
electronics

Article

CaBIUs: Description of the Enhanced Wireless
Campus Testbed of the Ionian University †

Aikaterini Georgia Alvanou 1,* , Alexandros Zervopoulos 1 , Asterios Papamichail 1 ,
Konstantinos Bezas 1 , Spiridon Vergis 1 , Andreana Stylidou 1 , Athanasios Tsipis 1 ,
Vasileios Komianos 2 , Georgios Tsoumanis 3 , George Koufoudakis 1 and
Konstantinos Oikonomou 1

1 Department of Informatics, Ionian University, GR-49100 Corfu, Greece; azervop@ionio.gr (A.Z.);
aspapa@ionio.gr (A.P.); kbezas@ionio.gr (K.B.); svergis@ionio.gr (S.V.); astylidou@ionio.gr (A.S.);
atsipis@ionio.gr (A.T.); gkoufoud@ionio.gr (G.K.); okon@ionio.gr (K.O.)

2 Department of Audio and Visual Arts, Ionian University, GR-49100 Corfu, Greece; vkomianos@ionio.gr
3 Department of Informatics and Telecommunications, University of Ioannina, GR-47100 Arta, Greece;

gtsoum@uoi.gr
* Correspondence: akorina@ionio.gr
† This paper is an extended version of our paper published in the Proceedings of the 4th South-East Europe

Design Automation, Computer Engineering, Computer Networks and Social Media Conference
(SEEDA 2019), Piraeus, Greece, 20–22 September 2019.

Received: 4 February 2020; Accepted: 5 March 2020; Published: 8 March 2020
����������
�������

Abstract: Technological evolution and in particular the development of the Internet of Things
(IoT) has paved the way for material prosperity and a better standard of living. A critical factor
in the effectiveness of emerging IoT applications, which heavily rely on sensor information flow,
is the development of a functional and efficient Wireless Sensor Network. Additionally, the levels
of automation are conducive to usability and time efficiency by reducing the need for human
intervention, as well as increasing the rate at which experiments can be carried out. In current
work, an already installed infrastructure on the Ionian University campus is considered and
enhanced, with the goal of elevating accessibility and user-friendliness, by designing a web platform.
The presented platform enables the remote development, execution and monitoring of simple but
necessary network-based algorithms using a custom language, without requiring code to be uploaded
to remote nodes. As a proof of concept, three information dissemination algorithms are implemented
and provided as example templates for users, promoting simultaneously ease of use.

Keywords: Internet of Things; wireless sensor network; testbed; web platform; information
dissemination; upload automation; programming language design; experimental environment

1. Introduction

Significant technological developments are being observed in the context of exponentially
increasing human demands, one of them undoubtedly being the Internet of Things (IoT) [1].
An imperative need for proper operation is a well-organized and efficient Wireless Sensor Network
(WSN), as a wide variety of sensors are embedded in interconnected IoT devices. By extension,
the abstraction of the WSN’s lower level details to provide high level functionality and improve
usability is of major importance for the adoption of various IoT applications [2,3].

With regard to WSNs, low energy consumption, efficient communication between heterogeneous
nodes, independent mobility and ultimately ease of use play a key role in their success.
More specifically, their ease of use can be further enhanced by minimizing human intervention,

Electronics 2020, 9, 454; doi:10.3390/electronics9030454 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-5605-5308
https://orcid.org/0000-0003-1951-6149
https://orcid.org/0000-0002-5729-4017
https://orcid.org/0000-0003-4386-0353
https://orcid.org/0000-0002-7642-1392
https://orcid.org/0000-0001-7816-9859
https://orcid.org/0000-0001-5069-3376
https://orcid.org/0000-0002-1955-6135
https://orcid.org/0000-0001-9010-3422
https://orcid.org/0000-0003-4214-5729
https://orcid.org/0000-0001-7279-9710
http://dx.doi.org/10.3390/electronics9030454
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/3/454?type=check_update&version=2

Electronics 2020, 9, 454 2 of 18

while the suitability of the equipment consisting a WSN is also a crucial factor. The previously
mentioned parameters have to be taken into account when implementing WSN-based IoT applications,
and therefore there is a need for thorough experimentation regarding them.

A preparatory step for such experimentation is the design and installation of a testbed facilitating
the operation of a WSN. A testbed reflects the architecture of a WSN and can serve as a stepping stone
in the conduction of experiments for its evaluation. The design of a testbed intended to resemble the
conditions of a WSN is predominantly oriented by the appliance of theoretical findings regarding this
type of network, while its installation is determined by a sequence of decisions. However, the two
aforementioned stages both underpin the proper operation, high efficiency, and long-term viability of
the testbed.

During the testbed’s installation process, a critical factor is the selection of a reasonable location,
which can influence the quality of the network nodes’ connection and thus the final topology.
The physical security [4] of the location that will host the testbed has to be taken into account, so as
to avoid malicious damage or stealing, while preventive measures also have to be taken to address
these issues (e.g., by enclosing the devices in containers, by placing them far from plain sight, etc.),
Moreover, the physical location is equally crucial to be studied from the perspective of its effects on the
testbed’s behavior, under the light of prevailing environmental conditions (e.g., humidity, temperature,
dust, brightness, etc.) that are capable of affecting the accuracy and representativeness of the results.

Additionally, another principal factor is the specification of the hardware to be used has to take
place, as it not only affects the hardware’s efficiency (e.g., in terms of memory, computational capability,
etc.), but the scope of the entire system too. Therefore, an optimal solution is one that meets the above
requirements and is distinguished for its simplicity of use, suitability for a multitude of applications,
and low cost.

As for the value and utility of a testbed, providing an appropriate infrastructure to
support multiple experiments and users [4] would be considered an ideal, but hard to realize,
feature, emphasizing its interdisciplinary dimension. Furthermore, such a system can be optimized
by introducing automation techniques, such as remote device and process control, as well as task
scheduling. This is often achieved by developing frameworks facilitating easier management,
faster system control, as well as data visualization. In general, the automation of processes is a feature
of utmost importance, as it facilitates both the user and the researcher, reducing the likelihood of
mismanagement, while saving time.

One of the main parts of an experimental research lies in achieving the same (or almost the same)
conditions among the multiple common experiments conducted. Achieving reproducibility is rather
difficult due to physical causes governing the system’s operation—thus hindering the recreation of
fully identical conditions among multiple common experiments (e.g., connectivity between nodes may
deteriorate due to different weather conditions). Furthermore, it is necessary for the testbed to be able
to meander in the characteristics it can reproduce, so as to support the evaluation of a wider plethora
of applications.

Given the ever-present need for applications to be developed and evaluated in an academic
community within a timely manner, a testbed infrastructure serves as the means of filling the gap
between simulation environments and real-world conditions. Supporting experimentation and
evaluation through user-friendly and accessible means helps promote the educational aspects of
the academic community. In this paper, the existing infrastructure [5] of the CAmpus TestBed of the
Ionian UniverSity (CaBIUs) is extended. While the developed testbed provides a certain degree of
security, given that the nodes are installed indoors within protective enclosures, the necessity for
automation of procedures arises.

More specifically, the network setup and topologies that emerge from the composed system are
further analyzed in order to better inform and facilitate future studies. Moreover, the main contribution
of this work is the design and implementation of a web platform to enable remote development
and control of the deployed system and enhance its usability and accessibility, thus expediting

Electronics 2020, 9, 454 3 of 18

administrative actions. This web platform’s architecture comprises lightweight low-cost components
that seamlessly fit into most emerging IoT applications, utilizing Arduino prototyping boards equipped
with XBee transceivers as WSN nodes and a Raspberry Pi as the web server host. The developed
platform aims at the remote execution of algorithms coded in a custom programming language,
without requiring an upload process, which would otherwise require additional devices—and a fairly
lengthy process, given the nodes’ enclosure. The scope and breadth of the designed framework and
language are investigated, providing examples of potential algorithms that can be implemented,
while some common examples are compiled and provided as templates to be used within the platform.

The rest of this paper is organized as follows. An overview of related literature is presented
in Section 2, while the testbed under consideration is described in Section 3, including the utilized
devices and resulting network configuration. Section 4 specifies the developed web platform and
implementation. Discussion and future work is laid out in Section 5. Finally, conclusions are drawn in
Section 6.

2. Past Related Work

The appropriateness, contribution, and utility of WSNs to a large number and variety of industries
has attracted the interest of several members in the scientific community [6–8]. In particular, over the
past few years, WSN performance has been examined and evaluated on several applications, such as
military and agricultural applications [9,10], smart environments [11,12], emergency situations [13,14],
environmental monitoring [15,16], and health applications [17,18].

Imran et al. [19] focus on evaluating WSN protocols and algorithms, through emulators,
simulators, and testbeds, providing vertical and horizontal analysis, with the ultimate goal of helping
researchers choose the most appropriate tool for their needs. On the other hand, Steyn and Hancke [20]
concentrate on both laboratory and real-world testbeds, providing information on their architecture
and function characteristics, and suggesting possible combinations of them for controlling interference
sources while experimenting with a variety of wireless channel conditions.

In a parallel manner, Horneber and Hergenröder [21] first present various architectural testbeds
for different types of requirements, and eventually raise general issues of development of such systems.
In addition, Kim et al. [22] collect once more the essential requirements associated with such systems,
categorize the testbeds by architecture, and ultimately evaluate them. Important information is
also summarized in [23], bringing out the requirements, challenges, and design aspects of enhanced
testbeds, which have a high degree of control over reproducability and thus accountability, as well as
federation with other testbeds.

One of the fundamental studies on testbed implementation is MoteLab [24], which is intended
for WSNs, offering permanently installed Ethernet-connected nodes on Harvard University’s campus,
enabling a web-interface to organize and coordinate experiments, retrieve data, and interact with
specific nodes.

Another representative testbed example is WISEBED [25], which can support heterogeneous
nodes by providing researchers with the opportunity to conduct remote experiments via the Internet.
At the same time, it supports a repository of protocols, algorithms, and mechanisms to facilitate the
process of extracting measurements from experiments.

Furthermore, a different approach to the issue is made with FlockLab [26], in which sensor
nodes are paired with observer nodes. Observer nodes can manipulate the sensor nodes
extensively, while maintaining a LAN in which the experimental data are securely available.
Additionally, they accurately adjust and monitor pins and power metrics.

The w-iLab.t testbed [27] exhibits multi-dimensional behavior as it is suitable for large-scale
wireless sensor and actuator networks and WiFi mesh and ad hoc experiments. The system is accessible
to authorized users through a web-based interface where users can configure the experiments,
completely customize the experimentation process, and collect the results that can be visualized
on graphs or maps in real time or asynchronously with the experiments.

Electronics 2020, 9, 454 4 of 18

On the other hand, the PotatoNet testbed [28] has been implemented in an outdoor
environment—where conditions continuously shift—and aims to provide a durable and at the same
time flexible system. Moreover, PotatoMesh [29] extends PotatoNet to better manage energy reserves,
even in cases of large volumes of data generation.

In relation to more recent studies, MobiLab [30] focuses on the phenomenon of mobility in a WSN.
In particular, this WSN comprises three types of nodes: static relay nodes, mobile nodes, and sniffer
nodes, which are not involved in experiments but are simply providing additional information by
monitoring the wireless communication channel. The overall architecture of the system, except for the
WSN, includes a control station, which functions as a system–user interface (both command-line and
web-based interface), a node manager that connects each node of the network to the control station and
a WiFi backbone network, made up of node managers and the control station, designed to exchange
information during experiments. It is noteworthy that this testbed does not require a specific network
size or topology to perform experiments.

Likewise, Indriya2 [31] extends the original version of “Indriya” by enriching the capability
of supporting heterogeneous, higher data-rate, multi-experiments of multi-users and providing
architecture for accessing the outputs in real time through an MQTT server. It is worth noting
that it offers REST APIs for connecting to other testbeds, ensuring the required levels of security.

A different approach to the issue is presented in SDNWisebed [32], where WSN management is
simplified and implemented with Software-Defined Networking Solutions. SDNWisebed includes
a controller that manages network operation and sensor nodes, which aim to transfer packets to the
WSN and interact with the environment, sensing environmental indicators or performing some action.
They essentially define the data plane. Information exchange between controller and sensor nodes
is achieved via the border router. In addition, it offers dynamic information, such as traffic statistics,
that enables better packet routing.

Additionally, HATBED [33] is made up of targets, observers, and a controller that is essentially
a computer server that controls the entire testbed automatically. Targets are the sensor nodes, which are
monitored by observers—as their name implies—that are able to interact with each other. Its main
purpose is to aid in profiling, testing, and debugging code without impacting the nodes’ performance,
utilizing hardware assisted tracing.

Gu et al. [34] concentrate on optimizing an existing testbed, through virtualization technology
to better utilize resources and enhance scalability and flexibility, to meet the growing demands and
needs of large-scale IoT experiments. At the same wavelength and better IoT needs, NEWSBED is
met [35], a proposed platform designed to facilitate the testing and implementation of ideas, despite the
difficulties that may arise in such an environment.

Huang and Yu [36] are studying the issue of node positioning, providing a demonstration of
an innovative range-based positioning testbed that can meet the high demands of node heterogeneity,
while Lattanzi et al. [37] focus on monitoring indoor human comfort in a university campus in Italy,
designing a testbed the sensors of which are multitasking, performing independent actions.

A recent study presented in [5] thoroughly describes the installation and implementation of
a prototyping testbed, while taking into consideration environmental parameters that may affect the
connectivity of the resulting network topology. The current work further extends the implementation
and capabilities of this particular testbed, the soundness of which has been proven in earlier
studies [38–40].

3. Testbed Description

In this section, a comprehensive listing of the equipment utilized for the presented testbed
is provided, along with some of the resulting topological information that may be of interest to
future applications.

Electronics 2020, 9, 454 5 of 18

3.1. Equipment

Choosing the equipment needed to build a WSN, and by extension a testbed, is a crucial process
in terms of performance. The ease of use and configuration of the devices, along with their low cost,
reflect the major requirements for implementing a testbed for IoT application experiments. In order to
satisfy these requirements, the following devices are selected: (i) Arduino Mega 2560 Rev3; (ii) Arduino
Wireless SD Shield; (iii) XBee S2C Zigbee module with wire antenna; (iv) Raspberry Pi 3 Model B; and
(v) Sensory Devices.

Each of these devices offers a decisive contribution to the system by virtue of their capabilities
that will be showcased next. In more detail, the Arduino Mega 2560 is a microcontroller board based
on the Atmega2560, which can be programmed to bring to fruition a plethora of projects. Its technical
specifications are presented in Table 1 [41].

Table 1. Arduino Mega Specifications.

Component Value

Microcontroller ATmega2560
Operating Voltage 5 V

Input Voltage (recommended) 7–12 V
Input Voltage (limit) 6–20 V

Digital I/O Pins 54
(of which 15 provide PWM output)

Analog Input Pins 16
DC Current per I/O Pin 20 mA
DC Current for 3.3 V Pin 50 mA

Flash Memory 256 KB of which 8 KB
used by bootloader

SRAM 8 KB
EEPROM 4 KB

Clock Speed 16 MHz
LED_BUILTIN 13

Length 101.52 mm
Width 53.3 mm
Weight 37 g

The interface between the Arduino Mega and the antenna is achieved through a mediator,
whose role is played by the Arduino Wireless SD Shield. This Shield contributes to wireless
communication and allows the data to be stored on a micro-SD card [42].

A vital component for the aforementioned network is the transceiver, with the help of which
wireless communication of the nodes is established. Hence, the XBee S2C Zigbee transceiver has been
chosen because of its high specifications and universality in a variety of applications. More extensively,
Zigbee, the protocol on which the antenna’s functionality is based, is intended for personal wireless
networks and provides a maximum transmission rate of 250 kbps [43], extending the 802.15.4 protocol
for mesh topologies.

When the network’s operation is based on the Zigbee protocol, there are three types of nodes
that constitute it [44]. Each type plays a unique role, the details of which are presented below.
The first type is the “Coordinator”, which is vital to the existence and configuration of the network.
However, there is a strict limitation on the existence of a single Coordinator in the whole network.
Upon the fulfillment of its role/task in setting up the network, the Coordinator’s functionality is
equivalent to that of a “Router’s”, which is the second type of node.

Apart from the Coordinator, the network can consist of a large number of Routers whose main
concern is the control and execution of the packet routing process, including all the actions that are

Electronics 2020, 9, 454 6 of 18

necessary to accomplish this. A common feature among these two types mentioned above is that they
can function both as sources and destinations in the data transmission process.

The third type is the “End device”, which sleeps periodically and can only communicate with the
node that has the property of being its parent (i.e., a Router or a Coordinator), in order to transmit and
receive data. Consequently, it requires lower energy, compared to the rest of the types.

In terms of XBee module modes of operation [44], “Transparent” mode is first encountered.
Transparent mode operates, using a set of user-defined settings and parameters, preventing
their modification during the execution of the program. Such parameters include options,
e.g., the destination address that are crucial for more complex applications. Furthermore, when data
are sent to the module, they are transmitted and the receiving nodes do not acquire any additional
information, such as the source address.

Another mode of operation is the “Application Programming Interface (API)”,
where communication between nodes relies on the exchange of data packets, which represent
functions or events for the device, making it possible to modify various parameters, even during its
operation. It also allows identifying the source address of a packet, transmitting data to different
addresses, and receiving information about the success or failure of a packet transmission. Thanks to
these abilities, it has been selected for the purposes of this study.

Continuing with the next component of the equipment used, Raspberry Pi 3, despite its low cost
and small size (almost the same with the size of a credit card), acts as a computer in terms of enhancing
conventional computers [45]. Its technical characteristics are presented in detail in Table 2 below [46].

Table 2. Raspberry Pi 3 specifications.

Component Value

SoC Broadcom BCM2837 64 bit
CPU 4 × ARM Cortex-A53, 1.2 GHz
GPU Broadcom VideoCore IV
RAM 1 GB LPDDR2 (900 MHz)

Networking 10/100 Ethernet, 2.4 GHz 802.11n wireless
Bluetooth Bluetooth 4.1 Classic, Bluetooth Low Energy
Storage microSD
GPIO 40-pin header, populated

As is evident, a WSN does not exist without the sensors; thus, in the implemented testbed, a wide
range of sensors has been used, corresponding to the most common requirements and serving the most
common purposes. More specifically, accelerometers, humidity, temperature, and ultraviolet radiation
sensors have been installed [47–49]. Furthermore, GPS modules and Lithium Polymer batteries are
provided, in order to meet higher standards. Note that the sensor nodes are powered by power
banks [50], which are available for all kinds of experiments in the described system. The final form
of the system’s node, integrating all aforementioned components and stored in a case to ensure its
physical security, is depicted in Figure 1.

Electronics 2020, 9, 454 7 of 18

Figure 1. A node of the developed system enclosed in its protective case, along with its battery.

Moreover, with respect to a node’s cost, the price of each of the system’s individual components
is listed in Table 3. A single node, without any sensors or power sources, comprised of just an Arduino
Mega 2560, a Wireless SD Shield, and an XBee S2C module costs close to $100. Depending on the
number of sensors used, the total cost of each node can go up to $160. When it comes to power sources,
a durable power bank with solar recharging costs more than $80, whereas more lightweight lithium
polymer batteries can cost less than $20. Raspberry Pi 3 boards cost close to $50, although these are not
required for each node and only a single one is used in this study. These prices represent the current
state of the market for the particular models referenced from relatively reliable sources.

Table 3. Cost of each of the utilized components.

Component Price (USD)

Arduino Mega 2560 Rev3 38
Arduino Wireless SD Shield 20

XBee S2C Zigbee Module with Wire Antenna 34
Raspberry Pi 3 Model B 47
Accelerometer Sensor 5

Humidity and Temperature Sensor 10
Ultraviolet Radiation Sensor 3

GPS Module 40
Lithium Polymer Battery 16

Power Bank 87

3.2. Topology Configuration

The testbed described was established on the Ionian University campus. It consists of a set of up to
30 sensor nodes, which are located in scattered areas of the University premises, as depicted in Figure 2.
The installation points have been selected, based on parameters that may affect the performance of
the system, taking into account the connectivity of the nodes. More specifically, the installation was
carried out on walls, where the predominant material is stone, which can turn message transmission
into a barrier process.

Electronics 2020, 9, 454 8 of 18

Figure 2. The positions of CaBIUs’ nodes from a satellite view, indicated by circles. The numbers
are the corresponding node’s ID. In the topology instance under consideration, the IDs of the nodes,
which were not installed, have been omitted.

Therefore, the control of fruitful communication was tested during installation, with the help
of XCTU Software, with the ultimate goal of avoiding one or more fully-isolated nodes. This was
accomplished with the transceivers operating utilizing their maximum transmission power capabilities.
While considering safety along with security of the equipment, nodes are placed in locations that
are easily accessible, but not in common view. The devices are housed in protective enclosures,
especially for the duration of the experiment’s conduction, where security is guaranteed by the
researchers’ presence. The rest of the time, the devices are removed from the containers and stored
in a safe location, which is a temporary solution until CaBIUs is fully established. In the sequel,
additional details regarding the network’s topology are given.

The network’s topology is likely to incur changes as link quality can fluctuate based on
environmental conditions, which was studied in previous work [5]. Due to this fact, only one particular
topology instance is examined and presented here, but do note that most of the topology alterations,
which have been observed in previous experiments [38–40], occur in the links between nodes on the
network’s outskirts. Additionally, as far as applications are considered, neighbor discovery processes
should be employed, since the XBee module’s Network Discovery (ND) process generally provides
asymmetric links, and, from the authors’ view, is unreliable in certain cases.

An undirected graph G(V, E), where V denotes the set of nodes and E the links among them,
may be formed from the particular topology instance so as to formulate graph theoretic concepts,
which might be of use when designing and analysing applications. Thus, the network comprises
|V| = 25 nodes and |E| = 72 links among them, derived from the neighbor discovery presented
in [38–40], so as to provide reliable symmetric links. The adjacency matrix of the resulting topology is
depicted in Table 4. The average degree of the network’s nodes is δ = 5.76, while the maximum degree

Electronics 2020, 9, 454 9 of 18

is ∆ = 12. The network’s diameter d = 5 and radius r = 3 are defined as the maximum and minimum
of the nodes’ eccentricity, respectively. The network’s density is

D =
2|E|

|V|(|V| − 1)
= 0.24.

Table 4. Adjacency matrix of the selected topology instance.

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1
2 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0
4 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
5 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0
6 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0
7 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
8 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1
9 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0
12 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 0 0
13 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 0 0
14 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0
15 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 0
16 1 1 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0
17 0 0 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0
18 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0
19 1 1 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0
20 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
21 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0
23 1 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 0
24 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1
25 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

4. An Enhanced Remote Development Platform

Literature indicates a clear trend in the direction of minimizing the need for human intervention
when developing a testbed infrastructure. This may be accomplished under various utilities,
with web-based frameworks and architectures being evidently prominent in this regard. These web
applications aid in the remote and automated uptime status monitoring, code upload, execution and
visualization, as well as multiple other facets of the system’s overall operation. As such, a web-based
platform is developed for the underlying WSN in order to assist with the remote execution and
monitoring of algorithms.

4.1. Architecture of the Proposed Platform

The designed architecture fully utilizes the components presented in Section 3. Arduino boards
along with XBee modules and accompanying sensors play the role of the WSN’s nodes. The Zigbee
network’s Coordinator acts as the sink node, while also maintaining a serial connection with
a Raspberry Pi. The latter also hosts the web server, which, by communicating with the WSN’s
sink (i.e., the Coordinator), exchanges data and commands. The architecture is depicted in Figure 3.

Electronics 2020, 9, 454 10 of 18

Building 1

Building 1

Building 1Building 1

Building 1

Building 1

Serial

Web Server

Hosting

Raspberry Pi

Sink Node

Figure 3. Depiction of the system’s architecture on the Ionian University campus.

According to this particular architecture, the web server handles incoming connections, which are
able to send instructions to the WSN’s sink. These custom instructions represent common WSN-related
instructions, such as transmitting, receiving, or measuring. The input instructions are interpreted
and validated by the server. If they are valid, they are encoded in the form of a string and sent to the
Arduino, which decodes the instructions and executes the appropriate actions. In order to program
remote nodes, i.e., the network’s Routers, the Coordinator transmits the received encoded instructions,
which are then handled by the addressed node. The Coordinator’s serial output is captured by the
web server, so that clients may monitor the algorithm’s execution.

It is worth pointing out that the Arduino Wireless SD Shield typically occupies the Arduino’s
main serial port, which complicates writing and reading through the connected computer’s serial
connection. Normally, the XBee modules utilize the Arduino’s serial buffers in order to receive and
transmit messages. If the same serial port is also utilized by the connected device, transmitted data
are certain to get muddled. In order to address this, the shield’s RX and TX pins are slightly bent,
so that they are no longer inserted into the Arduino’s corresponding pins. The bent pins are hence
routed to one of the Arduino Mega’s other serial pins, so that the XBee module may once again
be fully operational. Since two serial connections are required, memory costs slightly increase as
well to accommodate the RX and TX buffers, although the rest of the framework has trivial memory
requirements, so an Arduino Mega should suffice for reasonably large networks.

Regarding the efficiency in various aspects of the system, the proposed architecture can
certainly be improved. For instance, the Raspberry Pi can make for a poor web server, due to its
limited computational capabilities and I/O transfer rates. The Ionian University’s servers could
be utilized instead, which also share Gigabit Ethernet connection with the campus’s premises.
However, the particular Raspberry Pi model shares the same controller for both USB and Ethernet
ports, which could prove to bottleneck the system’s performance, in which case it would have to be
replaced by a more powerful unit.

Electronics 2020, 9, 454 11 of 18

4.2. Web Framework of Proposed Platform

The main purpose of the developed web framework is to allow users to create and test simple
algorithms intended for WSN applications. Thus, it primarily consists of two distinct interface
components with the goal of permitting the user to input a specific algorithm, in the form of a sequence
of custom-designed commands, as well as a method for monitoring the provided algorithm’s execution.
The website’s interface is showcased in Figure 4.

Figure 4. The implemented web framework’s main interface. The submitted code is displayed on the
left panel, whereas the Arduino’s output is on the right.

The user’s algorithm is forwarded to the server through the use of two separate forms, one for
the Coordinator’s and one for the Routers’ actions to execute. Once the forms have been submitted,
the contents of both are passed to the parser through the web server and validated. The user is
redirected back to the same page and an appropriate error message is displayed, if something went
wrong. Alternatively, if the program’s code is valid, the instructions are encoded and sent via the serial
interface to the connected Arduino board, while the Arduino’s output is captured, displayed, and
updated live in the web page.

The encoding process is fairly straightforward, aiming to minimize the amount of data transmitted
over serial and Zigbee. In particular, only the first letter of each token is retained. As of yet,
no ambiguity occurs among commands’ first letter, although this might have to change later on,
when the selection of commands is further extended. Once the encoded forms’ content has been
forwarded to the Arduino, they are decoded and any Router operations are transmitted to the specified
remote Router node. The decoding process on the receiving nodes is made significantly easier,
with a linear computational complexity relative to the encoded command’s length, thanks to the
validity of the program’s structure being guaranteed by the web framework.

In terms of communication overhead, the instructions of a program can be aggregated into a single
message, provided they fit within the 255 bytes that Zigbee packets are restricted to. If a program
exceeds the limit of 255 bytes, which is rare using the current grammar, it can be fragmented into
multiple messages. It should be noted that Zigbee only allows an average of one broadcast per second,
so larger programs would take a while to propagate.

Traditional WSN related algorithms have been implemented and made available for using
as templates. These templates are stored in the website’s database, which can be selected and
loaded through an additional field. The selection of available algorithms currently includes flooding,
flooding with feedback (Echo), as well as single and multiple random walkers.

The selected algorithms differ widely with respect to their characteristics, providing trade-offs
between the required number of transmissions and completion time. More specifically,
flooding requires a large number of transmissions to cover the entire network, but is guaranteed
to terminate within a small time period [51]. Similarly, the Echo algorithm involves flooding;
however, feedback is also provided by its termination, making it the default option when gathering

Electronics 2020, 9, 454 12 of 18

data. Finally, random walkers are capable of covering a network by sending a comparatively smaller
amount of messages, but the termination time is difficult to predict [52]. The varying traits of these
algorithms showcase the platform’s capability in granting a versatile environment.

Considering that the currently installed system only consists of a single Zigbee network,
there is a restriction of only a single user being able to run a program on the platform, although no
restrictions are imposed on the number of users accessing the Coordinator’s serial output. As such,
several mechanisms have to be implemented in future work that will lock write permissions to the
serial connection, so as to not interrupt a program’s execution. This is not currently an issue, as the
website is not yet publicly available.

4.3. Custom Designed Language of the Proposed Platform

The custom language designed for use in the implemented platform can be utilized to implement
a fairly extensive set of basic programs. The defined instructions include essential actions that are
commonly required in distributed networking systems. The full set of available instructions is listed in
Table 5.

Table 5. The LL(1) grammar of the language designed for the developed architecture. Terminal symbols
are capitalized, while ID refers to an unsigned 1-byte integer indicating a node’s assigned ID.

Instruction Parameters

Stmt_list → Stmt Stmt_list|ε
Stmt → Remote_Instruction|Local_Instruction
Remote_Instruction → INSTRUCT Who Local_Instruction
Local_Instruction → Receive_response|Node_operation
Receive_response → ONRECEIVE Frequency Node_operation
Node_operation → FINDNEIGHBORS|MEASURE Key|SEND Who Node_data
Node_data → Key|Metadata
Key → TEMP|HUMIDITY|UV|ACCEL
Metadata → ID|NEIGHBORS|CLOCK
Who → ID|NEIGHBORS|ALL|RANDOM
Frequency → ONCE|ALWAYS

Although the available commands are fairly self-explanatory, a more detailed description
is provided:

1. FINDNEIGHBORS: scan for neighbors using Zigbee’s ND process.
2. MEASURE: get the measurement value returned by one of the connected sensors determined

by token Key, including temperature (TEMP), humidity (HUMIDITY), UV radiation (UV) or
accelerometer (ACCEL).

3. SEND: send data acquired by a node. This data includes metadata, i.e., a node’s ID, its neighbors’
IDs or its clock in milliseconds, or a measurement determined by Key. The message is sent to the
node(s) specified by Who. Available options include: (i) a node with a specific ID; (ii) a node’s
neighbors; (iii) all of the network’s nodes (utilizing Zigbee’s broadcast transmissions); and (iv)
a random neighbor.

4. ONRECEIVE: indicates a Node_operation to be executed as a response upon receiving a message.
The response command is stored and may be reused or consumed after the first message,
as indicated by FREQUENCY.

5. INSTRUCT: send a Local_instruction (any instruction other than INSTRUCT) to node WHO.

All Local_instruction statements are self-contained commands executed by each node.
The INSTRUCT command is separated, so as to restrict its use solely to the Coordinator and avoid
potentially endless rebroadcasts. In particular, this command is only executed in order to transmit

Electronics 2020, 9, 454 13 of 18

to remote Routers the input algorithm’s instructions; end users’ direct use of this command is not
permitted. When a Router receives the specified INSTRUCTION in the form of an encoded string, it is
either immediately executed or stored in a variable to be executed when a message is received.

Even though this is a very limited selection of commands, they can be combined to facilitate
some fundamental network functionality. For instance, two algorithms, namely Echo and the
deployment of a random walker, are implemented by utilizing these commands and are displayed in
Figure 5. These algorithms, along with a flooding implementation, are available as templates for the
website’s users.

The main limiting factor for an endeavor, such as developing a custom language designed for
Arduinos and transmitted over Zigbee, is the control of remote nodes’ variables. Variable names
cannot be explicitly defined, partly due to Arduinos using a compiled language—thus, variables
cannot be defined during runtime—and partly because of limitations imposed by Zigbee on the length
of a transmitted message. A way to address this issue could be predefining dictionary-like structures
on the Arduinos and transmitting the variables’ names and values.

In more detail, a naive implementation of this concept would involve the definition of two parallel
arrays for each data type, with the first holding variable names as strings and the second maintaining
the corresponding variables’ value. This is not very practical, as the memory requirement for the
first array would be equal to the length of the variable’s name multiplied by the number of “defined”
variables. Do note that each variable access would also require lookup in the first array, which is not
too computationally efficient. Furthermore, since these variables would have to be transmitted through
Zigbee, they would take up much of the available bandwidth, not to mention a large proportion of
each message’s maximum length of 255 bytes. If compound types are to be considered, such as arrays,
matters are further complicated and real-world implementation becomes increasingly unrealistic.

Other commonly used approaches that would improve performance could utilize hash tables
and similar dictionary-like structures. However, these structures can take up a significant amount
of memory, which is already a scarce resource. Therefore, this may be an option for future work,
but issues are still certain to arise with actual deployment seeming unrealistic. Thus, this custom
language will likely remain a fairly basic implementation and tool.

(a) (b)
Figure 5. Execution of two programs developed in the custom designed language: (a) the Echo
algorithm; (b) deployment of a single random walker.

5. Discussion and Future Work

During the design of CaBIUs’ refinement process through the implemented remote development
platform, plenty of food for thought was brought about. More specifically, shortcomings observed in the
present system defined the final scope and shape of the implemented architecture. Such shortcomings
revolve around the inability of remotely uploading code—partly due to a lack of required devices and

Electronics 2020, 9, 454 14 of 18

partly because of the nodes’ impermanent installation in their enclosures—and the lengthy process
of having to collect the nodes, in order to arm them with code. Thus, these costly, in terms of time,
requirements are addressed through the creation of a framework to remotely transmit commands
through the only available wireless communication means, Zigbee.

Though the design of a language transmitted through Zigbee and executed over Arduino imposes
certain restrictions, the provided syntax needs to be user-friendly and adequately comprehensible to
contribute to the system’s overall accessibility. Additionally, there is always room for improvement and
expansion of the available system, with respect to both software and hardware that the language needs
to be able to adapt to and support. For instance, since a program in the developed language needs
to be disseminated through broadcasts across the entire network, which is inefficient in large-scale
networks, more efficient techniques could be considered. Of particular importance in this domain is
clustering, allowing for more efficient information flow and error-prone architectures [53,54].

Aside from the aforementioned considerations that drove to the design and completion of the
web framework, some issues that are yet unaddressed came to light. To start with, the impermanent
positioning of nodes leads to limitations of interoperability among CaBIUs’ constituents. By extension,
resolving this issue would permit the development of complementary tools (e.g., remote upload,
visualization) or even the network’s partitioning to support multiple concurrent users.

It is noteworthy that the testbed’s enrichment with other kinds of devices and sensors,
conducing to a heterogeneous networking environment and providing a common subset of devices,
hence enabling comparison between testbeds’ effectiveness and performance. The development of
web APIs would be another step in the direction of federation with other testbeds, while also being
complementary to collaboration among different universities.

Providing the developed platform alongside a functional testbed is largely conducive to the
promotion of educational matters in a university—for instance, the platform’s already fairly simplified
programming language can be augmented through the use of block-structured programming interfaces.
This further abstracts implementation details, making IoT application development accessible to less
experienced undergraduate students, through a more interactive and hands-on approach than more
advanced, systems-oriented programming courses.

Furthermore, the framework and testbed can be propelled in multiple directions by the students
themselves, including the addition of more advanced networking functionality, user-friendly interface
design, development of backend APIs, and integration of concurrency mechanisms to support
multiple users. These activities could be integrated into courses spanning a multitude of subject
areas, requiring varying levels of knowledge and technical skills. All in all, this environment also
helps stimulate up-and-coming researchers, expediting the cultivation of critical thinking, problem
solving and decision-making in real-world applications.

6. Conclusions

Providing a testbed helps to conduct experiments and tests to verify scientific theories and to
evaluate the performance of multiple tools and emerging technologies. Consequently, such a system
prevails in the evolution and advancement of IoT technologies and has drawn heavy interest from the
scientific community.

By extension, each preparatory step and decision during the implementation as well as installation
of a testbed is extremely critical, from the equipment selected to the site in which it will be planted.
Among them, the high efficiency of the system is determined by both low cost and low energy
consumption, as well as ease of use and accessibility.

The need for quick and easy experimentation by members of an academic community, such as
university students, has fueled the creation of a testbed for testing techniques and finding effective
solutions in a WSN. The testbed described here was installed on the Ionian University campus and
meets all of the above requirements.

Electronics 2020, 9, 454 15 of 18

In this context, the existing infrastructure is further analyzed to provide graph theoretic metrics
of resulting topologies. Additionally, a web-based platform is established to provide elevated levels of
automation and remote control of the installed system. The web architecture is described in detail and
aims at facilitating the platform’s users by granting a set of tools that enable remote monitoring and
execution of WSN-related algorithms.

Author Contributions: Conceptualization, V.K., G.K. and K.O.; Data curation, A.Z. and V.K.; Formal analysis,
A.Z.; Funding acquisition, K.O.; Investigation, A.P.; Methodology, A.P., K.B., A.T. and G.T.; Project administration,
K.B.; Resources, S.V.; Software, S.V. and G.K.; Validation, A.S.; Visualization, A.G.A. and A.S.; Writing—original
draft, A.G.A.; Writing—review & editing, A.T., G.T. and K.O. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was supported in part by the “A Pilot Wireless Sensor Networks System for
Synchronized Monitoring of Climate and Soil Parameters in Olive Groves” (MIS 5007309) project, which is
partially funded by European and National Greek Funds (ESPA) under the Regional Operational Program “Ionian
Islands 2014–2020.”

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CaBIUs CAmpus TesBed of the Ionian UniverSity
IoT Internet of Things
WSN Wireless Sensor Network
API Application Programming Interface

References

1. Xia, F.; Yang, L.T.; Wang, L.; Vinel, A. Internet of things. Int. J. Commun. Syst. 2012, 25, 1101. [CrossRef]
2. Mainetti, L.; Patrono, L.; Vilei, A. Evolution of wireless sensor networks towards the Internet of

Things: A survey. In Proceedings of the SoftCOM 2011, 19th International Conference on Software,
Telecommunications and Computer Networks, Split, Croatia, 15–17 September 2011; pp. 1–6.

3. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements,
and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. doi:10.1016/j.future.2013.01.010.
[CrossRef]

4. Gluhak, A.; Krco, S.; Nati, M.; Pfisterer, D.; Mitton, N.; Razafindralambo, T. A survey on
facilities for experimental internet of things research. IEEE Commun. Mag. 2011, 49, 58–67.
doi:10.1109/MCOM.2011.6069710. [CrossRef]

5. Papamichail, A.; Alvanou, A.G.; Zervopoulos, A.; Bezas, K.; Vergis, S.; Koufoudakis, G.; Oikonomou, K.;
Tsoumanis, G. Description of the Ionian University’s Campus Wireless Network Testbed Infrastructure.
In Proceedings of the 2019 South Eastern European Design Automation, Computer Engineering,
Computer Networks and Social Media Conference (SEEDA-CECNSM), Piraeus, Greece, 20–22 September
2019.

6. Akyildiz, I.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless sensor networks: A survey. Comput. Netw.
2002, 38, 393–422. doi:10.1016/S1389-1286(01)00302-4. [CrossRef]

7. Ali, A.; Ming, Y.; Chakraborty, S.; Iram, S. A Comprehensive Survey on Real-Time Applications of WSN.
Future Internet 2017, 9, 77. doi:10.3390/fi9040077. [CrossRef]

8. Yick, J.; Mukherjee, B.; Ghosal, D. Wireless sensor network survey. Comput. Netw. 2008, 52, 2292–2330.
doi:10.1016/j.comnet.2008.04.002. [CrossRef]

9. Diamond, S.M.; Ceruti, M.G. Application of Wireless Sensor Network to Military Information Integration.
In Proceedings of the 2007 5th IEEE International Conference on Industrial Informatics, Vienna, Austria,
23–27 June 2007; Volume 1, pp. 317–322, doi:10.1109/INDIN.2007.4384776. [CrossRef]

http://dx.doi.org/10.1002/dac.2417
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1109/MCOM.2011.6069710
http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.3390/fi9040077
http://dx.doi.org/10.1016/j.comnet.2008.04.002
http://dx.doi.org/10.1109/INDIN.2007.4384776

Electronics 2020, 9, 454 16 of 18

10. Wark, T.; Corke, P.; Sikka, P.; Klingbeil, L.; Guo, Y.; Crossman, C.; Valencia, P.; Swain, D.; Bishop-Hurley, G.
Transforming Agriculture through Pervasive Wireless Sensor Networks. IEEE Pervasive Comput. 2007,
6, 50–57. doi:10.1109/MPRV.2007.47. [CrossRef]

11. Li, M.; Lin, H. Design and Implementation of Smart Home Control Systems Based on Wireless
Sensor Networks and Power Line Communications. IEEE Trans. Ind. Electron. 2015, 62, 4430–4442.
doi:10.1109/TIE.2014.2379586. [CrossRef]

12. Nandury, S.V.; Begum, B.A. Smart WSN-based ubiquitous architecture for smart cities. In Proceedings of
the 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI),
Kochi, India, 10–13 August 2015; pp. 2366–2373, doi:10.1109/ICACCI.2015.7275972. [CrossRef]

13. Gayan, S.; Weeraddana, D.M.; Gunathillake, A. Sensor network based adaptable system architecture for
emergency situations. Lect. Notes Inf. Theory 2014, 2, 85–91. [CrossRef]

14. Li, Y.; Wang, Z.; Song, Y. Wireless Sensor Network Design for Wildfire Monitoring. In Proceedings of the
2006 6th World Congress on Intelligent Control and Automation, Dalian, China, 21–23 June 2006; Volume 1,
pp. 109–113, doi:10.1109/WCICA.2006.1712372. [CrossRef]

15. Barroca, N.; Borges, L.M.; Velez, F.J.; Monteiro, F.; Górski, M.; Castro-Gomes, J. Wireless sensor networks for
temperature and humidity monitoring within concrete structures. Constr. Build. Mater. 2013, 40, 1156–1166.
doi:10.1016/j.conbuildmat.2012.11.087. [CrossRef]

16. Yu, T.C.; Lin, C.C.; Chen, C.C.; Lee, W.L.; Lee, R.G.; Tseng, C.H.; Liu, S.P. Wireless sensor networks for indoor
air quality monitoring. Med. Eng. Phys. 2013, 35, 231–235. doi:10.1016/j.medengphy.2011.10.011. [CrossRef]
[PubMed]

17. Neethirajan, S. Recent advances in wearable sensors for animal health management. Sens. Bio-Sens. Res.
2017, 12, 15–29. doi:10.1016/j.sbsr.2016.11.004. [CrossRef]

18. Sandhu, M.; Javaid, N.; Jamil, M.; Khan, Z.; Imran, M.; Ilahi, M.; Khan, M. Modeling mobility and
psychological stress based human postural changes in wireless body area networks. Comput. Hum. Behav.
2015, 51, 1042–1053. doi:10.1016/j.chb.2014.09.032. [CrossRef]

19. Imran, M.; Said, A.M.; Hasbullah, H. A survey of simulators, emulators and testbeds for wireless sensor
networks. In Proceedings of the 2010 International Symposium on Information Technology, Kuala Lumpur,
Malaysia, 15–17 June 2010; Volume 2, pp. 897–902. doi:10.1109/ITSIM.2010.5561571. [CrossRef]

20. Steyn, L.P.; Hancke, G.P. A survey of Wireless Sensor Network testbeds. In Proceedings of the IEEE
Africon’11, Livingstone, Zambia, 13–15 September 2011; pp. 1–6, doi:10.1109/AFRCON.2011.6072072.
[CrossRef]

21. Horneber, J.; Hergenröder, A. A Survey on Testbeds and Experimentation Environments for Wireless Sensor
Networks. IEEE Commun. Surv. Tutorials 2014, 16, 1820–1838. doi:10.1109/COMST.2014.2320051. [CrossRef]

22. Kim, H.; Hong, W.K.; Yoo, J.; eun Yoo, S. Experimental Research Testbeds for Large-Scale WSNs: A Survey
from the Architectural Perspective. Int. J. Distrib. Sens. Netw. 2015, 11, 630210. doi:10.1155/2015/630210.
[CrossRef]

23. Ma, J.; Wang, J.; Zhang, T. A Survey of Recent Achievements for Wireless Sensor Networks
Testbeds. In Proceedings of the 2017 International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery (CyberC), Nanjing, China, 12–14 October 2017; pp. 378–381,
doi:10.1109/CyberC.2017.55. [CrossRef]

24. Werner-Allen, G.; Swieskowski, P.; Welsh, M. MoteLab: A Wireless Sensor Network Testbed. In Proceedings
of the 4th International Symposium on Information Processing in Sensor Networks, Los Angeles, CA, USA,
24–27 April 2005.

25. Chatzigiannakis, I.; Fischer, S.; Koninis, C.; Mylonas, G.; Pfisterer, D. WISEBED: An Open Large-Scale
Wireless Sensor Network Testbed. In Sensor Applications, Experimentation, and Logistics; Komninos, N., Ed.;
Springer: Berlin/Heidelberg, Germany, 2010; pp. 68–87.

26. Beutel, J.; Lim, R.; Meier, A.; Thiele, L.; Walser, C.; Woehrle, M.; Yuecel, M. The FlockLab Testbed Architecture.
In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, SenSys ’09, Berkeley,
CA, USA, 4–6 November 2009; pp. 415–416, doi:10.1145/1644038.1644129. [CrossRef]

27. Bouckaert, S.; Vandenberghe, W.; Jooris, B.; Moerman, I.; Demeester, P. The w-iLab.t Testbed. In Testbeds and
Research Infrastructures. Development of Networks and Communities; Magedanz, T., Gavras, A., Thanh, N.H.,
Chase, J.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 145–154.

http://dx.doi.org/10.1109/MPRV.2007.47
http://dx.doi.org/10.1109/TIE.2014.2379586
http://dx.doi.org/10.1109/ICACCI.2015.7275972
http://dx.doi.org/10.12720/lnit.2.1.85-91
http://dx.doi.org/10.1109/WCICA.2006.1712372
http://dx.doi.org/10.1016/j.conbuildmat.2012.11.087
http://dx.doi.org/10.1016/j.medengphy.2011.10.011
http://www.ncbi.nlm.nih.gov/pubmed/22133488
http://dx.doi.org/10.1016/j.sbsr.2016.11.004
http://dx.doi.org/10.1016/j.chb.2014.09.032
http://dx.doi.org/10.1109/ITSIM.2010.5561571
http://dx.doi.org/10.1109/AFRCON.2011.6072072
http://dx.doi.org/10.1109/COMST.2014.2320051
http://dx.doi.org/10.1155/2015/630210
http://dx.doi.org/10.1109/CyberC.2017.55
http://dx.doi.org/10.1145/1644038.1644129

Electronics 2020, 9, 454 17 of 18

28. Kulau, U.; Schildt, S.; Rottmann, S.; Gernert, B.; Wolf, L. Demo: PotatoNet–Robust Outdoor Testbed for
WSNs: Experiment Like on Your Desk. Outside. In Proceedings of the 10th ACM MobiCom Workshop
on Challenged Networks, Paris, France, 7–11 September 2015; pp. 59–60, doi:10.1145/2799371.2799374.
[CrossRef]

29. Gernert, B.; Rottmann, S.; Wolf, L.C. PotatoMesh: A Solar Powered WSN Testbed: Poster. In Proceedings
of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc ’16,
Paderborn, Germany, 5–8 July 2016; pp. 391–392, doi:10.1145/2942358.2942411. [CrossRef]

30. Wen, J.; Ansar, Z.; Dargie, W. MobiLab: A Testbed for Evaluating Mobility Management Protocols in Wireless
Sensor Networks. EAI Endorsed Trans. Ubiquitous Environ. 2017, 4, e1. [CrossRef]

31. Appavoo, P.; William, E.K.; Chan, M.C.; Mohammad, M. Indriya2: A Heterogeneous Wireless Sensor
Network (WSN) Testbed. In Testbeds and Research Infrastructures for the Development of Networks and
Communities; Gao, H., Yin, Y., Yang, X., Miao, H., Eds.; Springer International Publishing: Cham, Switzerland,
2019; pp. 3–19.

32. Schaerer, J.; Zhao, Z.; Carrera, J.; Zumbrunn, S.; Braun, T. SDNWisebed: A Software-Defined WSN Testbed.
In Ad-Hoc, Mobile, and Wireless Networks; Palattella, M.R., Scanzio, S., Coleri Ergen, S., Eds.; Springer
International Publishing: Cham, Switzerland, 2019; pp. 317–329.

33. Yi, L.; Ma, J.; Zhang, T. HATBED: A Distributed Hardware Assisted Testbed for Non-invasive Profiling of
IoT Devices. In Proceedings of the 2nd Workshop on Benchmarking Cyber-Physical Systems and Internet of
Things, CPS-IoTBench ’19, Montreal, QC, Canada, 15 April 2019; pp. 13–17, doi:10.1145/3312480.3313172.
[CrossRef]

34. Gu, R.; Zhang, H.; Pei, D.; Zhang, J. A Scalable and Virtualized Testbed for IoT Experiments. In Proceedings
of the 12th EAI International Conference on Testbeds and Research Infrastructures for the Development of
Networks & Communities, Dalian, China, 28–29 September 2017; pp. 24–33.

35. Huh, J.H.; Kim, D.H.; Kim, J.D. NEWSBED: The Internet of Things testbed platform. In Proceedings of the
2017 International Conference on Information Networking (ICOIN), Da Nang, Vietnam, 11–13 January 2017;
pp. 492–494. doi:10.1109/ICOIN.2017.7899542. [CrossRef]

36. Huang, M.; Yu, B. Demo Abstract: RPTB: Range-based Positioning TestBed for WSN. In Proceedings of the
IEEE INFOCOM 2019—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
Paris, France, 29 April–2 May 2019; pp. 999–1000, doi:10.1109/INFCOMW.2019.8845273. [CrossRef]

37. Lattanzi, E.; Dromedari, M.; Freschi, V. A Scalable Multitasking Wireless Sensor Network Testbed for
Monitoring Indoor Human Comfort. IEEE Access 2018, 6, 17952–17967. doi:10.1109/ACCESS.2018.2818191.
[CrossRef]

38. Alvanou, A.G.; Skiadopoulos, K.; Giannakis, K.; Oikonomou, K.; Tsoumanis, G. Random Walkers Coverage
Experimentation and Evaluation in Low-Cost Wireless Home Networks. In Proceedings of the 2019 10th
International Conference on Information, Intelligence, Systems and Applications (IISA), Patras, Greece,
15–17 July 2019.

39. Zervopoulos, A.; Skiadopoulos, K.; Giannakis, K.; Oikonomou, K.; Komianos, V.; Tsoumanis, G.
Constructing Virtual Backbones over Low-Cost Wireless Networks for Smart Tourism Services.
In Proceedings of the 2019 10th International Conference on Information, Intelligence, Systems and
Applications (IISA), Patras, Greece, 15–17 July 2019.

40. Zervopoulos, A.; Komianos, V.; Skiadopoulos, K.; Tsoumanis, G.; Spiggos, A.; Giannakis, K.; Oikonomou, K.
Constructing Minimal Maintenance Virtual Backbones over Low-Cost Wireless Networks. In Proceedings of
the 2019 South Eastern European Design Automation, Computer Engineering, Computer Networks and
Social Media Conference (SEEDA-CECNSM), Piraeus, Greece, 20–22 September 2019.

41. Arduino. Available online: https://store.arduino.cc/arduino-mega-2560-rev3 (accessed on
25 October 2019).

42. Arduino. Available online: https://store.arduino.cc/arduino-wirelss-sd-shield (accessed on
25 October 2019).

43. Ferdoush, S.; Li, X. Wireless Sensor Network System Design Using Raspberry Pi and Arduino for
Environmental Monitoring Applications. Procedia Comput. Sci. 2014, 34, 103–110. [CrossRef]

44. Digi. XBee R©/XBee-PRO S2C Zigbee R© RF Module User Guide. Available online: https://tinyurl.com/
y5posdyh (accessed on 25 October 2019).

45. Sachdeva, P.; Katchii, S. A review paper on raspberry pi. Dimensions (Wash.) 2014, 85, x56mm.

http://dx.doi.org/10.1145/2799371.2799374
http://dx.doi.org/10.1145/2942358.2942411
http://dx.doi.org/10.4108/eai.21-12-2017.153504
http://dx.doi.org/10.1145/3312480.3313172
http://dx.doi.org/10.1109/ICOIN.2017.7899542
http://dx.doi.org/10.1109/INFCOMW.2019.8845273
http://dx.doi.org/10.1109/ACCESS.2018.2818191
https://store.arduino.cc/arduino-mega-2560-rev3
https://store.arduino.cc/arduino-wirelss-sd-shield
http://dx.doi.org/10.1016/j.procs.2014.07.059
https://tinyurl.com/y5posdyh
https://tinyurl.com/y5posdyh

Electronics 2020, 9, 454 18 of 18

46. Raspberry, P. Available online: https://www.raspberrypi.org/products/raspberry-pi-3-model-b/ (accessed
on 26 October 2019).

47. InvenSense. MPU-6050. Available online: https://www.invensense.com/products/motion-tracking/6-
axis/mpu-6050/ (accessed on 14 December 2019).

48. SparkFun. Humidity and Temperature Sensor—RHT03. Available online: https://www.sparkfun.com/
products/10167 (accessed on 14 December 2019).

49. Vishay. VEML6070 UVA Light Sensor With I2C Interface. Available online: https://www.vishay.com/ppg?
84277. (accessed on 14 December 2019).

50. Sandberg. Sandberg Outdoor Solar Powerbank 16000. Available online: https://sandberg.it/en-mt/
product/Outdoor-Solar-Powerbank-16000. (accessed on 14 December 2019).

51. Alotaibi, E.; Mukherjee, B. A survey on routing algorithms for wireless Ad-Hoc and mesh networks. Comput.
Netw. 2012, 56, 940–965. doi:10.1016/j.comnet.2011.10.011. [CrossRef]

52. Skiadopoulos, K.; Oikonomou, K.; Avlonitis, M.; Giannakis, K.; Kogias, D.; Stavrakakis, I. Multiple and
replicated random walkers analysis for service discovery in fog computing IoT environments. Ad Hoc Netw.
2019, 93, 101893. doi:10.1016/j.adhoc.2019.101893. [CrossRef]

53. Lin, C.R.; Gerla, M. Adaptive clustering for mobile wireless networks. IEEE J. Sel. Areas Commun. 1997,
15, 1265–1275. doi:10.1109/49.622910. [CrossRef]

54. Tsiropoulou, E.E.; Paruchuri, S.T.; Baras, J.S. Interest, energy and physical-aware coalition formation
and resource allocation in smart IoT applications. In Proceedings of the 2017 51st Annual Conference on
Information Sciences and Systems (CISS), Baltimore, MD, USA, 22–24 March 2017; pp. 1–6.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.invensense.com/products/motion-tracking/6-axis/mpu-6050/
https://www.invensense.com/products/motion-tracking/6-axis/mpu-6050/
https://www.sparkfun.com/products/10167
https://www.sparkfun.com/products/10167
https://www.vishay.com/ppg?84277
https://www.vishay.com/ppg?84277
https://sandberg.it/en-mt/product/Outdoor-Solar-Powerbank-16000
https://sandberg.it/en-mt/product/Outdoor-Solar-Powerbank-16000
http://dx.doi.org/10.1016/j.comnet.2011.10.011
http://dx.doi.org/10.1016/j.adhoc.2019.101893
http://dx.doi.org/10.1109/49.622910
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Past Related Work
	Testbed Description
	Equipment
	Topology Configuration

	An Enhanced Remote Development Platform
	Architecture of the Proposed Platform
	Web Framework of Proposed Platform
	Custom Designed Language of the Proposed Platform

	Discussion and Future Work
	Conclusions
	References

