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Abstract: Multi-focus image fusion is a very essential method of obtaining an all focus image from
multiple source images. The fused image eliminates the out of focus regions, and the resultant image
contains sharp and focused regions. A novel multiscale image fusion system based on contrast
enhancement, spatial gradient information and multiscale image matting is proposed to extract the
focused region information from multiple source images. In the proposed image fusion approach,
the multi-focus source images are firstly refined over an image enhancement algorithm so that the
intensity distribution is enhanced for superior visualization. The edge detection method based
on a spatial gradient is employed for obtaining the edge information from the contrast stretched
images. This improved edge information is further utilized by a multiscale window technique to
produce local and global activity maps. Furthermore, a trimap and decision maps are obtained
based upon the information provided by these near and far focus activity maps. Finally, the fused
image is achieved by using an enhanced decision maps and fusion rule. The proposed multiscale
image matting (MSIM) makes full use of the spatial consistency and the correlation among source
images and, therefore, obtains superior performance at object boundaries compared to region-based
methods. The achievement of the proposed method is compared with some of the latest techniques
by performing qualitative and quantitative evaluation.

Keywords: image fusion; multi-focus; trimaps; focus maps

1. Introduction

During image acquisition, one of the most important objectives is obtaining a focused region
of interest. However, because of the limited field depth, the focused region contains sharp edges,
whereas the other regions get blurred. Recently, multi-focus image fusion (combine images with
different focused objects) has received tremendous attention amongst the researchers. This fused
image offers high quality containing more detailed information [1,2]. Several methods are developed
to fuse multiple images, which are broadly grouped into transform and spatial domains [3,4].

Transform domain methods fuse the corresponding transform coefficients and employ inverse
transformation to construct the fused image. Spatial domain methods are further classified into
pixel [5,6] and region based methods [7,8]. The spatial domain methods form the fuse image by
choosing the pixels/regions/blocks that are focused. Transform domain-based methods in dynamic
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scenes merge these coefficients without considering the spatial properties, resulting in artifacts in the
fused image. Furthermore, pixel and region-based methods are unable to produce the best fusion
results for images with complicated texture patterns [1].

Zhang et al. [9] used morphological operations to extract focus regions. However, this technique
suffers from block artifacts. De et al. [10] utilized morphological processes to detect the focused region
and suggested a technique for calculating an optimized block size. The fused result still suffers from
blocking effects. Later on, Bai et al. [11] presented a novel quadtree decomposition and a weighted
focus based image fusion technique. However, this technique also provides inaccurate segmentation
and low visual effects because of the smooth regions. Yin et al. [12] proposed a method based on
joint dictionary and singular value decomposition (SVD) methods. Still, this method is not effective
computationally because of the individual training for sub dictionaries and SVD computation.

Li et al. [13] explored guided filtering (GFF) and spatial information to improve the fusion results
by mitigating the block effects. Zhang et al. [14] proposed a multifocus image scheme based upon
a visual saliency method. Recently, image matting has been used for effectively differentiating the
focused and out-of-focus regions. These methods can be broadly categorized as supervised matting
and unsupervised matting techniques. Supervised methods require a user specified foreground and
background regions known as trimap. Therefore, such techniques require human experts, are time
consuming, and produce inconsistent results for images with high-textured backgrounds. However,
unsupervised methods are better than supervised ones because user interaction is not required for
achieving a good matting result. Chen et al. [15] used a parametric edge based method. However,
these methods do not consider the artifacts among the smooth regions, and much of it depends
on the performance of hand crafted features, which require much expert knowledge. Li et al. [16]
proposed multifocus matting (MFM) based image fusion by combining together the focus region and
its neighboring pixels. This method marginally improves the fusion results and also overcomes some
shortcomings of spatial domain methods.

Xiao et al. [17] used depth information to segment an image into focus and blur regions.
Zhang et al. [18] made use of log spectrum, Fourier transform, and Bayesian techniques. In [19],
a definite focus region is detected by using a novel multi scale gradient information. Liu et al. [20]
proposed a transform (which is scale invariant) to detect focus regions. However, this technique fails
to offer sharp edges of the focus regions. Furthermore, in [21], the focus information was extracted by
using texture features. Baohua et al. [22] performed the near and far focus region detection by using a
sparse representation and guided filter techniques. In [23], a structure tensor was used for the detection
of high and low frequency components. However, this technique fails to provide a visible difference
between focus and defocus regions in many cases. Yu at.al. [24] presented a convolutional neural
network (CNN) based multifocus image fusion technique. However, in this method, the precision of
recognizing the focus block is very low.

In this paper, a novel multi-focus image fusion method is presented using contrast stretching
and spatial gradients to enhance the edges from the source images. A multiscale sliding window
method is used for detecting the local and global intensity variations to generate initial activity maps.
These multiple activity maps are further processed to generate a trimap. An enhanced image matting
technique is used for generating the decision maps. Finally, the fused image is obtained after processing
the source images, enhanced decision maps, and employing the fusion rule.

2. Proposed Fusion Technique

The schematic diagram of the proposed algorithm is shown in Figure 1. It can be observed that
in the first step, a contrast enhancement scheme is applied on the source images. In the second step,
the outcome of the intensity transformed image is processed through an edge detection method. In a
multi-focus image fusion scheme, the selection of near focus and far focus region plays a vital role.
The region that is in focus during image acquisition tends to have sharp edges as compared to the
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out-of-focus region. Therefore, these sharp edges can be detected easily by applying an appropriate
edge detection method.

The edge detection schemes rely heavily on the intensity distribution of an image. A poor
intensity distribution can lead to an oversaturated, undersaturated, dark, or bright image. In either
of those images, the edge detection algorithm cannot perform well. In order to improve the intensity
distribution of an image, an intensity transformation can be performed. In Figure 2, the improvement
in edge information is shown by comparing the images before and after applying the contrast
enhancement scheme. In the next step, a sliding window technique with two different scales is
applied on both edges of the detected images to generate activity maps. In this step, both local and
global intensity variations are analyzed. The fine details are more prominent under a small sliding
window scale. These masks are further fused together and processed to generate a trimap. Next,
the trimap undergoes an image matting transformation to produce refined decision maps, which
produces the final fused image. The proposed fusion scheme, along with the equation references,
is also elaborated in Algorithm 1.

Let Ii be the source color images with M× N dimensions where, m = 1, 2, . . . , M, n = 1, 2, . . . , N
and i ∈ [1, 2] represents near and far focus images, respectively.

Figure 1. Schematic diagram of the proposed approach for the image fusion algorithm.

Algorithm 1: Proposed MSIM based Fusion Technique.

Require: Ii, i ∈ [1, 2].

Step 1. Apply contrast enhancement on Ii using Equation (1).

Step 2. Apply edge map on Íi using Equation (2) to Equation (5).

Step 3. Compute activity maps, ´Gi,σ
σ = 1←−−− w, Zi using Equation (6).

Step 4. Compute Smooth Activity maps, Gi,σ
Sum Filter, σ = 1←−−−−−−−−− ´Gi,σ using Equation (7).

Step 5. Compute Score maps, ζi,σ
σ = 1←−−− Gi,σ using Equations (8) and (9).

Step 6. Repeat Steps 3, 4, and 5 with σ = 3.

Step 7. Compute Near focus (D1) and Far focus (D2) using Equation (10).

Step 8. Generate Trimap T using Equation (11).

Step 9. Generate Alpha Matte α using Equation (14).

Step 10. Generate Fused Image AF using Equation (15).
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2.1. Contrast Enhancement

Improving the enhancement of the low contrast image, the histogram equalization seems an
effective method. Non-parametric modified histogram equalization (NMHE) [25] is integrated to
enhance the contrast and preserves the mean brightness of the source image Ii, i.e.,

Íi
NMHE←−−−−−− Ii (1)

Image development in contrast centrally improves and concentrates pixel details. Figure 2
shows the enhancement in edge information. Figure 2a,b shows the far and near focus source
image, respectively, and their gradients are shown in Figure 2c,d. Contrast enhanced of near and far
focus images are displayed in Figure 2e,f, and their respective edge maps are shown in Figure 2g,h,
respectively. From the images, it can be clearly seen that after the enhancement algorithm, the gradients
of the source image were greatly improved.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Results of edge detection after contrast enhancement. (a) Near focus image, (b) far focus
image, (c,d) gradients of (a,b) achieved by a spatial stimuli sketch model (SSGSM) [26], (e,f) contrast
enhancement using non-parametric modified histogram equalization (NMHE) [25], (g,h) gradients of
(e,f) achieved by SSGSM [26].

2.2. Edge Detection

The edges of the images after contrast enhancement is done by a spatial stimuli sketch model
(SSGSM) [26] technique, which principally focuses on focal intensity points and edges in an image,
and then the unknown region is calculated in the coarse decision maps by implementing the
concentrated information in both the activity level maps. The weight of the local stimuli is deliberated
by detecting the local variation in the perceived brightness at the respective positions. The discerned
brightness, Pi of a specific image is given in Equation (2) as,

Pi = ϑlog10( Íi) (2)

where, Íi represents the source images, and ϑ denotes the scaling factor.
Gradients illustrate the sharp intensity variations in the image. Mathematically, the weight is

computed as the total difference of the perceived brightness on x and y directions. The intensity
variations of Pi on the x and y axis are represented by $x

i and $
y
i , respectively. These variations are

calculated by using their respective gradients Bx
i and By

i , given as in Equations (3) and (4):

[Bx
i , By

i ]
gradient←−−−−−−− Pi (3)
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$x
i = Bx

i (e
−|Bx

i |); $
y
i = By

i (e
−|By

i |) (4)

The weight of local stimuli Zi is expressed by using Equation (5):

Zi =
√
($x

i )
2 + ($

y
i )

2 (5)

2.3. Focus Maps

A multiscale sliding window technique is applied to acquire diverse focus maps from activity
maps Zi. Two sliding windows are selected for the generation of focus maps. Firstly, a 9× 9 window is
initialized by setting k = 9, l = 9 and σ = 1 in Equation (6). The activity maps are divided into blocks
of 9× 9 pixels by using spatial domain filters, as in Equations (6) and (7):

´Gi,σ(m, n) =
σ×k

∑
q1=−σ×k

σ×l

∑
q2=−σ×l

w(q1, q2)Zi(m + q1, n + q2) (6)

Gi,σ(s, t) = ∑
(m,n) ε Ω

´Gi,σ(m, n) (7)

The activity of each block is stored in the form of map scores. Furthermore, the sum of intensity
levels in each near (G1,σ=1(s, t)) and far focus block (G2,σ=1(s, t)) are calculated and compared with
one another to update the score maps (ζi,σ=1), as given in Equations (8) and (9).

ζ1,σ(m, n) =

{
1, if G1,σ(s, t) > G2,σ(s, t)

0, Otherwise
(8)

ζ2,σ(m, n) = 1− ζ1,σ(m, n) (9)

Similarly, 27× 27 block of pixels are generated by setting k = 9, l = 9 and σ = 3 in Equation (6).
The activity maps in each near (G1,σ=3(s, t)) and far focus block (G2,σ=3(s, t)) are calculated and
compared with one another to update the score maps (ζi,σ=3), as in Equations (8) and (9).

These multiple sliding windows result in multiple near and far focus maps. This multiscale
sliding window technique reduces the blocking artifacts in the coarse decision maps. Each map offers
different characteristic information, which plays a key role in improving the focus maps and the
fused image. These multiscale windows extract the information from original images at different
scales. It is noted that this approach has demonstrated better visual quality than the existing methods.
Each scale offers different information for image fusion, for example, a small window size focuses
on local intensity variations, whereas a large size window size extracts global variations in an image.
The information from these multiscale near-focus (ζ1,σ=1 and ζ1,σ=3) and far-focus maps (ζ2,σ=1 and
ζ2,σ=3) are combined together to form a single near-focus (D1) and far-focus (D2) map, respectively,
carrying the attributes of both scales, as in Equation (10).

Di(m, n) AND←−−−−− ζi,σ=1, ζi,σ=3 (10)

After obtaining the focus maps, the next step is to generate a trimap that segments the given
images into the three different regions, i.e., focused, definite defocused, and unknown. Pixels from the
focused region have greater focus value than pixels in the defocused region [27]. The trimap T of A1 is
processed by using D1, D2 as in Equation (11).

T
Tri Map←−−−−−− Di (11)
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In a given image I, the image matting considers it a composite of foreground IFore and background
Iback. Each pixel is assumed to be a linear combination of IFore and Iback. Let α denote the pixel
foreground opacities then an image I can be represented as,

Ii = αi IFore
i + (1− αi)Iback

i (12)

In [28], the quadratic cost function for α is derived as,

J(α) = αT Lα (13)

where, L is defined as a matting laplacian matrix of N × N dimension.
The L is a symmetric positive definite matrix and is defined in [28] as L = H - W, where, H is a

diagonal matrix and W is a symmetric matrix. The neighborhood WM is given as,

WM(i, j) =
K

∑
k/(i,j)εwk=0

1
|wk|

(
1 + (χi − φk)(νk +

ε

|wk|
Γ)−1(χj − φk)

)
(14)

where, |wk| denotes the number of pixels in the window, φk and νk represents mean and variance of
intensities in the window wk, respectively. χ represents the pixel color, ε is a regularization parameter
and Γ is an identity matrix.

Finally, the obtained alpha matte α from the source images and trimap is same as the focused
region of Ii is constructed as in Equation (15).

IF(m, n) = α(m, n)I1(m, n) + (1− α(m, n))I2(m, n) (15)

3. Results and Discussion

To show the superiority of the proposed MSIM, a comparison was performed with discrete wavelet
transform (DWT) [29], guided filtering based fusion (GFF) [13], discrete cosine transform (DCT) [30],
dense sift (DSIFT) [20], multi-scale morphological focus-measure (MSMFM) [9], and convolutional
neural network (CNN) [24] on a multifocus image dataset [31]. The proposed method was evaluated
by performing both subjective and objective assessments. These algorithms were tested on a Acer
laptop Intel(R) CoreTM i7 2.6GHz processor with 12GB RAM under a Matlab R2018b environment.
All the algorithms were executed by using the original codes made available by the authors.

3.1. Comparison of Image Matting Result

Generally, an unsupervised trimap produces better results than the supervised ones. Hence,
in practice, user specified trimaps are often necessary to achieve the high quality matting results;
however, the making of a user supervised trimap takes time, skills, and is not available for all kind of
images. In this paper, two image matting techniques have been proposed, i.e., focus maps matting and
feature based matting. The results of the proposed method are compared with feature based matting
and the closed form matting [28]. It is clearly observed that the proposed matting produces better
results compared to the existing technique (Figure 3).
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(a)
Source image I1

(b) MFM (c) CFM (d)
Proposed MSIM

(e) MFM (f) CFM (g)
Proposed MSIM

Figure 3. Results of Trimap and Alpha matte on flower image (b–d) trimaps of (a), (e–g) alpha mattes
of Figure 3a.

3.2. Comparison of Image Fusion with Other Methods

The proposed technique is tested on gray scale, color, and dynamic images. Figure 4 shows the
results of the proposed MSIM for “Lab” image. The source near and far focus inputs are presented in
Figure 4a,b, respectively. The fused results produced by other methods and the proposed technique
are given in Figure 4c–i. To further investigate the effectiveness, the difference of the near-focus
image with the fused images is shown in Figure 4j–p. The close up views enclosed by red and yellow
boxes are also shown at the bottom of their respective difference image. It is noted that the DWT,
DCT, and DSIFT methods produce poor edge information and contain artifacts (as shown in the
close-ups). Furthermore, GFF, MSMFM, and CNN methods also provide limited information of the
focused regions as compared to the proposed MSIM technique. Similarly, Figure 5 illustrates the
results produced by several existing and proposed algorithms for “Globe” images. To further analyze
the results, close-up views of important regions are placed at the bottom of each difference image.
In this image, the boundary region of the hand is difficult to detect since it lies on the focus transition
point. The results of fusion by other techniques in Figure 5j–o show the distorted regions and lack of
sharpness in the highlighted region. However, the proposed MSIM method has successfully fused
the complementary information from both the images, as shown in Figure 5p. It is very important
to evaluate the results of different algorithms on the color dataset shown in Figures 6a,b and 7a,b.
The outcomes of the existing techniques and the proposed method on “Flower” and “Boy” are shown
in Figures 6c–i and 7c–i, respectively. The difference between the fused and out of focus source images
is illustrated in Figures 6j–p and 7j–p, respectively. It is noted that in both the flower and boy images,
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the existing techniques are unable to mitigate the artifacts and blur in the focus transition area (as noted
in the close-ups of difference images). The proposed MSIM is able to preserve contrast and details
using the edge feature and multi scale image matting technique.

(a)
Near focus image

(b)
Far focus image

(c) DWT (d) GFF (e) DCT (f) DSIFT (g)
MSMFM

(h) CNN (i)
Proposed MSIM

(j) DWT (k) GFF (l) DCT (m)
DSIFT

(n)
MSMFM

(o) CNN (p)
Proposed MSIM

Figure 4. Results of image fusion and their difference images on the “Lab” source images. (c–i) Fused
images obtained through fusion schemes. (j–p) Difference images obtained from the fusion results and
Figure 4b.
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(a)
Near focus image

(b)
Far focus image

(c)
DWT

(d) GFF (e) DCT (f)
DSIFT

(g)
MSMFM

(h)
CNN

(i)
Proposed MSIM

(j) DWT (k) GFF (l) DCT (m)
DSIFT

(n)
MSMFM

(o)
CNN

(p)
Proposed MSIM

Figure 5. Results of image fusion and their difference images on the “Globe” source images. (c–i) Fused
images obtained through fusion schemes. (j–p) Difference images obtained from the fusion results and
Figure 5b.
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(a)
Near focus image

(b)
Far focus image

(c) DWT (d) GFF (e) DCT (f) DSIFT (g)
MSMFM

(h) CNN (i)
Proposed MSIM

(j) DWT (k) GFF (l) DCT (m)
DSIFT

(n)
MSMFM

(o) CNN (p)
Proposed MSIM

Figure 6. Results of image fusion and their difference images on the “Flower” source images. (c–i)
Fused images obtained through fusion schemes. (j–p) Difference images obtained from the fusion
results and Figure 6b.
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(a)
Near focus image

(b)
Far focus image

(c)
DWT

(d) GFF (e) DCT (f)
DSIFT

(g)
MSMFM

(h)
CNN

(i)
Proposed MSIM

(j) DWT (k) GFF (l) DCT (m)
DSIFT

(n)
MSMFM

(o)
CNN

(p)
Proposed MSIM

Figure 7. Results of image fusion and their difference images on the “Boy” source images. (c–i) Fused
images obtained through fusion schemes. (j–p) Difference images obtained from the fusion results and
Figure 7a.
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Another challenge for multi-focus fusion includes the performance in dynamic scenes.
The scenario occurs either due to the movement of the camera or the motion of the object. So it
is important to verify the effectiveness of the MSIM result with the existing ones on such scenes.
Figure 8a,b shows near and far focus “Girl” images, respectively. The results of MSIM and existing
techniques are shown in Figure 8c–i, while Figure 8j–p shows difference images. As shown in the red
and yellow boxes, the DWT, GFF, DCT, DSIFT, and MSMFM methods are unable to completely fuse
the focus regions. Moreover, the CNN has produced erosion in the fused image, whereas the proposed
MSIM has successfully mitigated the inconsistencies and limitations of the existing techniques.

(a)
Near focus image

(b)
Far focus image

(c) DWT (d) GFF (e) DCT (f) DSIFT (g)
MSMFM

(h) CNN (i)
Proposed MSIM

(j) DWT (k) GFF (l) DCT (m)
DSIFT

(n)
MSMFM

Figure 8. Cont.
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(o) CNN (p)
Proposed MSIM

Figure 8. Results of image fusion and their difference images on the “Girl” source images. (c–i) Fused
images obtained through fusion schemes. (j–p) Difference images obtained from the fusion results and
Figure 8b.

It is observed from these visualizations that the existing methods produce artifacts, erosion,
halo effects and are unable to produce sharp boundaries of the near and far focus images. Note that
the MSIM technique not only perfectly identifies the near and far focus regions but also fuses the
complementary information in an effective manner.

3.3. Objective Evaluation Metrics

After evaluating the visual quality and quantitative assessment of different methods, it can be
clearly observed that MSIM produces a visually pleasant and high quality fusion result in almost all
cases and outperformed the existing fusion methods for multi-focus images. Five most commonly
used metrics are evaluated, i.e., Mutual Information (MI) [32], Spatial Structural Similarity (SSS)
QAB/F [33], Feature Mutual Information (FMI) [34], Entropy (EN) [35], and Visual Information Fidelity
(VIF) [36] to verify the superiority and effectiveness of the proposed MSIM method. Table 1 shows that
the proposed MSIM gives better objective assessment results than the existing methods. Although,
the results of existing techniques are comparable in some cases (Flower and Boy); however, the metric
values obtained using the proposed MSIM generally outperforms the existing techniques.

3.4. Comparison of Computational Efficiency

In this section, the computational efficiency of different fusion methods is compared.
The execution time of these schemes for different images is shown in Table 1. The results show
that the proposed MSIM, DSIFT, and GFF consume less time as compared to the other algorithms DCT,
DWT, MSMFM, and CNN. The MSMFM algorithm uses a multi-scale morphological gradient based
feature, therefore taking longer processing time than DSIFT. Whereas, GFF integrates the source images
by using a global weight based scheme; however, it still takes less computation time and produces
satisfactory results.

The proposed method utilizes the contrast enhancement, SSGSM based edge extraction, sliding
window based local and global operations to create activity maps and trimap. The sliding window
method, activity maps generation, their comparison, and a trimap generation are time consuming
tasks. Although, the proposed algorithm consumes more processing time as compared to the existing
ones; however, it produces the best unsupervised image matting and image fusion results.
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Table 1. The quantitative assessment of different fusion methods.

Images Fusion Methods MI [32] QAB/F [33] FMI [34] EN [35] VIF [36] Time/s

Lab

DWT [29] 8.2152 0.7239 0.8190 7.0474 0.9138 4.02

GFF [13] 7.9114 0.7279 0.8191 7.0602 0.9149 3.11

DCT [30] 8.5263 0.7460 0.9197 6.9819 0.9143 11.56

DSIFT [20] 8.5212 0.7478 0.9097 7.0759 0.9171 6.65

MSMFM [9] 8.7995 0.6864 0.9196 6.9885 0.9161 5.79

CNN [24] 8.6812 0.7471 0.9196 6.9974 0.9159 7.88

Proposed 8.8322 0.7474 0.9386 7.1759 0.9980 5.08

Globe

DWT [29] 8.1910 0.7246 0.8892 7.7037 0.9240 11.09

GFF [13] 8.7664 0.7726 0.8935 7.7412 0.9476 9.78

DCT [30] 9.1845 0.7731 0.8939 7.6990 0.9374 10.98

DSIFT [20] 9.1435 0.7746 0.8938 7.6989 0.9437 5.51

MSMFM [9] 9.3739 0.7711 0.8940 7.7389 0.9439 6.55

CNN [24] 9.2397 0.7701 0.8927 7.7458 0.9472 8.01

Proposed 9.4316 0.7733 0.8943 7.7479 0.9480 7.06

Flower

DWT [29] 5.6452 0.6536 0.8773 7.1701 0.9064 16.93

GFF [13] 7.3290 0.6944 0.8908 7.1915 0.9200 10.13

DCT [30] 7.8561 0.6785 0.8861 7.4331 0.9263 12.03

DSIFT [20] 8.0057 0.6947 0.8857 7.4316 0.9304 4.61

MSMFM [9] 7.9233 0.6930 0.8915 7.1873 0.9140 5.98

CNN [24] 3.0773 0.6951 0.8912 7.1872 0.9177 7.32

Proposed 8.1458 0.7940 0.8936 7.5897 0.9367 6.91

Boy

DWT [29] 7.5321 0.7206 0.8814 7.5371 0.8935 9.95

GFF [13] 7.6316 0.7448 0.8717 7.5310 0.8097 5.97

DCT [30] 8.0852 0.7409 0.8714 7.5669 0.9035 11.08

DSIFT [20] 8.1765 0.7437 0.8721 7.5388 0.9048 3.80

MSMFM [9] 8.2081 0.7418 0.8717 7.2402 0.9026 7.55

CNN [24] 2.9966 0.7466 0.8819 7.5386 0.9072 8.01

Proposed 8.2961 0.7487 0.8826 7.5673 0.9077 7.75

Girl

DWT [29] 5.6226 0.5939 0.8189 7.8477 0.6486 5.39

GFF [13] 8.0820 0.6902 0.8213 7.8475 0.6448 5.88

DCT [30] 8.7222 0.6788 0.8168 7.8226 0.7332 6.44

DSIFT [20] 8.8774 0.6834 0.8215 7.8429 0.7394 4.04

MSMFM [9] 9.0368 0.5427 0.8219 7.6549 0.7397 7.11

CNN [24] 8.8580 0.6919 0.8208 7.8607 0.7417 10.21

Proposed 9.0970 0.6936 0.8415 7.8749 0.7468 5.65

4. Conclusions

A multiscale image fusion technique is presented for accurate construction of tri-maps, decision
maps, and fused images. Firstly, the source images are pre-processed using a NMHE histogram
equalization method and their gradients are computed using SSGSM. A multiscale sliding window
technique calculates the focus maps from source images. Furthermore, the focus information is
processed so that an accurate focused region is extracted. The proposed MSIM is robust to noise
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interference and is flexible to combine various fusion strategies and provides better fusion performance
both visually and quantitatively when compared with other state of the art methods for multi-focus
images datasets. In the future, the proposed scheme will be further considered for other application
areas of image processing.
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