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Abstract: The encoding of high-resolution energy profile datasets from end-users generated by
smart electricity meters while maintaining the fidelity of relevant information seems to be one of the
backbones of smart electrical markets. In the end-user sphere of smart grids, specific load curves of
households can easily be utilized to aggregate detailed information about customer’s daily activities,
which would be attractive for cyber attacks. Based on a dataset measured by a smart meter installed
in a German household, this paper integrates two complementary approaches to encrypt load profile
datasets. On the one hand, the paper explains an integration of a lossy compression and classification
technique, which is usable for individual energy consumption profiles of households. On the other
hand, a perturbation approach with the Gaussian distribution is used to enhance the safety of a large
amount of privacy profiles. By this complete workflow, involving the compression and perturbation,
the developed framework sufficiently cut off the chance of de-noising attacks on private data and
implement an additional, easy-to-handle layer of data security.

Keywords: encoding; data compression; privacy power/load profiles; long short-term memory
classification; smart meter; perturbation

1. Introduction

This paper develops and investigates two methodologies to encode power profile datasets, which
could be used to supervise the electrical grid or to evaluate the network status. Because smart grids,
smart homes, grid stability monitoring or the development of new energy services are based on
fine-grained and high bandwidth datasets, the raising amount of meters in low and medium voltage
grids or facilities are generating and transferring a bulk of data. Furthermore, these high-granulated
energy data streams could be utilized to provide new services to energy consumers, utilities or service
providers by analyzing and forecasting their load demand [1]. That is why smart meter data are
a crucial enabler in the frame of smart grids. An oncoming widespread roll-out of smart meter results
in three main problems: (I) the regulations and concepts of privacy are currently badly defined and
changing only slowly, (II) the process of data input, aggregation, management and merging requires
a vast amount of human and computational resources and (III) the complexity of information extraction
possibilities and the major negative influence on privacy have not been fully conceived [1,2].

These present and future challenges, especially problems (II) and (III), could be addressed by the
following approaches. However, this development and evolution induces massive privacy concerns.
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In [3], the relevance of smart meter data privacy and the reasons for protecting private information are
analyzed. It was demonstrated that already in the 1990s, individual information could be separated
from household load profiles. The used so-called NILM—non-intrusive load monitoring technique,
illustrated the appliance information, which could be used to collect sleepwake-cycles or the presence
of people [4,5].

This paper addresses the issue of morphing data streams in the context of encoding. The focus
of this paper are energy consumption profiles, but it should be possible to apply the approaches on
other test cases. Out of the scope is the technical background of the implementation or any kind of
novel privacy–utility tradeoff solution. Both approaches just focus on the continuous communication
over a/many bandlimited (e.g., finite human or computational capacity) channel(s) with a cyber attack
during this transmission.

Section 2 describes related work of data compression, perturbation and typical approaches to
protect privacy in smart meter data. The first approach, including four different lossy compression
approaches and the classification, is explained in Section 3. This section outlines two already known
and two enhanced lossy compression methodologies. Considering the temporal feature of the dataset,
it also explains the (long short-term memory) LSTM classification technique to determine the resulting
encoding approach. The second approach, which uses perturbation and a Gaussian distribution
encoding to protect the privacy of household owners, is presented in Section 4. This approach questions
the privacy-preserving capability of a random value perturbation. The key matrices and the test case
of the paper are introduced in Section 5. Performance results are given in Section 6. In the end, the
conclusion and an outlook are drawn in Section 6. A general overview of this paper structure is shown
in Figure 1.
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Figure 1. Proposed framework and approach of the paper.

2. State of the Art

2.1. Data Compression in General

A general overview of data compression methods for several types of compression may be found
in [6–10]. Focusing on audio (e.g., FLAC and MPEG-Audio-Layer 3), text (e.g., Huffman coding and
RLE), image (e.g., PNG) and video (e.g., AASC) compression, all of the methodologies are classified into
lossless and lossy techniques. Lossless ones achieves an identical dataset after the decompression [7].
Lossy ones generate better compression results by losing information. When the compressed data is
decompressed, the result is not fully matching with the original stream. Due to the volume of datasets
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in smart grids that will be required for load prediction, transmission or storage in the future, higher
compression ratios may be required.

Different methodologies have been developed to compress smart meter or smart grid data
streams [2,10–13]. Lossless compression techniques like the Huffman coding or Lempel–Markov
algorithm achieve performances of average compression ratios (CRs) between 5:1 and 20:1 [3,14].
All lossless compression techniques show that smart meter raw data are well compressible [2]. Lossy
compression techniques reach much higher ratios, especially the WT (wavelet transformation) and
SVD (singular value decomposition) or SAX (symbolic aggregation approximation in [15]). Sacrificing
irrelevant information, the aims of those techniques are compressing data to retain the most valuable
specifications of the original data (ideally) [3]. That is why this paper uses different lossy compression
techniques, which reach the above mentioned aims and are considered more promising in the
presented cases.

2.2. Protection of Privacy Power Usage

Protecting the individual privacy as a consumer of electricity can be divided into three clusters:
(A) data distortion algorithms, (B) load concealing methodologies based on batteries and (C) data
aggregation protocols.

The approaches of (A) deform power usage streams directly and take into account the PUTO
(privacy–utility trade-off) as well. The theoretical background of PUTO was presented in [1,16,17],
respectively. Reference [18] introduces a batch and an online scheme for time-series power usage data
based on this framework. They show that companies are not capable of tracing individual household
load profiles, nor of charging the owner or estimating power states accurately.

BLH (battery-based load hiding) algorithms are interfering with the appliance load profiles or
power usage by using batteries. Typical BLH algorithms are NILL (non-intrusive load leveling by [19])
and BE (best effort by [20]). However, these approaches have disadvantages: the counting costs of the
hardware, the decrease of the battery lifespan due to a frequent charging and discharging of the energy
storage and the charging rate is usually restricted due to the battery capacity.

By using cluster (C): cryptographic protocols, a significant data aggregation is achieved as
well. These methodologies protecting the privacy by combining the total ciphertext. Power grid
utilities record multiple users’ total power habits without knowing user’s exact load profile by using
PKHE (public key based homomorphic encryption by [21]) or HE (homomorphic encryption by [22]).
The general limitations of data aggregation protocols are e.g., the IT-complex, unstable protocol or the
data resolution of the output [23].

2.3. Compression Approaches for Privacy Power Usage

Different reports analyze the influence of granulation (a relevant part of the compression
methodologies) on smart meter privacy. This leads to the result that the privacy of smart meter load
profiles can be increased by decreasing the resolution [24]. In the special case of using lossy compression
methodologies to raise the privacy, Refs. [25–27] analyze the individual user’s control over access
to their end-user data in different granulated resolutions. For example, Ref. [26] analyses different
options of the wavelet transform, creating multi-resolution representations of 400 end-user profiles
with a sampling interval of 15 min. By using multiple keys, different granularity’s of the wavelet
transform are enciphered and different compression ratios are saved. No other lossy methodologies
have been analyzed so far.

2.4. Perturbation with Gaussian Distribution Encoding

There are different methodologies which are implemented by adding random noise to the data.
The aim is to take care of the individual data points by distortion and preserving the underlying
distribution properties at a macroscopic level. Some of them are techniques for association rule
learning [28], learning decision trees [29] or other approaches using different perturbation methods of
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noising the input information [30–32]. All of these do not consider the distribution of the original data,
which would be used to achieve a higher accuracy.

Basic forms of multiplicative noise perturbation are the multiplication of each data point by
a random number that has a truncated Gaussian distribution (with mean value one x̄ and small
variance σ). This seems to be good if the data disseminator only wants to make minor changes to the
logarithmic approach and the original dataset. Another methodology transforms by logarithmizing
and adding Gaussian noise (noise with the property predefined multivariate). The taken antilog of the
data assures higher security but maintains the data utility in the logarithmic scale [33]. The primary
contribution of the second approach is to provide an explicit filtering procedure, based on the random
Gaussian noise without maintaining the input data, to estimate the original data values.

3. Approach 1: Compression and Classification Based Smart Meter Privacy

3.1. Lossy Compression Methodologies

3.1.1. Triangular Function Algorithm (TFA)

The first compression methodology is called the TFA (triangular function algorithm). It encloses
the following steps. (I) Import the whole dataset and choose preferred percentiles (e.g.,: Q1, Q99).
(II) Determine percentiles and store these data points yi Q, xi Q,. The remainder of the dataset will be
smoothed by the moving average filter. (III) Read a step width of a0 data points. (IV) Perform a least
square fit Λ to generate the intercept b0 and slope b1, see Equation (1).

Λ =
a0

∑
i=1

[yi − (b1xi + b0)]
2 (1)

(V) Read the next data point yi and check if its value is within ±mσ (unbiased standard deviation
σ with factor m) of the predicted values in Equation (2). If yes, jump to (III), otherwise start a new
segment and go to (IV).

yi = b1xi + b0 (2)

(VI) In order to complete the algorithm, insert percentiles (yiQ, xiQ) after the compression of the
complete dataset. A schematic overview of the approach is shown in Figure 2. A detailed explanation
of a simplified methodology of this TFA can be found in [34].

Approach 1: TFA

Smoothing

Extremal

values

Sampling
Least square fit

xi Q,yi Q

xi, yi

mσ

xi compressed 

yi compressed

a0 b1,b0

Data

Figure 2. General process from uncompressed to compressed dataset.

3.1.2. Rectangular Function Algorithm (RFA)

The decomposition of data stream into the sum of RFs (rectangular functions) is another lossy
methodology. A dataset of an smart electricity meter power profile (power y(t)) can be split into its
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mean values ȳ(a) with the time intervals TI(a) in Equation (3). As a result, the approximated function
ỹ(t) of y(t) has less data, see Equation (4).

ȳ(a) =
1

TI(a)

∫ t0(a)+ TI(a)
2

t0(a)− TI(a)
2

y(t) dt (3)

ỹ(t) =
N

∑
a=1

(
ȳ(a) ·Π

(
t− t0(a)

TI(a)

))
(4)

Π(t) =

{
0 ,if |t| > t0(a) + 1

2 TI(a)

1 ,if |t| ≤ t0(a) + 1
2 TI(a)

Depending on changes in the load profile, the time interval TI(a) = t(a + 1)− t(a) might be fixed
or not. For each interval TI(a), the centroid of the rectangular function is t0(a), see Equation (5).

t0(a) =

{
t0(1) =

TI(1)
2 , if a = 1

(∑a
l=1 TI(l)) + TI(a)

2 , if a 6= 1
(5)

The compression is then generated by the values of p̄(a) and TI(a), which has be stored in the
right numeric order through the Equations (3) and (5). The filter and the detection level σ affect the
information loss and the compression ratio.

3.1.3. Singular Value Decomposition (SVD)

SVD (singular value decomposition) is used to split a m × n dataset (smart meters x time
stamp) DS into three matrices in Equation (6). Σ is a diagonal matrix whose elements are the SVs
(singular values). U is the matrix of all smart meter data points and V is the matrix of the time
stamps. The reconstruction of compressed datasets while ignoring small singular values in Σ results in
the compression.

DSm×n = Um×mΣm×nVT
n×n (6)

3.1.4. Wavelet Transform (WT)

A WT (wavelet transform) can orthogonally decompose a time series into scaling and wavelet
coefficients [35,36]. The compression ratio depends on the deletion of trivial data points and it changes
due to the DW (Daubechies’ wavelets), thresholds and levels of decomposition (LoD). For further
explanation, please see [3].

3.2. Classification of the Compressed Dataset

Among the presented four lossy compression methods, a classification step is imperative to
determine the best methodology. A temporal classification is carried out in order to find the suitable
algorithm for the encoding of the dataset. This step is carried out before each dataset is transferred
to the utilities or grid owner. The current section describes the classification methodology employed.
By classifying and transmitting data based on classification results, the privacy of user information can
be secured.

As an example, considering the large dimension of energy profile datasets from end-users,
the temporal LSTM (long short-term memory) network is deployed for the classification of the
compressed dataset. The natural recurrent feature empowers the LSTM network for the classification
task. As a widespread framework for the sequential signal classification and processing, the LSTM
network is the variant of RNN (recurrent neural network) which is appropriate to classify sequential
events with long interval and delay in time series. Since TFA, RFA, SVD and WT are employed for
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the lossy compression, the difference of various methods could be caught by the memory cell of the
LSTM network. Figure 3a shows the structure of an LSTM-FC (fully connected) classification network
which contains multiple LSTM layers and FC (fully connected) layers. The structure of the LSTM cell
comprises the forget gate, update gate and output gate, which is shown in Figure 3b. The output
of each gate varies between 0 and 1. 0 denotes discard, while 1 indicates the information should be
included.

LSTM
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unit

LSTM
unit
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LSTM
unit

LSTM
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...

LSTM
unit
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(a) LSTM-FC classification network
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Ctat

Cell state

xcon

(b) LSTM unit configuration

Figure 3. Temporal LSTM (long short-term memory)-FC (fully connected) classification network (a)
and unit configuration (b).

As a recurrent neural network, the feature of previous power disturbance at−1 is sequentially
transmitted to the next identification process obtaining the next gate input xcon in Equation (7), which is
the input of three gates.

xcon =
[

at−1 pt

]T
(7)

According to the input xcon, the forget gate drops the unnecessary message in the cell via weight
W f and bias b f

ft = σ(W f xcon + b f ) (8)

where σ is the sigmoid activation function of the three gates. The current feature is weighted by the
update gate, contributing to the new cell state

Ctemp = tanh(Wcxcon + bc) (9)

it = σ(Wuxcon + bu) (10)

Ct = it × Ctemp + ft × Ct−1 (11)
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where tanh(x) = (ex − e−x)/(ex + e−x), × is the Hadamad product. The identified temporal
characteristic is then packed accumulating through the output gate

ot = σ(Woxcon + bo) (12)

at = ot × tanh(Ct) (13)

After the LSTM layer, FC layers should be constructed to transform the output vector dimension
of LSTM layer. Besides, the softmax function is utilized at the top of the network to transform the
output of FC layer into the probability distribution for further event classification:

yj = so f tmax(aj) = P(aj | a) (14)

where a is the output vector of the FC layer and aj is the jth element, n is the number of one-hot
encoding states. By the output of this temporal classification approach, the difference of various
compression methodologies could be figured out for the encoding preparation.

4. Approach 2: Perturbation with Gaussian Distribution Based Smart Meter Privacy

4.1. General Approach

The second approach goes the different way to encode datasets. While in the first approach,
each smart meter profile was encrypted and transmitted individually by a combination of compression
and classification, the Gaussian distribution approach (GDA) uses the effect of the central limit theorem.
It states that the sum of a number (with a sample average Sn) of i.d.d. random variables X1, . . . , Xn of
size n with E[Xi] = µ and finite variances σ2 will converge a distribution to a Gaussian distribution
N(0, σ2) as the number of variables grows rapidly, see Equation (15). That means, it tries to preserve
data privacy by adding random noise. However, the approach needs to take care that the random
noise should preserve the main information from the data stream, so that the patterns can still be
accurately estimated.

√
n (Sn − µ)

d−→ N
(

0, σ2
)

(15)

Therefore, the power consumption profile of a privacy household, generated by a smart meter,
is intentionally perturbed by mean values of a randomly generated disturbance. This random
disturbance quantity VNoi is generated by Equation (17). The following equations show the averaging
of all meter values S̄all of kth household dataset DSk (sample sequence uk[1],uk[2],. . . ,uk[i] and time
steps n), including a so-called disturbance scaling factor fDSF.

S̄all =
1
n

n

∑
i=1

uk[i] (16)

VNoi := [−S̄all · fDSF ; +S̄all · fDSF] (17)

It is also possible to generate a perturbation VNoi by a randomly chosen range or value.
Equation (18) describes the implementation of this permanent interference, which is done on every
single data point of every smart meter dataset DSk,pert (sample sequence uk,pert[1],uk,pert[2],. . . ,uk,pert[i]).

uk,pert[i] = uk[i] + VNoi (18)

After the transmission of the noisy data, the output can no longer be recognized as a useful dataset
with individual information by cyber attackers.
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Following the assumption of the limit theorem, combining a large amount of noisy data
causes the averages to converge over the time of a Gaussian distribution. The receiving company
(e.g., the distribution grid operator, DGO) gets a dataset from the data concentrator, which contains
information about all merged energy data streams generated by all supervised households. On the one
hand, this makes a specific extraction of electricity consumption-based events impossible. On the other
hand, the company still has accurate information to supervise the electrical grid or develop innovative
energy services. An overview of the GDA is shown in Figure 4.

Smart Meter

Device A

Device B

Device C

Perturbation

House 2

House n

House 1

D
S(
X
i)

DS1(Xnoi)

DS2(Xnoi)

DSn(Xnoi)

De-Noising

Cyber Attacker

Data Concentrator

DSn(Xnoi)

Cloud 
Platform

Utility DGO

Figure 4. Schematic illustration of the data transmission system, using the example of approach 2.

4.2. Comparison to Approach 1

Both approaches are used to encrypt datasets, in this case household load profiles. While the first
approach can encrypt both individual and multiple household load profiles, the second approach has
to meet certain conditions in order to guarantee sufficiently high encryption results. In addition to the
presence of a large number of profiles, which can be encrypted, this also includes a high noise factor,
which generates the privacy and security of the transmitted information.

Both approaches need and encode electrical power consumption profiles from smart meters.
Furthermore, they cannot be combined or used consecutively, since both the transmission process and
the decoding lead to different results. The decoding in approach 1 serves to restore the individual data
records, including individual losses (one of the requirements of the lossy compression algorithms).
This loss of information is irreversible. The de-cryption of data that was converted according to
approach 2 occasions to an outcome dataset which represents the mean values of all datasets/energy
profiles that represents the mean values of all datasets involved. A return to individual load profiles
which can be assigned to the individual households or its profiles is no longer possible. The process
is irreversible.

5. Evaluation

The background of the paper includes the main players of this scenario; the households (with their
datasets), the electrical utility companies or the DGO (and an affiliated service provider) and the cyber
attacker, illustrated in Figure 4. The smart meter of the household owner transmits the distorted power
data to the utility company, that could provide real-time electricity price, charge the user or offers some
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service to the household (service procvider). The cyber attacker could link into the data transmission
between these players [18].

From the point of view of privacy protection, the user wishes to veil the power usage information,
which can be linked to their daily routine or private concerns. For example, the power consumption
of television may leak user’s favorite telecasts and television patterns, or the power consumption of
bedroom light may leak user’s bedroom privacy [18].

5.1. Description of Evaluation and Key Metrics

This paper evaluates the proposed scheme by using three aspects: compression approaches,
protection of privacy and reconstruction of the dataset.

First, the compression approach is the focus of the evaluation. To define the best approach
in the case of data privacy, a new so-named OTF (optimal transmission factor) is implemented in
Equation (19). This value describes the arithmetic product between the classification accuracy Acc
(see Section 3.2) and the compression ratio CR. The OTF indicates the optimal compression approach,
which transmits the minimal amount of data points of a dataset DS(i) with the highest accuracy to the
decoding point.

OTFDS(i) = AccDS(i) · CRDS(i) (19)

CRDS(i) =
size of the input dataset

size of the dataset after compression
(20)

AccDS(i) =
number of correct predictions

number of all predictions
(21)

Following the definition of Equation (20), values less than 1 indicate expansion whereas values
greater than 1 imply compression. Equation (21) is the general metric for evaluating classification
models. In this case, it describes the proportion of correct prediction results among the number of
predictions or cases examined, and is named the Rand-Index [37].

To measure the protection of privacy, this paper uses the NILM process in combination with
a statistical interference attack. The NILM process is an extraction of features conceptualization
that investigates the privacy-preserving effects of the approach. Due to the frequent usage of the
NILM by utility companies to obtain appliance-specific information and analyze the current status of
an energy grid, this approach is appropriate [38]. Typically, the information or the end-user’s power
consumption profile, is split into profiles of different household devices to obtain operational time
and power (voltages and current) [4]. In our case, we extract ON/OFF features from the original
and distorted dataset. The pre-defined threshold is set to 0.3 kW, to dig out the original features (all
features: AF) and the extracted features of the compressed/distorted dataset (distorted features: DF).

Hereinafter, a simple de-noising scheme demonstrates the effectiveness of the proposed
privacy preserving approaches. The LMF (linear mean filter) attenuates the noise influence of the
two approaches. In Equation (22), the perturbation approach (approach 2) averages cumulative values,
here the GDA values uk,pert[i] and weight indicating w[i] with the windowing size of 2L + 1.

u′k[j] = ∑
i−L≤j≤i+L

(uk[i] + VNoi[i]) · w[i] (22)

The de-noised signal (u′k[j], j = 1, 2, ....) will be used to derive the individual energy consumption
profile by the attacker [39].

5.2. Dataset

The dataset was logged during a field study of one of the biggest German distribution grid owners.
Starting in 2013 up to December 2015, the utility installed smart meters in representative households,
businesses and community facilities. On the one hand, the study examined how renewable energies
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can be more easily integrated into the low-voltage grid. On the other hand, it was examined how the
generation of renewable energies and consumption can be better coordinated. This paper employs
the recorded household data streams. The main properties of this measurement event are shown in
Table 1.

Table 1. Properties of the dataset.

Properties Smart Meter

Smart meter, read out from remote location 109
Time series resolution 15-min

Transferred accounting data Active energy
Transferred energy network data U, I, f , P, Q

Transmission technique GSM, GPRS
Transmitted data (daily) 157,248 data points

The measuring system consists of a load profile meter with remote readout (4-quadrant counter)
with registered power measurement (smart meter) and a communication unit (Gateway). In addition to
the active and reactive power, the frequency as well as the voltages and currents of all three conductors
were recorded. In total, around 10 million data tuple (PHH(t), t) of more than 90 households with
a sampling rate of 15 min are measured, traced and stored.

6. Results and Discussion

6.1. Approach 1: Compression and Classification Approach

Table 2 shows the results of the compression and classification step of the original dataset DS.
The compression ratio C̄RDS is the arithmetic mean value over all smart meters.

Table 2. Results of compression, classification and OTF (optimal transmission factor).

TFA RFA SVD WT

CRD̄S 20.1 20.4 20.5 20.4
time (CRD̄S) 35.6 s 1.7 s 38.1 s 4.3 s

AccDS 0.68 0.70 0.69 0.70
OTFDS 13.67 14.28 14.15 14.28

To generate comparable privacy protection results, every lossy algorithm targets a CRD̄S of 20:1.
Following that, the classification starts to evaluate the optimal lossy methodology with a two-layer
LSTM network. This is employed with 64 neurons in each layer, while the last layer is a fully connected
network with four neurons. The hidden state and the cell state of the LSTM are initialized with 0.
The last FC layer utilizes the softmax function to classify the probability of the four compression
datasets. According to the four outputs of the FC, the classification result is reflected based on the
maximum output value. For the training of the whole neural network, this approach uses the cross
entropy loss function with the Adam optimization tool. The learning rate is 0.001. Randomly sampling
ten samples from each method, the LSTM-FC classification network for the class determination imports
each sample of 100 points. After the 14th epoch learning, the values of four outputs are shown in
Figure 5.

It can be found that the probability ratios of TFA in Figure 5a is much higher than those of RFA,
SVD and WT. For any sample, their component in TFA reaches around 0.4117, while the probability of
RFA and SVD methods account for 23.04% and 25.98%, respectively. The WT method contributes the
least among those four approaches with only 9.81%. Therefore, for these four compression methods,
the TFA and WT can be respectively treated as two unique groups, that have the largest and the
smallest likelihoods. In the meantime, the RFA and SVD form one group with similar probability
ratios. According to the definition of AccDS in Equation (21), the accuracy of classification index is
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listed in Table 2. The RFA and WT generate the highest index with AccDS = 0.70, while SVD and TFA
follow them with 0.69 and 0.68, respectively.
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Figure 5. Probability of the TFA (triangular function algorithm) (a), RFA (rectangular function
algorithm) (b), SVD (singular value decomposition) (c) and WT (wavelet transformation) method (d).

Based on the aim, the privacy protection, it should not be possible to de-crypt the compressed
and classified data during transmission to the recipient or the company using the NILM algorithm.
Therefore, Table 3 shows the results of the approach 1.

Table 3. NILM (non-intrusive load monitoring) results of privacy protection analysis.

DF/AF DF/AF after LMF

Original 100.00% -

Approach 1: Attack during transmission

TFA, RFA, SVD, WT <0.01% <0.05%

Approach 1: Attack after decompression

TFA 80.29% 79.88%
RFA 78.74% 79.29%
SVD 79.27% 79.65%
WT 80.97% 79.45%

Approach 2: Attack during transmission

DSF = 5 4.10% 14.84%

Approach 1 results show that no features can be determined. The extracted ON/OFF features
of the distorted dataset show that a third party (the attacker) cannot obtain detailed privacy related
information on any kind of basis. With a mean AF/DF-alignment of <0.01%, due to the changing
time step resolution (extraction percentiles, compression ratio and lossy methodology, depending on
the classification results) the thresholds are completely different. The result of the subsequent LMF
is negligible.
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Depending on the outcome of Table 3, another test case is investigated. If the cloud platform
is attacked by the cyber attacker after the decompression of the dataset, matches of 78.74% up to
80.97% are achieved. In this additional test case, the use of LMF by the attacker also does not change
anything (−0.4%, on average) significantly in the results. However, the customers privacy and personal
data are not fully protected. The RFA methodology produces the best OTF = 14.28 with the shortest
compression time t(CRD̄S) = 1.7 s, see Table 2). This lossy technique produces the best results after the
decompression attack with 78.74% and 79.29%, shown in Table 3 of the additional test case. That is
why the RFA seems to be the best lossy compression technique for encoding single or multiple energy
profile datasets. To generate the computational time, this proposed data compression methodologies
has been implemented using MATLAB and performed on a PC Intel core i5-3210M processor, 2.50 GHz
with 4 GB of RAM.

Figure 6 is long-term averaging, where the features of the power consumption traces and the
features of all different approaches from all periods are averaged. This is implemented to obtain
the daily power usage pattern of the customer and shows an overview of the results of the NILM
detection. In Figure 6, between 00:00–03:00 o’clock the RFA results differ strongly from the original
ones. The minimal ratio of distorted features to all features from Table 3 (DF/AF) results in weak
feature recovery outcome during the transmission attack (Figure 6).
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Figure 6. Feature detection results of approach 1 (mean values over one day), top: without LMF (linear
mean filter), bottom: using the LMF.

6.2. Approach 2: Gaussian Distribution Approach

For an example, a comparison between the input and the distorted dataset with DSF = 5 is
presented in Figure 7a. This figure gives an impression about the impact of the distortion on the data
stream. The distorted datasets of all households will be sent to the data collector.

The reconstruction of the dataset shows the accuracy of the privacy-preserving approach. The loss
of information could be measured by comparing the reconstructed data matrix DSR, with their
rows—time steps and columns—smart meter m× n, with the original one DS. This is defined as the
MPE (mean percentage error).

MPE =
1

m · n
m
∑

i=1

n
∑

j=1

∣∣∣∣DS(i, j)−DSR(i, j)
DS(i, j)

∣∣∣∣ · 100 (23)
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In the test case, the approach generates a MPE = 0.38% and an absolute error δall = 0.29% over
all 108,000 data points. The performance results of the permutation’s GDA depending on the DSF
and MPE. δall is the Σ of the absolute or percentage difference between the original and the disturbed
data points. The impact of the amount of data profiles on the δall is shown in Figure 7b with 37 datasets
δall > 1%.

This value is regarded as the limit for the reconstruction of a usable dataset. Therefore,
with a comparable amount of data points, the number of different (household) profiles should
be available to use in this approach. If the attacker has no knowledge about the exact noise
sample that was used for distortion, the original profile of one or more households is impossible
to be recovered. Since this test case use relatively large DSF, conventional de-noising techniques
(like long-term averaging schemes) are not able to de-crypt sensitive information.

After the perturbation, the number of features extracted with NILM decreases rapidly and it varies
from the original dataset substantially, shown in Table 3. With additive LMF de-noising, more features
can be extracted. Using LMF, the number of features is closer to the original one, but the minimal ratio
of AF/DF makes the feature recovery still useless. Figure 8 shows the perturbation results of one day
on average. The difference between the original and the distorted dataset, and their feature extraction
is significant.
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Figure 7. Results of approach 2.
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Figure 8. Feature detection of the approach 2 (mean values over one day).
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7. Conclusions

The concerns of privacy impose very important constraints for the future deployment of smart
metering and smart grid networks. Because the amount of data collected from future smart meters
will be orders of magnitude more than data collected from current meters. This data could easily be
mined, as demonstrated by NILM and other techniques. In this paper the authors have attempted to
address the smart metering privacy issue by anonymizing the identity of individual power datasets
through different services.

The simulation results on real household datasets show that both techniques strengthen the
individual privacy. Both approaches generate a protection in a way that the used NILM and LMF
technique is disabled to identify running data streams. On the one hand, the first approach uses
different lossy compression techniques with an LSTM classification network to encode power profile
dataset of individual energy consumers. The best results are generated by the RFA and WT technique.
The second one is a development of a simple perturbation technique, which can be de-noised by using
the Gaussian distribution. The application of the last approach is limited and may be applied over
many smart meter profiles only. Both approaches achieve high protection results (0.01–4.1%), also after
the implementation of an additional de-noising scheme (0.05–14.1%), of the private information.
Further, the attack analysis indicates that the key to the security offered by the approaches is the
amount of datasets the attackers can steal. Some of the lossy approaches seems to be too slow in
execution to be useful in the daily encoding routine.

Over all, the authors note that the proposed approaches may not offer sufficient smart metering
privacy protection. However, the introduced approaches do contribute an additional and end-user
friendly layer of data security.

Experimental evaluations of these approaches with bigger datasets, other real individual
or simulated power consumption datasets could confirm the practicality and usability of this
proposed scheme.
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RFA Rectangular Function Algorithm
SVD Singular Value Decomposition
TFA Triangular Function Algorithm
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