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Abstract: Sickle cell anemia, which is also called sickle cell disease (SCD), is a hematological disorder
that causes occlusion in blood vessels, leading to hurtful episodes and even death. The key function
of red blood cells (erythrocytes) is to supply all the parts of the human body with oxygen. Red blood
cells (RBCs) form a crescent or sickle shape when sickle cell anemia affects them. This abnormal
shape makes it difficult for sickle cells to move through the bloodstream, hence decreasing the oxygen
flow. The precise classification of RBCs is the first step toward accurate diagnosis, which aids in
evaluating the danger level of sickle cell anemia. The manual classification methods of erythrocytes
require immense time, and it is possible that errors may be made throughout the classification stage.
Traditional computer-aided techniques, which have been employed for erythrocyte classification, are
based on handcrafted features techniques, and their performance relies on the selected features. They
also are very sensitive to different sizes, colors, and complex shapes. However, microscopy images
of erythrocytes are very complex in shape with different sizes. To this end, this research proposes
lightweight deep learning models that classify the erythrocytes into three classes: circular (normal),
elongated (sickle cells), and other blood content. These models are different in the number of layers
and learnable filters. The available datasets of red blood cells with sickle cell disease are very small
for training deep learning models. Therefore, addressing the lack of training data is the main aim
of this paper. To tackle this issue and optimize the performance, the transfer learning technique is
utilized. Transfer learning does not significantly affect performance on medical image tasks when
the source domain is completely different from the target domain. In some cases, it can degrade the
performance. Hence, we have applied the same domain transfer learning, unlike other methods
that used the ImageNet dataset for transfer learning. To minimize the overfitting effect, we have
utilized several data augmentation techniques. Our model obtained state-of-the-art performance and
outperformed the latest methods by achieving an accuracy of 99.54% with our model and 99.98%
with our model plus a multiclass SVM classifier on the erythrocytesIDB dataset and 98.87% on the
collected dataset.
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1. Introduction

The blood molecule comprises various types of cells, of which red blood calls (RBCs) form a
fundamental part. Meanwhile, anemia is a condition where there is a lack of healthy red blood cells to
carry adequate oxygen in the blood, resulting in weariness [1]. Anemia is mainly categorized as acute or
chronic. More specifically, the symptoms suddenly rise in acute anemia, while the symptoms gradually
grow in chronic anemia. Different reasons cause anemia such as the production of abnormally shaped
RBCs, gain in water weight throughout pregnancy, reduction in erythropoietin generation, inadequate
intake of iron content, and blood loss throughout menstruation. In addition, a disorder produced due
to the existence of RBCs with sickle shape is defined as drepanocytosis or sickle cell anemia (SCA).
These types of cells are generated due to the transformation in the hemoglobin gene. If both parents
have two abnormal genes, parents pass on genes to their child, and then the child will get the disease
of SCA; hence, SCA is a hereditary disease. The variation in RBCs’ shape is the main responsibility of
hemoglobin S. This irregular shape variation reduces the oxygen delivery and, in turn, these cells will
be stuck in the blood vessels. In addition, these cells tend to break into pieces [2,3]. Finally, based on the
published data and statistics, Italy, Greece, Turkey, India, and South Africa are countries suffering the
most from SCA [4]. In addition, there are around 100,000 Americans are suffering from it. Furthermore,
it is the reason behind an extreme reduction in the rates of mortality among children who get SCA.

In recent years, several techniques for diagnosing SCA have been used. The manual technique
for examining the blood smear has heavily relied on a pathologist’s skills. It is a comprehensive and
tiresome task. Furthermore, the excessive changeability of the edge, location, shape, and size makes the
manual technique too complicated. On the other hand, the most commercially used tool for obtaining
the blood cell count is called the hemocytometer. Since the device is expensive, it is not available in
most hospitals. A computerized system helps the pathologists and physicians to recognize the correct
type of anemia [5]. Several image processing and machine learning techniques have been utilized to
classify, count, and segment sickle cell anemia in erythrocytes [6]. Although these techniques have
shown good performance, they are sensitive to the different sizes, colors, and shapes of cells. Moreover,
the good performance of these techniques relies on chosen features. These techniques take many steps
(pre-processing, feature extraction, features selection, and classification) to implement the classification
task. In recent years, deep learning has overcome these barriers and showed impressive performance
in various tasks [7–9]. Deep learning has the ability to automatically extract features and implement
the classification in one shot [10]. In this paper, we propose three deep learning models to classify
erythrocytes in three classes, namely: circular (normal), elongated (sickle cells), and other blood content.
One of the major issues of adopting deep learning models in red blood cell classification tasks is the
lack of training data due to difficulty in collecting erythrocyte data and labeling. We have addressed
this issue by offering different solutions including same domain transfer learning, data augmentation,
and lightweight models. The proposed models accurately and effectively recognize the three types of
erythrocytes which assist in evaluating the danger level of sickle cell anemia.

1.1. Challenges

The precise classification of sickle cell anemia in erythrocytes is a hard task in automatic medical
diagnosis due to many challenges such as:

• Overlapping cells
• Lack of training data
• Low contrast between cells and background
• Heterogeneous and complex shapes and sizes of cells
• Required effective deep learning models for classification
• Various staining processes.
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1.2. Contributions

The main contributions of this paper are listed below:

• We have designed three shallow convolutional neural network models to classify erythrocytes
into three classes (circular [normal], elongated [sickle cells], and others).

• We have empirically applied the same domain transfer learning technique to address the lack of
training data.

• We have trained proposed models with four different scenarios to explore the best training situation.
• Our results outperformed the results of the latest methods by achieving an accuracy of 99.54% on

the erythrocytesIDB dataset and 98.87% on the collected dataset.
• We have trained a multiclass SVM classifier with extracted features by our model. It obtained an

accuracy of 99.98% on the erythrocytesIDB dataset.
• We have introduced a concise review of the state-of-the-art methods in SCA classification

and detection.

2. Literature Review

Several techniques for diagnosing SCA have been released, which can be categorized as image
processing and machine learning methods. Patil et al. [11] introduced a technique for identifying and
counting the RBCs. They used a threshold of global Otsu with a threshold value of 140 for converting
the image to binary. Then, the labeling algorithm is employed for counting the cells. Alomari et al.
utilized the Circular Hough Transform (CHT) algorithm with multi-iteration [12]. Bhagvathi and
Thomas performed the red component extraction from the RGB image, while the FIS editor with rules
is used for circulatory detecting [13]. Note that the RBCs count is the same as the number of circles.
Furthermore, Hough transform is employed for separating the white blood cells (WBCs) away from
the RBCs. Maitra and Gupta [14] set up a counter for counting the cells. To highlight the RBCs, the
green component was extracted from the RGB image by Thejashwini and Padma [15]. Their cell count
process was achieved by using CHT. Mazalan et al. [16] performed image cropping for obtaining
small image partitions to determine the maximum and minimum radius. The RBCs count process was
accomplished by using CHT. CHT used the computed radius values, which acted as input values to it.
Tulsam et al. [17] applied the extraction of the second component of YCbCr format for highlighting
the presence of RBCs in the blood smear. In addition, they set up a counter for counting the RBCs,
while the watershed transformation technique is employed for separating the overlapped cells. They
applied some morphological operations as well. Sreekumar and Bhattacharya [18] have utilized CHT
for calculating the number of cells. In their approach, the WBCs have a more circular shape than that
of the RBCs, as they assumed.

A distance tool is utilized for determining the radius range required by the CHT algorithm. In
contrast, the mean radius value is calculated by Chintawar et al. [19] for detecting the sickle cells. Their
system diagnosed 12 types of anemia disease. The proportion of each type is counted using a counter.
Patil and Khot [20] computed the form factor for detecting the existence of various types of RBCs such
as dacrocytes and elliptocytes. The classification method is based on a set of specific range values of
the form factor. On the other hand, the fractal dimension approach is employed for identifying the
sickle cells [21]. The radius mean, lowest, and highest values are calculated for analyzing the sickle cell
shape where the standard cell size is employed as a scale. The sickle cells are identified based on the
ratio (major/minor) axis length. Rexcy et al. [22] used the component Labeling algorithm for counting
the cells, whereas Rakshita and Bhowmik [23] introduced an approach utilizing edge detection, as
well as morphological operations for identifying the sickle cells. The edge detection is performed
using a Sobel operator. The form factor was calculated as well. The abnormal cells have a form
factor of less than 0.5, and those from 0.5 to 1 were considered normal cells. Revathi and Jeevitha [24]
presented another approach for diagnosing the sickle cells. First, the gradient watershed transform is
used for determining regional minima in real images. Second, the resulting gradient map is exposed
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for detecting the nuclei. Third, the shape descriptors were employed for retaining the valid nuclei.
Besides, other features were computed such as the mean square error, peak signal-to-noise ratio, and
root mean square error. This approach achieved the well-behaved performance of ellipse adjustment
utilizing natural images. Bala and Doegar [25] proposed watershed segmentation for detecting the
sickle cells. The form factor was calculated for identifying the abnormal cells, while the contour plot
was employed for highlighting the target and sickle cells. Hidalgo et al. [26] presented a technique for
analyzing the shape of red blood cells smear of sickle cell diseases by utilizing ellipse adjustments and
a new technique for identifying significant points. They also employed a set of constraints that aided in
avoiding the use of image preprocessing steps. Parvathy et al. [27] presented watershed segmentation
and Otsu’s segmentation as an approach for detecting the sickle cells. Compactness and form factor
were calculated for differentiating the abnormal cells from the normal ones. Veluchamy et al. [28]
applied artificial neural networks for identifying normal/abnormal cells. Thresholding techniques
and some morphological operations were used for segmenting the image. Next, the features were
extracted using algebraic moment invariants and statistics of the first and second gray level. Lastly,
the extracted features were analyzed for differentiating the normal/abnormal cells. Poomcokrak and
Neatpisarnvani [29] employed neural networks as a technique for identifying the sickle cells. The
individual RBCs were extracted using an edge detection algorithm. Then, the neural network was
utilized for analyzing and classifying the individual cells. Fadhel et al. [30] introduced a watershed
transform and the CHT for detecting the sickle cells. CHT was used for identifying the normal
RBCs, which had a circular shape. While the effectiveness factor was calculated during the watershed
segmentation for differentiating normal/sickle cells, the RBCs count was achieved using a counter.
Sharma et al. [31] presented an approach for diagnosing thalassemia and SCA. The marker-controlled
watershed transform was used for separating the touching erythrocytes. The extracted features
were classified using the K Nearest Neighbor. Rodrigues et al. [32] introduced another approach for
differentiating various types of erythrocytes. First, the image was converted to binary using the global
Otsu’s threshold. Next, feature extraction was performed after applying morphological operations.

Lastly, the features were categorized utilizing some classifiers, hence, selecting the best one. Chen
et al. [33] presented a technique for diagnosing hemolytic anemia. The concavity information was
employed for isolating the overlapped cells, whereas different classifiers were used for classifying
different types of hemolytic anemia. Acharya et al. [34] presented an image processing method to
split up the erythrocytes from other blood components and then classify them into 11 types using
the K-Medoids algorithm. Elsalamony [35] has used the shape signature technique to detect two
types of anemia then classify them using a neural network. Albayrak et al. [36] have implemented
CHT to distinguish between healthy cells and sickle cells. Chy et al. [37] extracted features such as
ratio, entropy, mean, standard deviation, and variance, which were used to train SVM to classify
normal and sickle cells. Chy et al. [38] have employed Extreme Learning Machine (ELM), Support
Vector Machine (SVM), and K Nearest Neighbor (KNN) classifiers to classify normal verse sickle
cells. Recently, Convolutional Neural Networks (CNNs) have been used to classify RBC and diagnose
sickle cell disease [39,40]. These methods achieved accuracies of 86.34% and 87.50% respectively.
These accuracies are still not the goal for the sickle cell disease classification task, since the precise
classification is the first step toward accurate diagnosis.

We have summarized the research problems of the image processing methods that are
mentioned above:

• Not paying attention to WBCs in an image, which could lead to a false diagnosis
• Not automated
• Using a few samples for testing
• Failing to handle the overlapped cells
• Not accurate.
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We have also summarized the research problems of the machine learning methods that are
mentioned above:

• Ignore other blood components, which may lead to the wrong classification
• Binary classification (normal cells versus sickle cells)
• Sensitive to different sizes, colors, and complex shapes
• Require domain-specific expertise on the feature extraction and a limited number of features
• Time-consuming.

Research Gap: The precise classification of RBCs is important to have a perfect cell count. As a
result, it will give a clear image of the danger level of sickle cell anemia. Image processing and machine
learning methods for sickle cell anemia classification tasks fell in several issues as mentioned above.
Therefore, it failed to achieve an accurate classification performance. On the other hand, CNN has been
employed as a sickle cell anemia classification task to overcome the barriers of image processing and
machine learning methods. However, CNN methods achieved a low accuracy of classification due to
small datasets of RBCs being used for training. CNN models require a large amount of data to perform
well. Hence, it is essential to deal with issue regarding the lack of data. This is one of the reasons that
the CNN methods, which worked on the sickle cell anemia classification task dataset, accomplished
low accuracies. In this paper, we address the issue of the lack of training data for CNN models.

3. Methodology

The methodology is composed of five sections: Datasets, Lack of Training Data, the Architecture
of Proposed Models, Training Scenarios, and Feature Extraction Using Proposed Models.

3.1. Datasets

We have utilized three datasets in this paper. Dataset 1, which is a public dataset, is the main
target of this paper. Dataset 2 is only employed for transfer learning purposes. Dataset 3 is a collected
dataset to prove the robustness of the proposed models.

3.1.1. Dataset 1 (Target Dataset)

The erythrocytesIDB dataset has images of peripheral blood smears samples taken from patients
with Sickle Cell Disease in the Special Hematology Department of the General Hospital from Santiago
de Cuba [26]. It has images of three tasks (segmentation, detection, classification), and we work on the
first task, which is the classification (erythrocytesIDB1). The dataset has 196 full-field images with 626
images of individual cells classified as circular (202), elongated (211), or other (213). Each cell has a
size of 80 × 80 pixels. Figure 1 shows the samples of individual cells of the dataset.

3.1.2. Dataset2

This dataset has been utilized in this paper for transfer learning purposes. It has been collected
from three sub-datasets. The first one has 367 images of white blood cells as well as other blood
components [41]. This dataset is utilized to classify four types of white blood cells (neutrophils,
eosinophils, lymphocytes, and monocytes). Each image has a size of 640 × 480 pixels. The second
one has 150 blood images with a size of 400 × 298 from Wadsworth center [42,43]. The third one is
called ALL-IDB2, which consists of 260 images of lymphocytes utilized for the diagnosis of acute
lymphoblastic leukemia. The images are classified into two classes: normal lymphocytes (130 images)
and immature lymphocytes (130 images) [43,44]. Each image has a size of 257 × 257. We have divided
each image into small patches of 80 × 80 pixels to fit within the input size of the proposed models and
the total number of patches is 22,206. Figure 1 shows the samples of individual cells of the dataset.
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3.1.3. Dataset3

We have collected 200 red blood smears samples from different websites [45] and an Internet
search. We have extracted a total of 726 individual patches in the size of 80 × 80 pixels. Extracted
patches have been classified by an expert in the field into three categories: circular cells or normal
erythrocytes (292), elongated cells, which are sickle cell anemia (201) or other cells (233). Figure 1
shows samples of individual cells of the dataset.

3.2. Lack of Training Data Issue

Deep learning is utilized for classifying several types of medical images and showed great
performance [10,46,47]. However, some limitations are frequently encountered when utilizing deep
learning. One of the major limitations is the lack of training data, which is presented in this section
along with solutions.

Deep learning is extremely data-hungry, as it also has representation learning [48]. Deep learning
demands an extensive amount of data to achieve a well-behaved performance model. As the data
increases, an extremely well-behaved performance can be achieved. In most conditions, the available
data are sufficient to get a good performance model, but sometimes, there is a lack of data for directly
using deep learning [49]. In handling this problem, two solutions are suggested in this paper to address
the issue of the lack of training data surrounding the sickle cell classification task. The first solution is
employing a transfer learning technique. Transfer learning is a technique where deep learning models
are trained on a large dataset, and then the models are fine-tuned to train on a small target dataset, as
shown in Figure 2.

Transfer learning is very important due to the limited datasets in the medical and healthcare
domain; otherwise, the convergence of weights will not be possible. It is generally used to exploit the
deep learning power in handling biomedical data [50] since it has its own field, and it is a significant
machine learning trend [51].

Many researchers have utilized pre-trained models (such as AlexNet, GoogleNet, and ResNet),
which trained on an ImageNet dataset that has 1000 classes of nature images such as animals and cars
and then fine-tuned the models for medical tasks [52]. Although transfer learning from the ImageNet
dataset improved the performance in many computer vision and pattern recognition tasks [53,54], the
medical task is a quite different domain, and transfer learning could not improve the performance
significantly [55]. It has been proven that transfer learning does not significantly affect performance
on medical imaging tasks, with lightweight models trained from scratch performing nearly as well
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as standard ImageNet transferred models [55]. The reason behind that is models that trained on
the ImageNet dataset learned features that are completely different from medical image features.
Furthermore, pre-trained models such as GoogleNet and ResNet are very deep, which requires a huge
amount of training data to perform well, even with using transfer learning. However, the available
data of red blood cells is not sufficient to train these models. Another issue is that the patch size of
red blood cells is very small (input size: 80 × 80) to fit within the input size of the pre-trained models
(input size: 224 × 224). Resizing the red blood cell patches leads to deteriorating their quality. As a
result, that will affect the classification performance.
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To solve that, employing transfer learning from the same domain of the target dataset is the
solution that we propose in this research to address the lack of training data of sickle cell disease
classification tasks. This solution could significantly optimize performance. We have collected images
that are similar to the target task images for the purpose of the transfer-learning technique. These
collected images will not directly enlarge the actual images of the target task. Instead, these images can
enhance the learning stage for a well-behaved representation of the initial layers of the model as well
as a well-behaved mapping function and boost the model performance [50–56].

The steps of transfer learning that we implement are:

1. Training our proposed models (explained in the next section) on dataset2, which has images that
are in the same domain of the target dataset.

2. Loading the pre-trained models. The first layers learned low-level features such as colors and
edges, while last layers learned task-specific features.

3. Replacing the final layers with new layers to learn features specific to the target task.
4. Training the fine-tuned models with the target dataset, which is Dataset 1.
5. Predicting and evaluating the model accuracy.
6. Deploying the results.

The second solution is performing data augmentation [57]. Data augmentation is a process to
increase the amount of training data to enhance classification performance. The augmentation process
is achieved by applying several transformations. In this paper, we have applied rotation with seven
different angles (45, 90, 125, 180, 225, 280, and 325) as shown in Figure 3. We also applied two flipping
techniques (horizontal, vertical) and two different brightness degrees. The original images have been
duplicated 11 times. Data augmentation and transfer learning aid to prevent the overfitting issue, since
they both offer a large amount of data. The overfitting issue will occur if the CNN model has more
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learning capacity than the dataset has information. However, our proposed models are shallow, which
aids in avoiding the overfitting issue.Electronics 2020, 9, 427 8 of 20 
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3.3. The Architecture of Proposed Models

The latest designs of network architecture [58–60] show that the network classification performance
is incredibly enhanced by redesigning the CNN structure in a way that facilitates the deep feature
learning. Stacking more layers to a traditional Convolutional Neural Network such as VGG [61] and
AlexNet [62] to make it very deep does not lead to better performance; instead, it leads to worse
performance due to the gradient vanishing issue [63]. Hence, it is not always a solution by just
increasing the depth by itself. Furthermore, very deep networks require a huge data amount to train
well; therefore, we have designed lightweight models with multiple convolutions working in parallel.
Redesigning the CNN structure in a way where several branches are fused (either concatenation or
summation) is very beneficial for gradient propagation, as the error can be backpropagated through
multiple paths. It also aids in combining different levels of features at each step of the network [60].

In this paper, we propose three lightweight models that are different regarding the number of
layers and filters. The purpose of designing three models is to obtain the optimizable one for the
erythrocyte classification. These models aggregated two modes of convolution neural networks which
are traditional and parallel convolutional layers. The traditional convolutional layers are employed at
the beginning of the models to reduce the size of the input image. After the traditional convolutional
layers, parallel convolutional layers have been employed with different filter sizes to have different
feature representations.

3.3.1. Model 1 Architecture

This model consists of 40 layers in total with nine convolutional layers. Each convolutional layer
in the model is followed by batch normalization and Rectified Linear Unit (ReLU) to speed up the
training process and to prevent vanishing gradient problem. At the beginning of the model, three
traditional convolutional layers are used with filter sizes (1 × 1, 3 × 3, 5 × 5) to reduce the size of
the input image. The output of traditional layers feeds to the first block of parallel convolutional
layers. This block consists of three convolutional layers with filter sizes (1 × 1, 3 × 3, 5 × 5). These
parallel convolutional layers are working together; then, the outputs concatenate in the concatenation
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layer, which is followed by the batch normalization layer. The output of the first block passes to the
second block of parallel convolutional layers, which is the same structure of the first block. After
that, the output of the second concatenation layer passes to the average pooling layer to reduce the
dimensionality. Three fully connected layers have been employed, and two dropout layers are between
these fully connected layers to avoid overfitting [64]. Lastly, the softmax function is utilized to yield the
classification output. All the details of the architecture of Model 1 are explained in Figure 4 (model 1)
and Table 1.Electronics 2020, 9, 427 10 of 20 
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3.3.2. Model 2 Architecture

This model consists of 35 layers in total with eight convolutional layers. As explained in Figure 4
(model 2) and Table 2, Model 2 has almost the same structure of Model 1 except that they are different
in the following points:

• Different filters number (the depth)
• Model 2 has two traditional convolutions instead of the three in Model 1
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• Model 2 has two fully connected layers and one dropout layer
• The average pooling layer has a filter size of 7 × 7 in Model 2, while in Model 1, the average

pooling has a filter size of 4 × 4.

Table 1. Proposed Model 1 architecture, in which CL represents the Convolutional layer, PCL represents
the Parallel Convolutional layer, BN represents the Batch Normalization layer, ReLU represents the
Rectified Linear Unit, the drop represents the Dropout layer, and FC represents a fully connected layer.

Name of Layer Filter Size (FS) and Stride (S) Activations

Input layer - 80 × 80 × 3
CL 1, BN 1, ReLU 1 FS = 1 × 1, S = 1 80 × 80 × 64
CL 2, BN 2, ReLU 2 FS = 3 × 3, S = 2 40 × 40 × 64
CL 3, BN 3, ReLU 3 FS = 5 × 5, S = 2 20 × 20 × 64

PCL 1, BN 4, ReLU 4 FS = 1 × 1, S = 1 20 × 20 × 128
PCL 2, BN 5, ReLU 5 FS = 3 × 3, S = 1 20 × 20 × 128
PCL 3, BN 6, ReLU 6 FS = 5 × 5, S = 1 20 × 20 × 128

Concatenation Layer 1 Three inputs 20 × 20 × 384
CBN 1 Batch Normalization 20 × 20 × 384

PCL 4, BN 7, ReLU 7 FS = 1 × 1, S = 2 10 × 10 × 256
PCL 5, BN 8, ReLU 8 FS = 3 × 3, S = 2 10 × 10 × 256
PCL 6, BN 9, ReLU 9 FS = 5 × 5, S = 2 10 × 10 × 256

Concatenation Layer 2 Three inputs 10 × 10 × 768
CBN 2 Batch Normalization 10 × 10 × 768

Average Pooling Size = 4 × 4, S = 2 4 × 4 × 768
FC1 600 1 × 1 × 600

Drop 1 Learning rate: 0.5 1 × 1 × 600
FC 2 150 1 × 1 × 150

Drop 2 Learning rate: 0.5 1 × 1 × 150
FC 3 3 1 × 1 × 3

Softmax and Classoutput 3 classes: circular, elongated, other -

Table 2. Proposed Model 2 architecture, in which CL represents the Convolutional layer, PCL represents
the Parallel Convolutional layer, BN represents the Batch Normalization layer, ReLU represents the
Rectified Linear Unit, the drop represents Dropout layer, and FC represents a fully connected layer.

Name of Layer Filter Size (FS) and Stride (S) Activations

Input layer - 80 × 80 × 3
CL 1, BN 1, ReLU 1 FS = 3 × 3, S = 1 80 × 80 × 16
CL 2, BN 2, ReLU 2 FS = 5 × 5, S = 2 40 × 40 × 16

PCL 1, BN 3, ReLU 3 FS = 1 × 1, S = 1 40 × 40 × 32
PCL 2, BN 4, ReLU 4 FS = 3 × 3, S = 1 40 × 40 × 32
PCL 3, BN 5, ReLU 5 FS = 5 × 5, S = 1 40 × 40 × 32

Concatenation Layer 1 Three inputs 40 × 40 × 96
CBN 1 Batch Normalization 40 × 40 × 96

PCL 4, BN 6, ReLU 6 FS = 1 × 1, S = 2 20 × 20 × 64
PCL 5, BN 7, ReLU 7 FS = 3 × 3, S = 2 20 × 20 × 64
PCL 6, BN 8, ReLU 8 FS = 5 × 5, S = 2 20 × 20 × 64

Concatenation Layer 2 Three inputs 20 × 20 × 192
CBN 2 Batch Normalization 20 × 20 × 192

Average Pooling Size = 7 × 7, S = 2 7 × 7 × 192
FC 1 90 1 × 1 × 90

Drop 1 learning rate:0.5 1 × 1 × 90
FC 2 3 1 × 1 × 3

Softmax and Classoutput 3 classes: circular, elongated, other -
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3.3.3. Model 3 Architecture

This model consists of 29 layers in total with six convolutional layers, as explained in Figure 4
(Model 3) and Table 3. By comparing Model 2 and model 3, we can find that Model 3 has almost the
same structure as that of Model 2 except that they are different in the following points:

• Different filter number (the depth)
• Model 3 has two parallel convolutions in both blocks instead of three as in Model 2.

Table 3. Proposed Model 3 architecture, in which CL represents the Convolutional layer, PCL represents
the Parallel Convolutional layer, BN represents the Batch Normalization layer, ReLU represents the
Rectified Linear Unit, the drop represents the Dropout layer, and FC represents a fully connected layer.

Name of Layer Filter Size (FS) and Stride (S) Activations

Input layer - 80 × 80 × 3
CL 1, BN 1, ReLU 1 FS = 3 × 3, S = 1 80 × 80 × 16
CL 2, BN 2, ReLU 2 FS = 5 × 5, S = 2 40 × 40 × 16

PCL 1, BN 3, ReLU 3 FS = 1 × 1, S = 1 40 × 40 × 16
PCL 2, BN 4, ReLU 4 FS = 3 × 3, S = 1 40 × 40 × 16

Concatenation Layer 1 Three inputs 40 × 40 × 32
CBN 1 Batch Normalization 40 × 40 × 32

PCL 3, BN 5, ReLU 5 FS = 1 × 1, S = 2 20 × 20 × 32
PCL 4, BN 6, ReLU 6 FS = 3 × 3, S = 2 20 × 20 × 32

Concatenation Layer 2 Three inputs 20 × 20 × 64
CBN 2 Batch Normalization 20 × 20 × 64

Average Pooling Size = 7 × 7, S = 2 7 × 7 × 64
FC 1 60 1 × 1 × 60

Drop 1 Learning rate: 0.5 1 × 1 × 60
FC 2 3 1 × 1 × 3

Softmax and Classoutput 3 classes: circular, elongated, other 1 × 1 × 3

3.4. Training Scenarios

We have trained the three proposed models with several training scenarios to achieve better
performance and deal with the lack of training data. We have utilized all four scenarios (described
below) with Dataset 1 and then all four scenarios with Dataset 3. As mentioned above, Dataset 2 has
been only used for transfer learning purposes to make the proposed models pre-trained models.

1. Scenario 1: Training the models on the original images of the datasets.
2. Scenario 2: Training the models on the original images of the datasets plus augmented images.
3. Scenario 3: First, we trained the models on Dataset 2 plus augmented images of Dataset 2 for

transfer learning purposes. Then, the models were fine-tuned to train on the original images of
the datasets.

4. Scenario 4: We repeated Scenario 3 but added in the augmented images with original images.

The three models with all scenarios have been trained for 80 epochs using Matlab 2019a as software
and Graphics Processing Unit (GPU) as hardware. Some of the learnable filters from Model 2 trained
with Scenario 4 are shown in Figure 5. This figure shows how learning improved from the first layer
and the second layer. It is worth mentioning the training time of our models was short due to the
lightweight architecture of our models and using GPUs.

3.5. Feature Extraction Using Proposed Models

We have utilized the extracted features by the proposed models to train a multiclass SVM classifier.
The main aim of implementing this step is to prove that our models are robust and effective in the
features extraction step. The process steps are:

1. Loading the data that proposed models tested on for the test phase.
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2. Loading the trained proposed models to the workspace.
3. Extracting the learned features and labels from the last fully connected layer, which represents

the last layer before the classifier. The models build a hierarchical representation of input data.
Deeper layers hold higher-level features, which were built utilizing the lower-level features of
earlier layers. Therefore, we extracted the features from the last fully connected layer.

4. Using the extracted features to train a multiclass support vector machine (SVM) classifier. This
classifier has been utilized from the Statistics and Machine Learning Toolbox in MATLAB 2019a.

5. Classifying the test images using the trained SVM.
6. Calculating the accuracy on the test images.
7. Plotting some samples of test images with their predicted labels (Figure 6).
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4. Experimental Results

We have evaluated our model in terms of accuracy, as written in eq1. The accuracy is the ratio
between the true classifications and the total number of images. We have divided the data into 80% for
the training phase and 20% for the testing phase.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

As reported in Table 4, in the case Dataset 1(erythrocytesIDB1) with all four scenarios, Model 2
has achieved the highest accuracies in all first four scenarios by scoring 88.60% in Scenario 1, 93.87%
in Scenario 2, 98.40% in Scenario 3, and 99.54% in Scenario 4. Model 1 has achieved the lowest
accuracies in Scenario 1, Scenario 2, and Scenario 3 by scoring 85.40%, 91.21%, and 97.43%, respectively.
Furthermore, it came in the second position in Scenario 4 by scoring 98.57%. Lastly, Model 3 has
achieved the second-highest results in Scenario 1, Scenario 2, and Scenario 3 by scoring 86.17%, 92.34%,
and 98.06%, respectively, and it scored the lowest accuracy in Scenario 4 by achieving 98.31%.

Table 4. Accuracy results of our scenarios with the proposed models.

Scenarios Model 1 (%) Model 2 (%) Model 3 (%)

Dataset 1
(erythrocytesIDB1)

Scenario 1 85.40 88.60 86.17
Scenario 2 91.21 93.87 92.34
Scenario 3 97.43 98.40 98.06
Scenario 4 98.57 99.54 98.31

Dataset 3

Scenario 1 82.63 83.99 83.50
Scenario 2 90.11 92.01 91.12
Scenario 3 95.65 97.17 96.55
Scenario 4 97.66 98.87 97.61

In the case of Dataset 3 with all four scenarios, Model 2 has also achieved the highest accuracies
in all four scenarios by scoring 83.99% in Scenario 1, 92.01% in Scenario 2, 97.17% in Scenario 3, and
98.87% in Scenario 4. Again, Model 1 has achieved the lowest accuracies in Scenario 1, Scenario 2,
and Scenario 3 by scoring 82.63%, 90.11%, and 95.65%, respectively. It also scored the second-highest
accuracy in Scenario 4 by scoring 97.66%. Lastly, Model 3 has achieved the second-highest results in
Scenario 1, Scenario 2, and Scenario 3 by scoring 83.50%, 91.12%, and 96.55%, respectively, and the
lowest accuracy in Scenario 4 by achieving 97.61%.

From the performance of proposed models on Dataset 1 and Dataset 3, we can conclude the
following points:

• Image augmentation and transfer learning techniques have significantly improved the classification
performance of red blood cells classification. Transfer learning from the same domain offers a
large benefit to performance.

• Due to using transfer learning from white blood images, our models handled the problem of not
paying attention to WBCs in an image, which could lead to a false diagnosis.

• Proposed models are much smaller and shallower than the standard ImageNet models; they
performed effectively on two different datasets and handled different cases of overlapped cells.

• Proposed models consumed less training data than other state-of-the-art CNN models such as
GoogleNet and ResNet due to the shallow structure of models.

• Overall, all models have achieved high accuracies with Scenarios 3 and 4 compared to
prior methods.

• Model 2 has the average number of layers and filters between Model 1 and Model 3, which assisted
the model in having sufficient features to differentiate between classes. Model 1 has the largest
number of layers and filters compared to Model 2 and Model 3, which requires more big training
data; therefore, it achieved the lowest accuracies with Scenarios 1, 2, and 3 of both datasets (1, 3)
where there is less training data. It achieved an accuracy that is better than Model 3 when the
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training set is as big as that in Scenario 4 for both datasets (1, 3). Model 3 has the least number of
layers and filters compared to Model 1 and Model 2, which requires a smaller amount of training
data; therefore, It achieved higher accuracies with Scenarios 1, 2, and 3 of both datasets (1, 3) than
Model 3. While it achieved an accuracy that is less than that of Model 3 when the training set
is big as in Scenario 4 of both datasets (1, 3), it requires more layers and filters to differentiate
between classes.

• Generally, all proposed models are lightweight models that aided in having a very fast training
process besides using GPUs.

• Last but not least, we designed Model 3 first; then, we evaluated its performance. To improve the
performance, we increased the width of the model as in Model 2, and it showed good improvement.
To improve the performance further, we increased the depth of the network as in Model 1, but
that did not improve the performance. Therefore, Model 2 has the best performance.

By employing the multiclass SVM classifier, the results were improved in some places, as reported
in Table 5. Model 2 achieved the highest accuracies compared to Model 1 and Model 3 in four scenarios
and the highest accuracy among the four scenarios is 99.98% with Scenario 4. Generally, the results of
the three models in Scenario 4 are convergent and higher than other scenarios due to a large number
of features that allow SVM to perform effectively. It is obvious that the accuracy of all models with
Scenario 1 improved with SVM, yet it still has the lowest accuracies compared to the results of other
scenarios. The results of the three models in Scenarios 2 and 3 are higher than those of Scenario 1 and
less than those of Scenario 4.

Table 5. Accuracy results of our scenarios with proposed models and SVM classifier on
the erythrocytesIDB1dataset.

Scenarios Model 1 (%) Model 2 (%) Model 3 (%)

Scenario1 87.10 90.80 89.88
Scenario2 92.27 94.87 92.79
Scenario3 97.09 98.10 97.16
Scenario4 99.57 99.98 99.44

As cited in Table 6, Model 2 has outperformed the latest methods. It achieved state-of-the-art
performance in terms of the classification of red blood cells. It is worth mentioning that all the model
results in Scenarios 3 and 4 with Dataset 1 outperformed these methods. It is also worth mentioning
that the testing time of our models was very short due to the lightweight architecture of our models
and using GPUs. From that, we can conclude that our models are efficient. Lastly, some of the methods
in Table 6 used hand-crafted features to train machine learning classifiers such as SVM, Naive Bayes,
and KNN. The performance of these methods is not as good as our models with SVM. This proves
our models extracted excellent features to train SVM. The performance of these classifiers relies on
extracted features.

Table 6. The latest and highest accuracies of previous methods on Dataset 1 (erythrocytesIDB1)
compared to our method.

Method Accuracy (%)

Gual-Arnau et al. 2015 [65] 96.10
Rodrigues et al. 2016 [32] 93.18
Rodrigues et al. 2016 [32] 93.07
Rodrigues et al. 2016 [32] 94.59
de Faria et al. 2018 [66] 92.52
de Faria et al. 2018 [66] 93.67

Our method (Scenario 4, Model 2) 99.54
Our method (Scenario 4, Model2 +SVM) 99.98



Electronics 2020, 9, 427 15 of 18

5. Conclusions

We have proposed three deep learning models to classify three classes of red blood cells
(erythrocytes) which are circular (normal), elongated (sickle cells), and other blood content. Two
modes of convolution neural networks, which are traditional and parallel convolutional layers, have
been utilized to design the proposed models. These models are dissimilar in the number of layers and
learnable filters. We have empirically found the best model among all three models. The issue of the
lack of training data of deep learning models in the red blood cell classification task was addressed
by utilizing two techniques, which in this paper are transfer learning and data augmentation. The
same domain transfer learning was utilized by collecting images from the same domain of the target
dataset and training proposed models to be pre-trained models. Then, these pre-trained models were
fine-tuned for the classification task of sickle cell disease. Two datasets have been used to evaluate our
models. The experiment results proved that using the same domain transfer learning has significantly
improved the performance of the sickle cell disease classification task. It also assisted our models
with outperforming the latest erythrocyte classification methods. Our models have robustly classified
erythrocytes with a high degree of accuracy. Finally, we proved that our models are effective in
extraction features by training a multiclass SVM classifier, which showed excellent results. As future
work, we plan to employ our pre-trained model for a white blood disease classification task.
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