
electronics

Article

Towards Near-Real-Time Intrusion Detection for IoT
Devices using Supervised Learning and Apache Spark

Valerio Morfino and Salvatore Rampone *

Department of Law, Economics, Management and Quantitative Methods (DEMM), University of Sannio,
I-82100 Benevento, Italy; valerio.morfino@ctcgroup.it
* Correspondence: rampone@unisannio.it

Received: 2 January 2020; Accepted: 5 March 2020; Published: 6 March 2020
����������
�������

Abstract: In the fields of Internet of Things (IoT) infrastructures, attack and anomaly detection are
rising concerns. With the increased use of IoT infrastructure in every domain, threats and attacks
in these infrastructures are also growing proportionally. In this paper the performances of several
machine learning algorithms in identifying cyber-attacks (namely SYN-DOS attacks) to IoT systems
are compared both in terms of application performances, and in training/application times. We use
supervised machine learning algorithms included in the MLlib library of Apache Spark, a fast and
general engine for big data processing. We show the implementation details and the performance of
those algorithms on public datasets using a training set of up to 2 million instances. We adopt a Cloud
environment, emphasizing the importance of the scalability and of the elasticity of use. Results show
that all the Spark algorithms used result in a very good identification accuracy (>99%). Overall,
one of them, Random Forest, achieves an accuracy of 1. We also report a very short training time
(23.22 sec for Decision Tree with 2 million rows). The experiments also show a very low application
time (0.13 sec for over than 600,000 instances for Random Forest) using Apache Spark in the Cloud.
Furthermore, the explicit model generated by Random Forest is very easy-to-implement using high-
or low-level programming languages. In light of the results obtained, both in terms of computation
times and identification performance, a hybrid approach for the detection of SYN-DOS cyber-attacks
on IoT devices is proposed: the application of an explicit Random Forest model, implemented directly
on the IoT device, along with a second level analysis (training) performed in the Cloud.

Keywords: IoT; cyber-attacks; SYN-DOS; supervised machine learning; Apache Spark; MLlib; cloud
environment; hybrid approach

1. Introduction

In recent years, a significant spread of Internet of Things (IoT) devices has been noted. Gartner
estimates that the IoT will reach 26 billion units by 2020 [1,2] and a study by Statista reveals that this
number will become 75.44 billion worldwide by 2025 [3].

The use of these devices is growing more and more in several application such as mobile health,
Internet of Vehicles, smart home, industrial control, and environmental monitoring, extending the
scope of mobile communications from interpersonal communications to smart interconnection between
things and people, but also between things and things [4]. These devices are more and more often
part of everyday life of billions of people, just think to Smart-Tv, smartwatch, IP cameras. Thus, these
devices interact with people through the use of sensors and actuators, can open doors, monitor houses,
record the heartbeat. But these devices are, almost always, connected to the Internet. So, they are
sensitive to cyber-attacks.

Thus, on one hand the IoT devices improves the productivity of companies and enhances the
quality of people’s lives, but on the other hand the IoT will increase the potential attack surfaces for

Electronics 2020, 9, 444; doi:10.3390/electronics9030444 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-6637-9269
https://orcid.org/0000-0002-2019-2746
http://www.mdpi.com/2079-9292/9/3/444?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9030444
http://www.mdpi.com/journal/electronics

Electronics 2020, 9, 444 2 of 13

cyber criminals [1]. A study by Hewlett Packard revealed that 70% of the most commonly used IoT
devices contain serious vulnerabilities [5]. IoT devices have vulnerabilities due to lack of transport
encryption, insecure Web interfaces, inadequate software protection, and insufficient authorization.
On average, each device contains 25 holes, or risks of compromising the home network [1].

Identifying the number of cyber-attacks on IoT devices and their economic impact is a challenging
issue, given the continuous and high-tech changes [6]. However, a survey by Irdeto Global Connected
Industries Cybersecurity Survey revealed that cyberattacks targeted at IoT devices could cost the U.S.
economy $8.8 billion per year. The research highlight that IoT-focused cyberattacks are alarmingly
widespread (80% of interviewed claimed to have experienced an attack in the past 12 months). About
55% of the attacks have caused operational downtime as a result [7]. Gartner forecasts that worldwide
spending on IoT security will reach 2,4 billion in 2020 and 3,1 billion in 2021 [8].

On the general Web scenario, according to Cisco Cybersecurity Reports, even though global Web
traffic enhances security using encryption techniques, 42% of organizations have been faced a DDoS
attack [9]. Namely the SYN-DOS attack is one of the most popular DDoS attack type, widely used
because SYN packets are not likely to be rejected by default [10,11]. So, in this work we focus on the
SYN-DOS attack, a type of attack that undermines the availability of the network interfaces of devices,
exploiting the normal functioning of the TCP/IP protocol.

Machine learning has proven to be very important and effective in identifying and protecting
against cyber-attacks [12–16], also specifically for DDOS attacks [17]. For example a 97.4% of
identification success for real traffic data has been obtained by D’Angelo et al. [18] using U-BRAIN [19].
In the specific field of IoT devices anomaly and attacks detection Hasan et al. obtained up to 99.4% of
identification success using Decision Tree, Random Forest, and Artificial Neural Networks [20].

The application limits of state-of-the-art machine learning algorithms are mostly related to the
computational requirements needed for large datasets [21]. This is especially important for IoT devices,
which have generally reduced processing capabilities. However, they are often connected or otherwise
connectable to the Internet, therefore it is possible to use an approach based on technologies operating
in the Cloud environment.

In this work we have a dual purpose:

- to value the performances of several machine learning algorithms in identifying SYN-DOS
attacks to IoT systems in a Cloud environment, both in terms of application performances,
and in training/application times. Namely, we use several general-purpose machine learning
algorithms included in the MLlib library of Apache Spark [22], one of the most interesting and
used technologies in the big data field, available with an open source license and present in the
cloud computing facilities of the main world players [23].

- by using the previous results, to propose a strategy for the sustainable implementation of machine
learning algorithms for the detection of SYN-DOS cyber-attacks on IOT devices. Our purpose is
to create a hybrid architecture that realizes the training of machine learning models for protecting
against DDOS attacks on the cloud and the application of the obtained models directly on the
IOT devices.

While there are several application of machine learning algorithms against cyber-attack in a Cloud
environment [24–29] or also in a local one, such as Kitsune [30], it seems there is no specific integrated
application for IoT.

The remaining of this paper is organized as follows. In Section 2, after a brief introduction to
the SYN-DOS attack, we introduce the used datasets, the Apache Spark framework and the MLLIB
Spark library for Machine learning. In Section 3, we describe the selected cloud environment, the used
datasets, the measured parameters and the experimental results. In the last section, we summarize the
results and discuss the work. Some details are reported in the Appendix A.

Electronics 2020, 9, 444 3 of 13

2. Materials and Methods

2.1. Brief Description of a SYN-DOS Attack

The SYN-DOS (or TCP SYN-DOS or SYN flood) attack, is a type of Distributed Denial of Service
(DDoS) attack that exploits the normal three-way handshake of the Transmission Control Protocol
(TCP), and can be used to make server processes incapable of answering a legitimate client application’s
requests for new TCP connections. Any service that binds to and listens on a TCP socket is potentially
vulnerable to TCP SYN flooding attacks [10].

According to RFC 793, the normal mechanism of TCP three-way handshake exchanges the
following sequence of packets (see Figure 1):

1. Client requests connection by sending SYN (synchronize) message to the server.
2. Server acknowledges by sending SYN-ACK (synchronize-acknowledge) message back to the client.
3. Client responds with an ACK (acknowledge) message, and the connection is established.

Electronics 2020, 9, x FOR PEER REVIEW 3 of 13

used datasets, the measured parameters and the experimental results. In the last section, we
summarize the results and discuss the work. Some details are reported in the Appendix.

2. Materials and Methods

2.1. Brief Description of a SYN-DOS Attack

The SYN-DOS (or TCP SYN-DOS or SYN flood) attack, is a type of Distributed Denial of Service
(DDoS) attack that exploits the normal three-way handshake of the Transmission Control Protocol
(TCP), and can be used to make server processes incapable of answering a legitimate client
application’s requests for new TCP connections. Any service that binds to and listens on a TCP
socket is potentially vulnerable to TCP SYN flooding attacks [10].
According to RFC 793, the normal mechanism of TCP three-way handshake exchanges the following
sequence of packets (see Figure 1):

1. Client requests connection by sending SYN (synchronize) message to the server.
2. Server acknowledges by sending SYN-ACK (synchronize-acknowledge) message

back to the client.
3. Client responds with an ACK (acknowledge) message, and the connection is

established.

Figure 1. Normal Transmission Control Protocol (TCP) 3-Way Handshake.

In a typical SYN flood attack, a series of SYN packets to the targeted server are sent. The server
is unaware of the attack, so it receives multiple, apparently legitimate requests to establish
communication. Thus, it responds to each attempt with a SYN-ACK packet.

The malicious client either does not send the expected ACK, or—if the IP address is
spoofed—never receives the SYN-ACK. In both cases, the server under attack will wait for an
acknowledgement for some time (timeout). During this time the connection remains open. Before
the connection time out, another SYN packet arrive. This behavior creates a very large number of
connections half-open. Eventually, the server’s connection overflow tables fill and the service to
legitimate clients will be denied. Finally, the server may even malfunction or crash [31].

Some variations of the attack have been observed. A comprehensive description in presented in
[10].

Figure 1. Normal Transmission Control Protocol (TCP) 3-Way Handshake.

In a typical SYN flood attack, a series of SYN packets to the targeted server are sent. The server is
unaware of the attack, so it receives multiple, apparently legitimate requests to establish communication.
Thus, it responds to each attempt with a SYN-ACK packet.

The malicious client either does not send the expected ACK, or—if the IP address is spoofed—never
receives the SYN-ACK. In both cases, the server under attack will wait for an acknowledgement for
some time (timeout). During this time the connection remains open. Before the connection time
out, another SYN packet arrive. This behavior creates a very large number of connections half-open.
Eventually, the server’s connection overflow tables fill and the service to legitimate clients will be
denied. Finally, the server may even malfunction or crash [31].

Some variations of the attack have been observed. A comprehensive description in presented
in [10].

2.2. Attack Data

As attack data we refer to a known data collection [30] containing traffic data of IoT devices,
namely surveillance video IP-cameras, assembled in a surveillance network. Several attacks that affect
the availability and integrity of the video uplinks are conducted.

Electronics 2020, 9, 444 4 of 13

Specifically, the work contains 9 different datasets each one for a different kind of attack. For each
of these 9 attacks, a dataset of extracted feature vectors was compiled. The features consist of statistics
on network traffic which are used to implicitly describe the current state of the channel. These statistics
are extracted by a Feature extractor module in the chain. For further details please refer to [30].

The full dataset contains a total of 2,771,276 instances, of which 2,764,238 contain regular traffic
and 20,000 malicious traffic. Each row of the dataset has 115 features in numeric double format,
describing the state of the channel.

2.3. Apache Spark

Apache Spark is a high-performance, general-purpose distributed computing system. It enables
the process of large quantities of data, beyond what can fit on a single machine, with a high-level APIs,
which is accessible in Java, Scala, Python and R programming languages. It also supports a rich set of
higher-level tools including Spark SQL for SQL and structured data processing, MLlib for machine
learning, GraphX for graph processing, and Spark Streaming.

Spark allows users to write programs on a cluster computing system that can perform operations
on very big amount of data in parallel. A large dataset is rep-resented using a distributed data structure
called RDD — Resilient, Distributed Dataset—which is stored in a distributed way in the executors
(i.e., slave nodes). The objects that comprise RDDs are called partitions. They may (but not must) be
computed on different nodes of a distributed system.

Spark evaluates RDDs lazily. Thus, RDD transformations are computed only when the final RDD
data needs to be computed. Spark can keep an RDD loaded in-memory on executor nodes throughout
the life of a Spark application for faster access in case of repeated computations. RDDs are immutable:
transforming an RDD returns a new RDD and the old one can be trashed by a garbage collector.
The paradigms of lazy evaluation, in-memory storage, and immutability make Spark fault-tolerant,
scalable, efficient and easy to use [23]. In more detail Spark can warrant resilience: when any node
crashes in the middle of any operation, one other node has reference to the crashed one, thanks to
mechanism called lineage. In case of a crash, the cluster manager assigns the job to another node,
which will operate on the particular partition of the RDD and will perform the operations that it has to
execute without data loss [32].

2.4. Machine learning algorithms

MLlib is Spark’s machine learning (ML) library [23]. It provides tools such as machine learning
algorithms for classification, regression, clustering, and collaborative filtering, and others (Featurization,
Pipelines, Persistence, and Utilities).

In choosing the machine learning algorithms we consider our data are labeled (attack or not),
so we face a supervised learning problem, where the expected output of the model is a binary
classification. To this aim we consider the following algorithms from Apache Spark MLlib standard
library: Logistic Regression (LR) [33]; Decision Tree (DT) [34]; Random Forest (RF) [35]; Gradient
Boosted Tree (GBT) [36]; Linear Support Vector Machine (SVM) [37].

Since the aim of the work is to find algorithms that can be easily implemented on IoT devices,
preference have been given to tree algorithms, which can be easily implemented with IF-THEN-ELSE
programming structures even on devices with little processing capacity. Linear Regression and Support
Vector Machine have been included in the comparison because they have been used in related works.

Logistic Regression (LR) is a linear method commonly used for classification. The method
combines each of individual input (i.e., the features) with specific weight, generated during the training
process, that are combined to get a probability to belonging to a particular class. The weight represents
the feature importance. Thus, if a feature has a large weight can be assumed that a variation in the
feature have a significant effect on the outcome [38]. In Spark.ML, logistic regression can be used to
predict a binary outcome by using binomial logistic regression, or it can be used to predict a multiclass
outcome by using multinomial logistic regression [39].

Electronics 2020, 9, 444 5 of 13

Decision Trees (DTs) are one of the most friendly and interpretable models for performing
classification because they are pretty similar to decision models that humans use quite often. In the
training phase, the Decision Tree creates a structure with all the inputs and follows a set of branches
to make a prediction. This behavior makes this algorithm a good starting point model, because it is
rather easy to reason about and easy to inspect, furthermore it makes very few assumptions on the
structure of data. In other words, rather than trying to train coefficient in order to model a function,
it creates a big tree of decisions to follow at prediction time. This model supports both binary and
multi-class classification. The big issue of Decision Tree is that it can overfit data extremely quickly,
because it creates a pathway from the start based on every single training example, even if there are
some way to limit this issue, such as limiting the height of the tree [38]. In Spark.MLlib, decision trees
are supported for binary and multiclass classification and for regression, using both continuous and
categorical features. The implementation partitions data by rows, allowing distributed training with
millions of instances [40]. This feature makes the Spark implementation able to work efficiently on
very big datasets.

Random Forest (RF) and Gradient-Boosted Tree (GBT) are both extensions of Decision Tree.
Rather training one tree on all data, multiple trees on varying subset of data are trained. Thus, the
various decision trees will become “expert” in a specific domain. By combining these various experts,
a “wisdom of crowd effect” is obtained, where the group’s performance exceeds any individual.
This method can also help to prevent the overfitting, a big problem for Decision Tree. Random Forest
and Gradient-Boosted Tree use two different methods for combining decision trees. On the one hand
in Random Forest simply several trees are trained and then average of responses are averaged to make
a prediction; on the other hand, in Gradient-Boosted Tree each tree makes a weighted prediction, so
some tree have more predictive power for some classes than others. The decision trees are iteratively
trained in order to minimize a loss function [38].

The Spark.ML implementation supports Random Forest for binary and multiclass classification
and for regression, using both continuous and categorical features. Gradient-Boosted Tree are supported
for binary classification and for regression, using both continuous and categorical features. To the
current version of Spark (2.4.4.), multiclass classification is not supported. Both Random Forest and
Gradient-Boosted Tree of Spark.MLlib use the Decision Tree implementation, therefore the same
considerations on efficiency are applied [41].

Linear Support Vector Machine (SVM) is the MLlib Spark implementation of Support Vector
Machine, a class of algorithms widely used for classification and regression analysis. Given a set of
training examples, each belonging to one of two class labels, an SVM algorithm builds a model that
assigns new examples into one label or another. A linear SVM described finds linear boundaries in
the input feature space. The SVM model resulting from the training stage is a representation of the
examples belonging to the training set as points in space, mapped so that the examples of the separate
categories are divided by a clear gap that is as wide as possible. New examples, in the application
stage, are mapped into that same space and predicted to belong to a category based on which side of
the gap they fall on. More formally, an SVM constructs a hyperplane to separate data points belonging
to two class labels in feature space. A good separation is achieved by the hyperplane that has the
largest distance to the nearest training data point of any class. Maximizing the separability between the
two classes reduces the generalization error of the classifier [42]. The current version of spark (2.4.4.)
Spark.ML implementation supports only binary classification [43].

3. Experiments and Results

3.1. Execution Environment

The execution environment used is Databricks community edition [44]. It provides a just in time
platform on top of Apache Spark that empowers to build and deploy advance analytic solution. It is
orchestrated with open source Spark Core with underlying general execution engine which supports a

Electronics 2020, 9, 444 6 of 13

wide variety of application, Java, Scala and Python API for the ease of development. It had integrated
workspace in the form of notebooks and dashboards.

Summary of Databricks processing resources (Databricks community cloud):

• 8 cores (shared)
• 6 GB RAM
• Apache Spark 2.4.0, Scala 2.11

3.2. Datasets

The datasets used in this work are subsets of the data collection defined in [22]. We focus on
dataset called “SYN DoS”, related to a Syn Flood attack able to create a DoS (Denial of Service).

We created a python script, based on [45], to extract 5 datasets containing different number
of instances.

The datasets characteristics (Dimension, number of Training Instances, number of Testing Instances,
Total number of Instances, and ratio between regular traffic instances and malicious traffic instances)
are described in Table 1. Data sets are spitted using the ratio of 70% training set and 30% testing set.

Table 1. Datasets used in the experiments.

Dataset name Dim (Gbyte) Training
Instances

Testing
Instances Total Instances Normal/Malicious

Instances

SYNDOS10K 0.0317 7698 3302 11,000 10,000/1000
SYNDOS100K 0.266 67,871 29,167 97,038 90,000/7038
SYNDOS300K 0.825 210,245 89,793 300,038 293,000/7038
SYNDOS1M 2.68 700,192 299,846 1,000,038 993,000/7038
SYNDOS2M 5.39 1,405,057 601,981 2,007,038 2,000,000/7038

Each row of the dataset has 115 features in numeric double format, describing the state of the
channel and one label, containing “F” for normal packet and “T” for malicious packet.

3.3. Evaluation Parameters

For each algorithm we value the following parameters [46]:

(1) The Accuracy on the testing set (ACC):

ACC = (TP + TN)/(P + N) = (TP + TN)/(TP + TN + FP + FN)

where TP (True Positive) is the number of malicious packets correctly identified, TN (True Negative)
is the number of normal instances correctly identified, FP (False Positive) are normal instances
incorrectly identified, FN (False Negative) is the number of undetected malicious packets.

(2) The Error Rate on the testing set (ERR):

ERR = 1 − ACC

(3) The Total number of errors on the testing set.
(4) The Training time, i.e., the time in seconds required to train each machine learning method

(Logistic Regression (LR); Decision Tree (DT); Random Forest (RF); Linear Support Vector Machine
(SVM); Gradient Boosted Tree (GBT])) in the selected execution environment (3.1).

(5) The application time, in seconds, of the rule/solution obtained from each method on the testing
set in the selected execution environment (see Section 3.1).

Electronics 2020, 9, 444 7 of 13

3.4. Classification Performance Evaluation

To evaluate the classification performance, the k-fold cross validation technique was used. Cross
validation splits the dataset into a set of folds which are used as separate training and test datasets. In the
experiments we used k = 10. Thus, 10 (training, test) dataset pair have been generated. The validation
was supported by Spark.MLlib class CrossValidator that helps to automate the process and offers tools
for tuning the hyperparameters [47].

3.5. Results

In Table 2 we report the Accuracy on the testing set (ACC) of the algorithms adopted in this study.

Table 2. Accuracy on the testing set (ACC) of the adopted machine learning algorithms in the MLlib
Spark Environment. LR, DT, RF, GBT, and SVM stand for Linear Regression, Decision Tree, Random
Forest, Gradient Boosted Tree, Linear Support Vector Machine, respectively.

ACC

Dataset LR DT RF GBT SVM

SYNDOS10K 1.0000 1.0000 1.0000 1.0000 1.0000
SYNDOS100K 1.0000 0.9998 1.0000 1.0000 0.9999
SYNDOS300K 1.0000 1.0000 1.0000 0.9999 0.9800

SYNDO1M 0.9999 0.9999 1.0000 0.9999 0.9945
SYNDOS2M 0.9973 0.9999 1.0000 0.9999 0.9999

In Table 3 we report the Error Rate on the testing set (ERR), and in Table 4 we report the absolute
number of errors on the testing set.

Table 3. Error rate (ERR) on the testing set of algorithms used in the MLlib Spark Environment applied
on the testing set. LR, DT, RF, GBT, and SVM stand for Linear Regression, Decision Tree, Random
Forest, Gradient Boosted Tree, Linear Support Vector Machine, respectively.

ERR

Dataset LR DT RF GBT SVM

SYNDOS10K 0 0 0 0 0
SYNDOS100K 0 0.0002 0 0 0.0001
SYNDOS300K 0 0 0 0.0001 0.0200

SYNDO1M 0.0001 0.0001 0 0.0001 0.0055
SYNDOS2M 0.0027 0.0001 0 0.0001 0.0001

Table 4. Absolute number of errors of algorithms used in the MLlib Spark Environment applied on
the testing set. LR, DT, RF, GBT, and SVM stand for Linear Regression, Decision Tree, Random Forest,
Gradient Boosted Tree, Linear Support Vector Machine, respectively.

TOTAL ERRORS

Dataset LR DT RF GBT SVM

SYNDOS10K 0 0 0 0 0
SYNDOS100K 0 4 0 0 1
SYNDOS300K 0 0 0 2 1635

SYNDO1M 1540 2 0 1 1646
SYNDOS2M 1601 3 0 1 1655

The training time reported in Table 5 is referred to training set, meanwhile the application time,
reported in Table 6, is referred to the inference on the test set.

Electronics 2020, 9, 444 8 of 13

Table 5. Training time (in seconds) of the adopted machine learning algorithms on Databriks community
cloud environment. LR, DT, RF, GBT, and SVM stand for Linear Regression, Decision Tree, Random
Forest, Gradient Boosted Tree, Linear Support Vector Machine, respectively.

TRAINING TIME

Dataset LR DT RF GBT SVM

SYNDOS10K 6.54 1.65 2.31 23.34 4.41
SYNDOS100K 8.09 2.65 10.27 29.15 72.46
SYNDOS300K 20.10 8.07 30.45 41.96 179.83

SYNDO1M 94.66 10.57 92.88 144.83 705.54
SYNDOS2M 118.64 23.22 215.82 212.76 1412.29

Table 6. Application time (in seconds) of the adopted machine learning algorithms on Databricks
community cloud environment. LR, DT, RF, GBT, and SVM stand for Linear Regression, Decision Tree,
Random Forest, Gradient Boosted Tree, Linear Support Vector Machine, respectively.

APPLICATION TIME

Dataset LR DT RF GBT SVM

SYNDOS10K 0.05 0.09 0.10 0.09 0.09
SYNDOS100K 0.05 0.09 0.10 0.09 0.09
SYNDOS300K 0.06 0.11 0.11 0.09 0.10

SYNDO1M 0.06 0.11 0.11 0.11 0.13
SYNDOS2M 0.06 0.12 0.13 0.14 0.14

The Random Forest appears to have the best performance. Figures 2 and 3 depict the training
time of RF as function of the dataset dimension in GBytes and of the number of instances, respectively.

Electronics 2020, 9, x FOR PEER REVIEW 8 of 13

Dataset LR DT RF GBT SVM
SYNDOS10K 6.54 1.65 2.31 23.34 4.41

SYNDOS100K 8.09 2.65 10.27 29.15 72.46
SYNDOS300K 20.10 8.07 30.45 41.96 179.83

SYNDO1M 94.66 10.57 92.88 144.83 705.54
SYNDOS2M 118.64 23.22 215.82 212.76 1412.29

The Random Forest appears to have the best performance. Figures 2 and 3 depict the training
time of RF as function of the dataset dimension in GBytes and of the number of instances,
respectively.

Figure 2. Training time (y-axis) vs. Dataset dimension (x-axis) for RF.

Table 6. Application time (in seconds) of the adopted machine learning algorithms on Databricks
community cloud environment. LR, DT, RF, GBT, and SVM stand for Linear Regression, Decision
Tree, Random Forest, Gradient Boosted Tree, Linear Support Vector Machine, respectively.

APPLICATION TIME
Dataset LR DT RF GBT SVM

SYNDOS10K 0.05 0.09 0.10 0.09 0.09
SYNDOS100K 0.05 0.09 0.10 0.09 0.09
SYNDOS300K 0.06 0.11 0.11 0.09 0.10

SYNDO1M 0.06 0.11 0.11 0.11 0.13
SYNDOS2M 0.06 0.12 0.13 0.14 0.14

Figure 2. Training time (y-axis) vs. Dataset dimension (x-axis) for RF.

Electronics 2020, 9, 444 9 of 13
Electronics 2020, 9, x FOR PEER REVIEW 9 of 13

Figure 3. Training time (y-axis) vs. Number of instances (x-axis) for RF.

3.6. Hybrid Architecture

Our purpose is to create a hybrid architecture that realizes the training of machine learning
models for protecting against DDOS attacks on the cloud and the application of the obtained models
directly on the IOT devices.

From the previous analysis the Random Forest results to be the best performer, reporting an
accuracy rate of 1. It is worth to be noted that the resulting RF model (see Appendix) is composed of
a chain of IF-THEN-ELSE instructions. This chain can be easily implemented using any high- or
low-level programming language, resulting in a very high-performance run-time code, thanks to
simplicity of instructions. In particular, this code could be easily implemented on any IOT device
with very limited CPU and memory resources.

4. Discussion

In this work we have applied some general-purpose supervised machine learning algorithms
included in the MLlib library of Apache Spark on the problem of identifying a SYN-FLOOD DDOS
attack for IOT devices (Web cams). For the experiments we used 5 different datasets extracted from a
public dataset. The datasets have a cardinality from 10,000 up to 2 Million of elements. A cloud
environment, Databricks, has been used for training the models.

The analysis of results shows that all the algorithms of MLLib achieved a very high level of
accuracy (up to 1) with both a very short training time (23.22 seconds for Decision Tree on dataset
SYNDOS2M) and a minimum application time (less than of 0.14 seconds for all the algorithms). The
best performing algorithm was Random Forest, which achieved an accuracy of 1 in all the
experiments, a training time of 215.82 seconds with the SYNDOS2M dataset and an application time
of 0.13 seconds.

These results appear consistent and improve on the results in the literature. Othman et al. in
[48] tested four algorithms of Apache Spark MLlib, Support Vector Machine (SVM), Naïve Bayes,
Decision Tree and Random Forest, on UNSW-NB15 dataset. Random Forest resulted the best
performer with an accuracy of 97.5%.

A very similar result was archived by Belouch et al. in [49]. They evaluated the performance of
four well-known classification algorithms SVM, Naïve Bayes, Decision Tree and Random Forest
using Apache Spark using UNSW-NB15 dataset for network intrusion detection. The paper shows
an important advantage for Random Forest classifier.

Gupta et al. [26] implemented a Spark-based intrusion detection framework with two feature
selection algorithms: correlation-based feature selection and Chi-squared feature selection, based on

Figure 3. Training time (y-axis) vs. Number of instances (x-axis) for RF.

3.6. Hybrid Architecture

Our purpose is to create a hybrid architecture that realizes the training of machine learning models
for protecting against DDOS attacks on the cloud and the application of the obtained models directly
on the IOT devices.

From the previous analysis the Random Forest results to be the best performer, reporting an
accuracy rate of 1. It is worth to be noted that the resulting RF model (see Appendix A) is composed
of a chain of IF-THEN-ELSE instructions. This chain can be easily implemented using any high- or
low-level programming language, resulting in a very high-performance run-time code, thanks to
simplicity of instructions. In particular, this code could be easily implemented on any IOT device with
very limited CPU and memory resources.

4. Discussion

In this work we have applied some general-purpose supervised machine learning algorithms
included in the MLlib library of Apache Spark on the problem of identifying a SYN-FLOOD DDOS
attack for IOT devices (Web cams). For the experiments we used 5 different datasets extracted from
a public dataset. The datasets have a cardinality from 10,000 up to 2 Million of elements. A cloud
environment, Databricks, has been used for training the models.

The analysis of results shows that all the algorithms of MLLib achieved a very high level of
accuracy (up to 1) with both a very short training time (23.22 seconds for Decision Tree on dataset
SYNDOS2M) and a minimum application time (less than of 0.14 seconds for all the algorithms).
The best performing algorithm was Random Forest, which achieved an accuracy of 1 in all the
experiments, a training time of 215.82 seconds with the SYNDOS2M dataset and an application time of
0.13 seconds.

These results appear consistent and improve on the results in the literature. Othman et al. in [48]
tested four algorithms of Apache Spark MLlib, Support Vector Machine (SVM), Naïve Bayes, Decision
Tree and Random Forest, on UNSW-NB15 dataset. Random Forest resulted the best performer with an
accuracy of 97.5%.

A very similar result was archived by Belouch et al. in [49]. They evaluated the performance
of four well-known classification algorithms SVM, Naïve Bayes, Decision Tree and Random Forest
using Apache Spark using UNSW-NB15 dataset for network intrusion detection. The paper shows an
important advantage for Random Forest classifier.

Gupta et al. [26] implemented a Spark-based intrusion detection framework with two feature
selection algorithms: correlation-based feature selection and Chi-squared feature selection, based

Electronics 2020, 9, 444 10 of 13

on Spark’s batch processing features. They used five Machine Learning algorithms, Logistic
Regression, SVM, Naïve Bayes, Random Forest and GB Tree, on NSL-KDD and DARPA 1999 dataset.
The best performing algorithm results Random Forest, meanwhile the fastest in the application phase
Naïve Bayes.

Furthermore, Random Forest and Decision Tree generate explicit models consisting of a chain of
simple IF-THEN-ELSE statements. These conditions can be easily implemented on IoT devices, even if
they have limited memory and CPU resources.

The short training times in a cloud environment and the possibility of applying the inferred rules
directly on the IoT device thanks to a simple and fast code implementation, leads us to propose a
novel approach to SYN-DOS attacks mitigation, creating an architecture that includes training and
retraining of machine learning models on the Cloud and the application of the resulting models for
protecting against DDOS attacks directly on the IOT devices, leveraging the simple implementation of
the Random Forest algorithm on low resources IOT devices.

This kind of approach seems to be supported by a recent report [50] evidencing that the major
cloud service vendors have IoT services, that exchange protocols are consolidated and that attention to
security is increased.

We currently plan to define a Cloud-based hybrid architecture in a more general context, extending
the experiments to other types of attacks, and this will be the subject of future work.

Author Contributions: Conceptualization, V.M. and S.R.; methodology, V.M. and S.R.; software, V.M.; validation,
S.R.; resources, V.M.; data curation, V.M.; writing—original draft preparation, V.M.; writing—review and editing,
S.R.; visualization, V.M.; supervision, S.R.; project administration, S.R.; funding acquisition, S.R. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Università del Sannio—POR CAMPANIA FESR 2014/2020—”Distretti
ad Alta Tecnologia, Aggregazioni e Laboratori Pubblico Privati per il rafforzamento del potenziale scientifico e
tecnologico della Regione Campania”—Distretto Aerospaziale della Campania (DAC)S.C.A.R.L.—in the framework
of the TABASCO project B43D18000220007.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Appendix A

The explicit model resulted by the training of a Random Forest looks like:
Tree 0 (weight 1.0):
If (feature 70 <= 1698312.4645730546)
If (feature 31 <= 740.337133167518)
Predict: 0.0
Else (feature 31 > 740.337133167518)
If (feature 58 <= 68.39295337141556)
Predict: 0.0
Else (feature 58 > 68.39295337141556)
Predict: 1.0
Else (feature 70 > 1698312.4645730546)
Predict: 0.0
Tree 1 (weight 1.0):
If (feature 64 <= -4.608276837544893E-8)
If (feature 75 <= 322414.471725536)
Predict: 1.0
Else (feature 75 > 322414.471725536)
Predict: 0.0
Else (feature 64 > -4.608276837544893E-8)
Predict: 0.0

Electronics 2020, 9, 444 11 of 13

. . .
For brevity only two branches of the tree have been reported.

References

1. Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Bus.
Horizons 2015, 58, 431–440. [CrossRef]

2. Gartner Says the Internet of Things Will Transform the Data Center. Available online:
https://www.gartner.com/en/newsroom/press-releases/2014-05-01-gartner-says-iot-security-requirements-
will-reshape-and-expand-over-half-of-global-enterprise-it-security-programs-by-2020 (accessed on 19
December 2019).

3. Internet of Things (Iot) Connected Devices Installed Base Worldwide From 2015 to 2025 (In Billions). Available
online: https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/ (accessed
on 19 December 2019).

4. Liu, G.; Jiang, D. 5G: Vision and Requirements for Mobile Communication System towards Year 2020. Chin.
J. Eng. 2016, 2016, 5974586. [CrossRef]

5. HP Study Reveals 70 Percent of Internet of Things Devices Vulnerable to Attack. Available online: http:
//www8.hp.com/us/en/hp-news/press-release.html?id=1744676#.VOTykPnF-ok (accessed on 10 November
2019).

6. Radanliev, P.; De Roure, C.; Cannady, S.; Montalvo, R.M.; Nicolescu, R.; Huth, M. Economic impact of
IoT cyber risk-analysing past and present to predict the future developments in IoT risk analysis and IoT
cyber insurance. In Living in the Internet of Things: Cybersecurity of the IoT; Institution of Engineering and
Technology: London, UK, 2018. [CrossRef]

7. Irdeto Global Connected Industries Cybersecurity Survey-Full Report. Available online: https://go.irdeto.
com/thank-you-download-connected-industries-survey-report/ (accessed on 10 November 2019).

8. Gartner Says Worldwide IoT Security Spending Will Reach $1.5 Billion in 2018. Available
online: https://www.gartner.com/en/newsroom/press-releases/2018-03-21-gartner-says-worldwide-iot-
security-spending-will-reach-1-point-5-billion-in-2018 (accessed on 13 September 2019).

9. Cisco Cybersecurity Reports. 2018. Available online: https://www.cisco.com/c/en/us/products/security/

security-reports.html (accessed on 24 August 2019).
10. Defenses Against TCP SYN Flooding Attacks-The Internet Protocol Journal-Volume 9, Number 4. Available

online: https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-34/

syn-flooding-attacks.html (accessed on 24 August 2019).
11. Ngo, D.-M.; Pham-Quoc, C.; Thinh, T.N. An Efficient High-Throughput and Low-Latency SYN Flood

Defender for High-Speed Networks. Secur. Commun. Networks 2018, 2018, 9562801. [CrossRef]
12. García-Teodoro, P.; Diaz-Verdejo, J.; Maciá-Fernández, G.; Vázquez, E. Anomaly-based network intrusion

detection: Techniques, systems and challenges. Comput. Secur. 2009, 28, 18–28. [CrossRef]
13. Harjinder, K.; Gurpreet, S.; Jaspreet, M. A review of machine learning based anomaly detection techniques.

arXiv 2013, arXiv:1307.7286.
14. Buczak, A.L.; Guven, E. A Survey of Data Mining and Machine Learning Methods for Cyber Security

Intrusion Detection. IEEE Commun. Surv. Tutor. 2015, 18, 1153–1176. [CrossRef]
15. Xiao, L.; Wan, X.; Lu, X.; Zhang, Y.; Wu, D. IoT Security Techniques Based on Machine Learning: How Do

IoT Devices Use AI to Enhance Security? IEEE Signal Process. Mag. 2018, 35, 41–49. [CrossRef]
16. Machaka, P.; Nelwamondo, F. Data mining techniques for distributed denial of service attacks detection in

the internet of things: A research survey. In Securing the Internet of Things: Concepts, Methodologies, Tools, and
Applications; IGI Global: Hershey, PA, USA, 2020; pp. 561–608.

17. Nooribakhsh, M.; MollaMotalebi, M. A review on statistical approaches for anomaly detection in DDoS
attacks. Inf. Secur. J. 2020, 29, 118–133. [CrossRef]

18. D’Angelo, G.; Palmieri, F.; Ficco, M.; Rampone, S. An uncertainty-managing batch relevance-based approach
to network anomaly detection. Appl. Soft Comput. 2015, 36, 408–418. [CrossRef]

19. Rampone, S.; Russo, C. A fuzzified BRAIN algorithm for learning DNF from incomplete data. Electron. J.
Appl. Stat. Anal. (EJASA) 2012, 5, 256–270.

http://dx.doi.org/10.1016/j.bushor.2015.03.008
https://www.gartner.com/en/newsroom/press-releases/2014-05-01-gartner-says-iot-security-requirements-will-reshape-and-expand-over-half-of-global-enterprise-it-security-programs-by-2020
https://www.gartner.com/en/newsroom/press-releases/2014-05-01-gartner-says-iot-security-requirements-will-reshape-and-expand-over-half-of-global-enterprise-it-security-programs-by-2020
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
http://dx.doi.org/10.1155/2016/5974586
http://www8.hp.com/us/en/hp-news/press-release.html?id=1744676#.VOTykPnF-ok
http://www8.hp.com/us/en/hp-news/press-release.html?id=1744676#.VOTykPnF-ok
http://dx.doi.org/10.1049/cp.2018.0003
https://go.irdeto.com/thank-you-download-connected-industries-survey-report/
https://go.irdeto.com/thank-you-download-connected-industries-survey-report/
https://www.gartner.com/en/newsroom/press-releases/2018-03-21-gartner-says-worldwide-iot-security-spending-will-reach-1-point-5-billion-in-2018
https://www.gartner.com/en/newsroom/press-releases/2018-03-21-gartner-says-worldwide-iot-security-spending-will-reach-1-point-5-billion-in-2018
https://www.cisco.com/c/en/us/products/security/security-reports.html
https://www.cisco.com/c/en/us/products/security/security-reports.html
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-34/syn-flooding-attacks.html
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-34/syn-flooding-attacks.html
http://dx.doi.org/10.1155/2018/9562801
http://dx.doi.org/10.1016/j.cose.2008.08.003
http://dx.doi.org/10.1109/COMST.2015.2494502
http://dx.doi.org/10.1109/MSP.2018.2825478
http://dx.doi.org/10.1080/19393555.2020.1717019
http://dx.doi.org/10.1016/j.asoc.2015.07.029

Electronics 2020, 9, 444 12 of 13

20. Hasan, M.; Islam, M.M.; Zarif, M.I.I.; Hashem, M.M.A. Attack and anomaly detection in IoT sensors in IoT
sites using machine learning approaches. Internet Things 2019, 7. [CrossRef]

21. L’Heureux, A.; Grolinger, K.; Elyamany, H.F.; Capretz, M.A.M. Machine learning With Big Data: Challenges
and approaches. IEEE Access 2017, 5, 7776–7797. [CrossRef]

22. Apache Spark Home Page. Available online: http://spark.apache.org/ (accessed on 13 December 2019).
23. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Ghodsi, A. Apache spark: A unified

engine for big data processing. Commun. ACM 2016, 59, 56–65. [CrossRef]
24. Chang, T.Y.; Hsieh, C.J. Detection and Analysis of Distributed Denial-of-service in Internet of

Things—Employing Artificial Neural Network and Apache Spark Platform. Sens. Mater. 2018, 30,
857–867.

25. Pallaprolu, S.C.; Sankineni, R.; Thevar, M.; Karabatis, G.; Wang, J. Zero-day attack identification in streaming
data using semantics and Spark. In Proceedings of the 2017 IEEE International Congress on Big Data (BigData
Congress), Honolulu, HI, USA, 25–30 June 2017; pp. 121–128.

26. Gupta, G.P.; Kulariya, M. A Framework for Fast and Efficient Cyber Security Network Intrusion Detection
Using Apache Spark. Procedia Comput. Sci. 2016, 93, 824–831. [CrossRef]

27. Hafsa, M.; Jemili, F. Comparative Study between Big Data Analysis Techniques in Intrusion Detection. Big
Data Cogn. Comput. 2018, 3, 1. [CrossRef]

28. Manzoor, M.A.; Morgan, Y. Real-time support vector machine based network intrusion detection system
using Apache Storm. In Proceedings of the 2016 IEEE 7th Annual Information Technology, Electronics and
Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 13–15 October 2016; pp. 1–5.

29. Abusitta, A.; Bellaiche, M.; Dagenais, M.; Halabi, T. A deep learning approach for proactive multi-cloud
cooperative intrusion detection system. Futur. Gener. Comput. Syst. 2019, 98, 308–318. [CrossRef]

30. Mirsky, Y.; Doitshman, T.; Elovici, Y.; Shabtai, A. Kitsune: An Ensemble of Autoencoders for Online Network
Intrusion Detection. arXiv 2018, arXiv:1802.09089.

31. What is a SYN Flood Attack. Available online: https://www.imperva.com/learn/application-security/syn-
flood/ (accessed on 24 August 2019).

32. Karau, H.; Warren, R. High Performance Spark: Best Practices for Scaling and Optimizing Apache Spark, 1st ed.;
O’Reilly Media, Inc.: Sebastopol, CA, USA, 2017; pp. 10–19.

33. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006.
34. Safavian, S.; Landgrebe, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern.

1991, 21, 660–674. [CrossRef]
35. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
36. Scholkopf, B.; Smola, A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and

Beyond; MIT Press: Cambridge, MA, USA, 2001.
37. Friedman, H.J. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]
38. Chambers, B.; Zaharia, M. Spark: The Definitive Guide: Big Data Processing Made Simple; O’Reilly Media, Inc.:

New York, NY, USA, 2018.
39. Apache Spark, Classification and Regression. Available online: https://spark.apache.org/docs/latest/ml-

classification-regression.html (accessed on 22 February 2019).
40. Apache Spark, Decision Tree. Available online: https://spark.apache.org/docs/latest/mllib-decision-tree.html

(accessed on 22 February 2019).
41. Apache Spark, Ensembles-RDD-based API. Available online: https://spark.apache.org/docs/latest/mllib-

ensembles.html (accessed on 22 February 2019).
42. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction;

Springer: Berlin/Heidelberg, Germany, 2009; pp. 417–421.
43. Apache Spark, MLlib-Linear Methods. Available online: https://spark.apache.org/docs/1.0.0/mllib-linear-

methods.html (accessed on 22 February 2019).
44. Databricks Home Page. Available online: https://databricks.com/ (accessed on 18 December 2019).
45. Yahalom, R.; Steren, A.; Nameri, Y.; Roytman, M. Small versions of the extracted features datasets for 9

attacks on IP camera and IoT networks generated by Mirskey et al. (2018). Mendeley Data v1 2018. [CrossRef]
46. Mitchell, T.M. Machine Learning, 1st ed.; McGraw-Hill, Inc.: New York, NY, USA, 1997.
47. Apache Spark, ML Tuning: Model Selection and Hyperparameter Tuning. Available online: https:

//spark.apache.org/docs/latest/ml-tuning.html (accessed on 22 February 2019).

http://dx.doi.org/10.1016/j.iot.2019.100059
http://dx.doi.org/10.1109/ACCESS.2017.2696365
http://spark.apache.org/
http://dx.doi.org/10.1145/2934664
http://dx.doi.org/10.1016/j.procs.2016.07.238
http://dx.doi.org/10.3390/bdcc3010001
http://dx.doi.org/10.1016/j.future.2019.03.043
https://www.imperva.com/learn/application-security/syn-flood/
https://www.imperva.com/learn/application-security/syn-flood/
http://dx.doi.org/10.1109/21.97458
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/S0167-9473(01)00065-2
https://spark.apache.org/docs/latest/ml-classification-regression.html
https://spark.apache.org/docs/latest/ml-classification-regression.html
https://spark.apache.org/docs/latest/mllib-decision-tree.html
https://spark.apache.org/docs/latest/mllib-ensembles.html
https://spark.apache.org/docs/latest/mllib-ensembles.html
https://spark.apache.org/docs/1.0.0/mllib-linear-methods.html
https://spark.apache.org/docs/1.0.0/mllib-linear-methods.html
https://databricks.com/
http://dx.doi.org/10.17632/zvsk3k9cf2.1
https://spark.apache.org/docs/latest/ml-tuning.html
https://spark.apache.org/docs/latest/ml-tuning.html

Electronics 2020, 9, 444 13 of 13

48. Othman, S.M.; Ba-Alwi, F.M.; Alsohybe, N.T.; Al-Hashida, A.Y. Intrusion detection model using machine
learning algorithm on Big Data environment. J. Big Data 2018, 5, 34. [CrossRef]

49. Belouch, M.; El Hadaj, S.; Idhammad, M. Performance evaluation of intrusion detection based on machine
learning using Apache Spark. Procedia Comput. Sci. 2018, 127, 1–6. [CrossRef]

50. Key Trends from the Iot Developer Survey. 2018. Available online: https://blog.benjamin-cabe.com/2018/04/

17/key-trends-iot-developer-survey-2018 (accessed on 20 February 2019).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/s40537-018-0145-4
http://dx.doi.org/10.1016/j.procs.2018.01.091
https://blog.benjamin-cabe.com/2018/04/17/key-trends-iot-developer-survey-2018
https://blog.benjamin-cabe.com/2018/04/17/key-trends-iot-developer-survey-2018
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Brief Description of a SYN-DOS Attack
	Attack Data
	Apache Spark
	Machine learning algorithms

	Experiments and Results
	Execution Environment
	Datasets
	Evaluation Parameters
	Classification Performance Evaluation
	Results
	Hybrid Architecture

	Discussion
	
	References

