study, Server and A learn each other slowly and finally achieve
decryption accuracy of about 98.7%. In real life, commercial face recognition systems have difficulty
accurately identifying non-Caucasian people or twins, and the recognition accuracy is also affected by
light (e.g., when the light is strong, it is difficult for the Alipay face scan payment system to recognize
the face). However, comparing the face recognition accuracy error caused by the above reasons, we
think that a slight error in the decryption accuracy of Server is acceptable. In actual use, if a face is
canned many times or a commercial face database is used for training, this error would be smaller.

We believe that it is necessary to discuss whether encryption and decryption affect the recognition
speed of the FR system. In fact, in the process of encryption and decryption, it is substantially equivalent
to the time required for the A network and the Server network with trained facial features. In actual
work, this time is usually related to the depth of the network. In our system, this time is approximately
equal to 0.02 s. For the entire face recognition process, this time is already quite small.
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