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Abstract: Human activity recognition is a crucial task in several modern applications based on the
Internet of Things (IoT) paradigm, from the design of intelligent video surveillance systems to the
development of elderly robot assistants. Recently, machine learning algorithms have been strongly
investigated to improve the recognition task of human activities. Though, in spite of these research
activities, there are not so many studies focusing on the efficient recognition of complex human
activities, namely transitional activities, and there is no research aimed at evaluating the effects of
noise in data used to train algorithms. In this paper, we bridge this gap by introducing an innovative
activity recognition system based on a neural classifier endowed with memory, able to optimize
the performance of the classification of both transitional and non-transitional human activities.
The system recognizes human activities from unobtrusive IoT devices (such as the accelerometer
and gyroscope) integrated in commonly used smartphones. The main peculiarity provided by the
proposed system is related to the exploitation of a neural network extended with short-term memory
information about the previous activities’ features. The experimental study proves the reliability of
the proposed system in terms of accuracy with respect to state-of-the-art classifiers and the robustness
of the proposed framework with respect to noise in data.
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1. Introduction

Currently, the wide adoption of Internet of Things (IoT) technologies is enabling a transparent
way to gather useful data about human beings’ status in uncontrolled environments and paves the
way towards a plethora of new application domains where embedded sensors, such as accelerometers
and gyroscopes, can be used as indirect and unobtrusive sources of data able to infer new knowledge
about the presence and behaviors of human beings who act in a given living space. In this scenario,
Human Activity Recognition (HAR) is one of the research areas that has profited from this possibility.
Indeed, it aims to develop innovative applications able to identify humans’ activities and behaviors by
analyzing data gathered from sensors and deliver a set of smart services capable of improving humans’
comfort and wellness. Thus, HAR techniques have been applied in many different fields such as
healthcare [1], smart environments, and robotics [2–4]. As an example, by using IoT technologies, it is
possible for a robot assistant to understand the human’s behavior and use this inferred information to
enable appropriate user authentication tasks [5,6]. Moreover, HAR can be useful to support a remote
monitoring between doctors and elderly patients [7].

However, in spite of their wide adoption in different application domains, some of the HAR
approaches tend to discard data associated with so-called transient actions, which correspond to the
transition between two significant activities, or to consider these actions as belonging to a single action
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class labeled as “other”, meaning everything that is a basic and well-defined human activity. Namely,
the “transitional” activities are defined as those transitory movements performed by humans between
a sequence of two specific and well-defined activities (e.g., from standing to sitting or from laying
down to standing up). Different from the above-mentioned approaches, our research strongly focuses
on the identification and classification of human transitional actions that, in our opinion, should not
be considered as noise between two specific human actions, but they must be considered as actions
in themselves, although transitional, able to provide additional and useful knowledge to IoT-based
environments. To this extent, there is a strong emergence of innovative classification algorithms
devoted to enable an efficient recognition of human transitional actions. This paper bridges this gap
by introducing a novel framework for HAR where conventional neural networks are extended with a
memory to enable a successful recognition of transitional activities. The proposed approach can be
considered as fully alternative to previous studies where transitional activities are considered as not
semantically useful in classifying human behavior, and their recognition is performed just to enable a
better classification of non-transitional actions. Vice versa, the main goal of this paper is to provide a
semantic interpretation of transitional actions and to design an efficient algorithm to recognize them
so as to provide additional knowledge to IoT environments where the proposed approach will be
embedded. Precisely, the proposed architecture uses a set of data collected by an accelerometer and a
gyroscope, integrated in a conventional smartphone and input in an Artificial Neural Network (ANN)
together with a set of information related to previously classified human actions (the memory) in order
to allow this classification algorithm to better identify dynamical behaviors as the aforementioned
transitional activities. Moreover, the proposed method, in addition to its capabilities in classifying
human transitional activities, shows a high tolerance to the noise in data. This feature is particularly
useful in IoT environments, where a set of sensors collects data to be transferred to computing devices
by means of not fully reliable wireless connections. As will be shown in the experimental section,
the proposed method yields better performance in the recognition of non-transitional activities than
state-of-the-art methodologies for HAR, such as hierarchical continuous HMM [8], convolutional
neural networks [9,10], SVM [11], and so on. Unfortunately, it is not possible to perform a full
comparison with other classification approaches specifically designed for the recognition of temporal
events (recurrent neural networks, time-delay neural networks, and so on) because, so far, there are no
studies where these techniques have been applied to the recognition of transitional activities.

The remainder of this work is organized as follows: Section 2 provides related works on the
recognition of transitional activities and related approaches. Section 3 overviews the design of the
proposed ANN architecture and reports details about the two step memory approach. Section 4
presents the validation and evaluation activity performed by comparing the proposed solution with
state-of-the-art classifiers. Finally, Section 5 concludes the document with a final discussion about the
achieved results.

2. Related Works

The design of enhanced classifiers for HAR has emerged as a popular research topic in recent
years, mainly thanks to the rise of IoT frameworks capable of collecting a huge amount of data related
to human actions to be analyzed and inferring additional knowledge about the human status so
as to deliver an appropriate set of services aimed at improving human wellness. In this scenario,
the state-of-the-art research strongly focuses on the design of classifiers using temporal information
as input so as to improve the accuracy in the recognition of dynamic human activities. In general,
these approaches are based on a hierarchical/two stage architecture often integrating an ensemble of
classifiers, each one aimed at recognizing a different component of a specific human activity. As an
example, in [12], a two stage classifier, combining a tracking algorithm, time-delay neural networks,
and fuzzy inference systems, was proposed to classify human behaviors from video sequences; in [13],
inherent sequential characteristics of the activities were used within a two stage classification structure
deploying continuous hidden Markov models to discriminate between stationary and moving activities;
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finally, the authors in [14] presented a three layer architecture incorporating different methods such as
binary classification, KNN, and hidden Markov models to recognize simple human activities. Within
the above-mentioned approaches, the transition activities were not taken into consideration or they
were considered as a single cluster of actions useful to identify everything not belonging to a proper
class of human actions.

Other HAR classification systems exploit the dynamic nature of human actions to design
algorithms capable of identifying the temporal dependencies in data collected by sensors and properly
detect human activities. To this extent, several approaches have been presented in recent years, such as
those based on Deep Recurrent Neural Networks (DRNN) [15], and on Long Short-Term Memory cells
(LSTMs) [16]; moreover, in [17], a novel approach based on a combination of feature extraction using
time-delay embedding and supervised learning was applied to extract significant features from time
series related to human actions so as to yield good results in terms of activity recognition. However,
in spite of their evaluable performance, these approaches provided significant results with respect to
periodic human activities, resulting in being less suitable for the classification of non-periodic activities.

A problem with RNN is related to the choice of the window length for sliding window
segmentation since the HAR context is strictly affected by the bias among individual samples.
Namely, an individual sample of movement data is not well defined, at least beyond immediate
correlations between neighboring samples, and also depends on subjective behavior (e.g., different
subjects performing the same action, but within different time windows) and on the specific movement
performed (complex movements can be generated with higher biases among subjects) [18]. For this
reason, RNN are usually combined with a CNN, where they are deployed just to model temporal
dependencies on a higher level, meaning that they do not work on individual samples recorded by the
sensor(s), making their sole application to complete movements (i.e., individual sample sequences
recorded by sensors) inadequate .

With respect to transitional activities, a few works exist that exploit their identification, mainly in
order to improve the classification performance of the non-transitional/static activities. Namely,
in [19], Salarian et al. proposed the use of multi-stage classification for human activities with
postural transitions characterized by the logistic regression method used to predict discrete outcomes
(transition/non-transition activities). In [20], the authors proposed a two-layer and multi-strategy
framework for HAR, where the first layer was used to recognize classes of activities, while the second
one to discriminate within the classes. The two stage approach was used to mitigate the effect of
orientation and position variation introduced by the use of the smartphone as the acquisition device.
In particular, each layer was implemented through the Random Forest (RF) method, which has been
shown to be effective in HAR [21].However, focusing on postural transitional activities can be useful
for several reasons. As highlighted above, some studies showed that, by classifying postural transition,
basic activity classification could be improved: in [22] Capela et al. proposed a hierarchical classifier
that included the transition phases into and out of a sitting state to improve sitting and standing
classification. In [20], Quian Guo et al. used a two layer classifier: in the first layer, the activities
were classified into different groups, and in the second layer, for each group, the appropriate strategy
was designed according to the characteristics of the group to improve the recognition performance.
For static activities, the transitional activities were introduced to help classify the activities indirectly.
Besides, as a main advantage, another reason to study the classification of postural transition is that,
as some studies showed [23], these are associated with a high risk of falling, and thus, correctly
classifying them can improve healthcare, which is a very promising area, where AI models and
techniques are finding widespread applicability.

For these reasons, conversely to the presented works, this paper is focused on the classification
of transitional activities that until now have only be used as additional information to improve the
classification of static activities. We aim to prove that is also possible to improve the classification of
transitional activities by using the previous non-transitional/static activities. In particular, the proposed
classifier is endowed with a short-term memory able to trace the previous activities at different times
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in the past based on a feature augmentation procedure. Namely, the previous classified state is not
considered, but the features characterizing the previous state.

Khan et al. proposed an accelerometer-based approach for human activities, which used a
hierarchical scheme: at the lower level, ANNs discriminated between static, transition, and dynamic
activities, and at the upper level, other ANNs discriminated inside each category, using an augmented
feature space obtained by autoregressive modeling of acceleration signals. However, in this work, the
authors presented the results actuated on a home-made dataset, which was not available for a possible
comparison. Additionally, they adopted a testing procedure where the items used for the validation
were within the training set, thus affecting the performance evaluation.

In [24], Reyes-Ortiz et al. proposed a system architecture for activity recognition with a
smartphone using a real-time classification, addressing the issue of transition activities by applying a
heuristic filtering approach. This was achieved by appending consecutive probability vectors given
as SVM predictions and using temporal filtering techniques. In this work, also a temporal activity
filtering technique was used that considered the statistical evaluation of the duration of transitions
against static and dynamic activities. The authors evaluated the proposed method on publicly available
HAR datasets. In particular, they used the SBHAR (Smartphone-based HAR Dataset with Postural
Transitions) dataset [11]. The approach of this work, based on an artificial neural network with two
step memory, was compared with state-of-the-art methodologies such as hierarchical continuous
HMM [8], convolutional neural networks [9,10], and SVM [11], including that of Reyes-Ortiz et al. [24],
applied on the SBHAR Dataset. However, the comparison was presented only on the non-transitional
activities, since the other approach collapsed the transitional activities into only one class, meaning
that they did not present the classification results of single transitional activities for a comparison.
With regard to the transitional activities’ classification, the results of our approach are presented
before and after the optimization. The approach proposed in this paper is very different from the
state-of-the-art methods because it does not use a hierarchical architecture to detect human activities,
but it is based on a single computational layer able to perform a correct recognition of human activities.
Moreover, different from recent research on HAR where innovative and complex methodologies such
as CNN and RNN are used to take into strong consideration the dynamic nature of human actions,
the proposed system uses a conventional neural network opportunely extended with a memory
scheme; the proposed approach results in being very simple to design and deploy in a real IoT
environment. Moreover, the MANN-based approach is the first HAR architecture specifically designed
to improve the classification of both transitional and non-transitional human activities, as shown in
the experimental section.

3. The Proposed Architecture

This work aims at developing a classification algorithm able to identify both “Basic” Activities
(BAs) (or “Non-Transition Activities” (NTAs)) and “Transition Activities” (TAs), which are
characterized respectively by the dynamic or static activities of a long duration (e.g., walking, standing,
etc.) and by activities of a brief duration (i.e., seconds) such as Postural Transitions (PTs) (e.g.,
sit-to-stand, lie-to-sit, etc.) [24]. In particular, this paper proposes a so-called Memory-based Artificial
Neural Network (MANN), a machine learning framework able to improve the classification accuracy
of TAs with respect to state-of-the-art classifiers, thanks to the exploitation of a short-term memory in
the learning process.

Figure 1 shows the proposed architecture at work in an IoT environment populated by devices
aimed at reading raw information about human status and a set of smart services opportunely activated
when a human activity is recognized. The figure highlights both the training step, where a database is
used to train a MANN classifier, and the classification step, where a trained MANN is used to classify
a user’s activities.
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Figure 1. The HAR based on MANN in IoT applications.

With respect the training step, a set of raw data collected by an accelerometer and gyroscope
of a smartphone is input in a feature extraction process able to infer relevant knowledge useful to
improve the quality of the learning algorithm. With respect to the classification step, the extracted
feature space is augmented with features coming from previous classification steps so as to implement
a sort of short-memory mechanism storing past classified behaviors to be eventually used to improve
the performance of the proposed method in predicting current human activities. Thus, the central
hypothesis of this work is that short-term memory empowers the classic architecture for HAR by
improving its classification performance mainly with respect to the recognition of TAs, and it improves
the robustness of the proposed approach in being tolerant to data noise. In the following subsections,
a detailed description of the proposed architecture for HAR is introduced.

3.1. MANN

Figure 2 shows the machine learning algorithm for HAR proposed in this work. It represents
an extended version of a classical artificial neural network with back-propagation, where a memory
buffer is used to store information of features related to previous states. This memory usage is able to
improve the classification accuracy of time-dependent classification problems, especially when data
are highly correlated in time, as for the case of HAR tasks.
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Figure 2. A MANN classifier based on k memory steps. The number of hidden neurons is set as
l =

√
(k + 1)mn.

There are other networks that have been proven to be able to deal with time-dependent
classification problems successfully, as for instance recurrent neural networks [25–27] and time-delay
neural networks [28–30], which are specifically designed for processing sequential data. However,
MANN employs a much simpler topology, implementing a slight change with respect to standard
ANNs, and yet, it is able to treat time-dependent data series successfully and, as will be shown, to
improve the classification performances significantly with respect to state-of-the-art classifiers for
TAs’ classification in HAR applications. Additionally, this intrinsic simplicity allows MANN-based
algorithms to be paired with more sophisticated approaches to increase classification performance.

The MANN-based classification algorithm is particularly able to deal with discrete
time-dependent problems, i.e., when data are sampled at various time steps. When data are stored
continuously with time, a procedure of sampling and feature extraction is required. This procedure is
also helpful when the time steps are too close to each other: by averaging over several time steps, a
bigger time window can be used.

As can be seen in Figure 2, in order to classify a human activity related to the time step tn,
the MANN network requires features read at the instant tn and some features from the previous ones.
In particular, features from k previous time steps are required, i.e., features from tn−1, tn−2, ..., tn−k.
Consequently, the total number of input neurons is (k + 1)m, where m is the number of features per
item and k the number of time steps used as memory in the MANN. By using this network topology,
the proposed framework is able to use information about the human status from previous times to
classify the current human activity successfully. According to [31,32], the number of hidden neurons l
is set by using a heuristic rule taking into consideration the square root of the product of input and
output neurons (l =

√
(k + 1)mn), while the number of output neurons is set equal to the number of

classification labels.
Finally, the activation function is set as the hyperbolic tangent function f (h) = tanh h, and the

solver for weight optimization is the Adam algorithm [33].

3.2. Data Acquisition and Feature Extraction for HAR

In this paper, MANN networks are applied to a HAR in IoT application. In particular, the main
goal of the proposed approach is the classification of human activities starting from raw data collected
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by an accelerometer and a gyroscope on mobile devices, such as a smartphone or a smartwatch. Since
the data acquisition process is usually continuous (or discrete with an extremely small time window
for every time step, making it almost continuous), as discussed in the previous section, a process of
data collection and a subsequent feature extraction algorithm are required to enable MANN to be
utilized in the given IoT scenario. In this section, a feature extraction algorithm, which was directly
taken from [24], is described.

In the proposed application, data are collected from a smartphone mounted on the waist, but it is
possible to consider other positions, such as the pocket [34] or grasped by hand [35]. It is important to
use the gyroscope in addition to the accelerometer since it has been shown that the use of both sensors
is more beneficial than solely relying on the accelerometer readings [36]. The process of extracting
meaningful information from raw data is shown in Figure 3 [24].

signal
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Standard deviation,

…

Raw data Time window Ensamble operations

Acquisition time
Every time window corresponds
to an item for the machine 
learning algorithm

Features of 
single item
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Maximum,
Minimum,

Figure 3. Data collection process for HAR dataset composition [24].

Raw data are collected in a series of single time windows with defined duration given by the
acquisition time. Every time window is then treated separately as an instance for learning algorithms,
whereas features are extracted through ensemble operations (e.g., mean, standard deviation, median,
maximum, minimum). The acquisition time is a very important parameter because it should be
sufficiently large to include one and only one human activity. By keeping this acquisition process, data
are collected as a set of discrete time-dependent items with a fixed set of features.

As explained before, there are two categories of activities to be classified: TAs (Transition
Activities) and NTAs (Non-Transition Activities, or basic activities). The core idea of this work
is that by using MANN instead of standard neural networks, it is possible to improve the classification
of these activities, especially TAs. Indeed, these activities are usually extremely short and consequently
highly correlated with data from previous movements. For instance, the TA “stand-to-sit” performed at
the time step tn is a transition from the NTA “stand” at tn−1 to the NTA “sit” at tn+1: using information
related only to tn ignores the time correlation, which could however help classification accuracy. Thus,
providing the network the information at tn−1 can greatly improve performances. Indeed, in the
following section, this will be proven to be the case: MANN can improve HAR classification, mainly
of TAs, but also of NTAs.
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4. Experiments

This section shows and discusses the results obtained by using a MANN in a HAR application for
IoT environments. In the first subsection, the dataset called the “SBHAR dataset” is described. In the
next subsection, results yielded by using MANN on the SBHAR dataset are compared to those obtained
from other studies on the same dataset, so as to prove the proposed approach is able to compete with
state-of-the-art classifiers. However, it should be pointed out that no research studies related to TAs
have been performed on the SBHAR dataset, and consequently, only results related to NTAs could be
compared. Finally, in the last subsection, MANN is compared to standard methodologies used in HAR
applications, showing that it outperformed other architectures in performing TAs classification. The
comparison was performed by considering the classification accuracy, but also the robustness with
respect to the noise, as well as the execution times, where MANN showed good performances as well.
The code was written in Python by using the scikit-learn library [37].

4.1. SBHAR Dataset

In this section, the SBHAR dataset [24], used to test MANN on HAR tasks, is briefly described.
A group of 30 volunteers aged between 19 and 48 was selected for the collection of data for the SBHAR
dataset. A smartphone (Samsung Galaxy S II) was mounted on each volunteer’s waist. The volunteers
performed a protocol of activities composed of six NTAs: three static postures (i.e., standing, sitting,
lying) and three dynamic activities (i.e., walking, walking downstairs, walking upstairs). The SBHAR
dataset also included TAs occurring between static postures (i.e., stand-to-sit, sit-to-stand, sit-to-lie,
lie-to-sit, stand-to-lie, lie-to-stand). By using the embedded accelerometer and gyroscope of the
smartphone, 3-axis linear acceleration and 3-axis angular velocity were captured at a constant rate of
50 Hz. Features were extracted from raw data as explained in Section 3.2. A detailed description of
this process can be found in the SBHAR dataset (http://archive.ics.uci.edu/ml/datasets/Smartphone-
Based+Recognition+of+Human\+Activities+and+Postural+Transitions). The final result was a dataset
composed of 10,929 items with 561 features each, as shown in Table 1.

Table 1. Distribution of dataset items for each activity of the Smartphone-based HAR Dataset with
Postural Transitions (SBHAR) dataset [24].

Activities Number of Terms

NTAs

Walking 1722

10,411

10,929

Walking upstairs 1544
Walking downstairs 1407

Sitting 1801
Standing 1979
Laying 1958

TAs

Stand to sit 70

518

Sit-to-stand 33
Sit-to-lie 107
Lie-to-sit 85

Stand-to-lie 139
Lie-to-stand 84

In this scenario, the training of a MANN classifier has required m = 561 features per item,
corresponding to the features extracted in the SBHAR dataset, and n = 12 output neurons,
corresponding to the number of activities to be classified. As for the number of memory steps k,
some tests were performed to find the value maximizing the performance of the network: the result
was k = 2, and consequently, the number of hidden neurons was l =

√
3mn = 142.

4.2. Comparison of MANN Results to Other Studies on the SBHAR Dataset

In this section, the performance of MANN is evaluated with respect to classifiers proposed by
other studies on the SBHAR dataset. It should be stressed that no research studies related to TAs

http://archive.ics.uci.edu/ml/datasets/Smartphone-Based+Recognition+of+Human\+Activities+and+Postural+Transitions
http://archive.ics.uci.edu/ml/datasets/Smartphone-Based+Recognition+of+Human\+Activities+and+Postural+Transitions
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have been performed on the SBHAR dataset, and thus, only classification performances on NTAs
could be compared. Of course, since MANN was mainly built to improve the classification of highly
time-correlated items in time-dependent classification tasks, a particular improvement on NTAs was
not expected.

In order to compare the MANN results to those in the literature, a standard user-independent
train-test split, proposed by the authors of the SBHAR dataset, was employed: out of the 30 volunteers,
21 were used for training and the remaining 9 for testing. This user-independent train-test split allowed
a good generalization of the classification accuracy, since no data from the same user were used either
in training or testing, and consequently, there was no risk of the classifier learning patterns specific to
a certain user (thus the name “user-independent”).

The performance of the architecture was evaluated by the accuracy, which is defined as:

accuracy =
number of correct classifications

total number of test items
(1)

The result for MANN’s accuracy was 96.24%, which was comparable to the highest accuracy values
obtained by other studies. The complete comparison between the MANN results and those of other
works is shown in Table 2: MANN was third in terms of overall accuracy, over-performing, for
instance, several convolutional neural network implementations (e.g., 95.18% for [10], 94.79% for [9],
90.89% for [38]). The architectures which proved to have a superior accuracy to MANN were an SVM
classifier [11], with a 96.37% accuracy, and a convolutional neural network [39], with a 97.63% accuracy.
I should be stressed again that these results were only related to NTAs, which were the activities less
likely to be improved by the MANN architecture, but nevertheless, MANN obtained a solid result
compared to the other studies.

Table 2. Comparison between the MANN results and the literature results on the SBHAR dataset [39].

Paper Method Accuracy

[40] Hidden Markov Models 83.51
[41] Dynamic Time Warping 89.00
[42] Handcrafted Features + SVM 89.00
[38] Convolutional Neural Network 90.89
[13] Hidden Markov Models 91.76
[43] PCA + SVM 91.82
[43] Stacked Autoencoders + SVM 92.16
[8] Hierarchical Continuous HMM 93.18
[9] Convolutional Neural Network 94.79
[10] Convolutional Neural Network 95.18
[9] FFT + CNN Features 95.75

MANN 96.24
[11] Handcrafted Features + SVM 96.37
[39] Convolutional Neural Networks 97.63

In order to benchmark MANNs on the SBHAR dataset including TAs, the confusion matrix
was computed on the entire dataset (including both TAs and NTAs) employing the same 21 + 9
user-independent train-test split: results are shown in Table 3. The overall accuracy was 95.48% (in the
bottom-right of the matrix), which was lower than that measured when considering only NTAs, since
TAs are usually tougher to classify. The matrix showed also two additional performance parameters
specific to each activity: recall and precision. The former is defined as:

ri =
TPi

TPi + FNi
, (2)

where ri is the recall for the activity i, TPi is the number of “true positives” (i.e., the number of
test items belonging to class i and correctly identified), and FNi is the number of “false negatives”
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(i.e., the number of test items belonging to class i and incorrectly classified), whereas the latter is
defined as:

pi =
TPi

TPi + FPi
, (3)

where pi is the precision for the activity i and FPi is the number of “false positives” (i.e., the number
of test items not belonging to class i and incorrectly classified to class i). It was clear that NTAs were
usually better classified by MANN than TAs: the average recall for NTAs was 96.38%, while that for
TAs was 77.74%. It is interesting to note that, although some TAs were extremely difficult to recognize
(e.g., “lie-to-sit” had a recall of 64.00% and “lie-to-stand” one of 59.26%), others were successfully
classified, as for instance “sit-to-lie” and “stand-to-lie”, with recalls of respectively 96.88% and 83.67%.
Indeed, as will be shown in the next section, these two activities were those that were improved the
most by the use of MANN’s memory buffer.

Table 3. Confusion matrix related to the MANN classification with respect to all activities belonging to
the SBHAR dataset; S1: walking, S2: walking upstairs, S3: walking downstairs, S4: sitting, S5: standing,
S6: laying, T1: stand-to-sit, T2: sit-to-stand, T3: sit-to-lie, T4: lie-to-sit, T5: stand-to-lie, T6: lie-to-stand.

S1 S2 S3 S4 S5 S6 T1 T2 T3 T4 T5 T6 Recall

S1 491 0 5 0 0 0 0 0 0 0 0 0 98.99%
S2 17 450 4 0 0 0 0 0 0 0 0 0 95.54%
S3 5 7 408 0 0 0 0 0 0 0 0 0 97.14%
S4 0 1 0 455 50 1 0 0 0 0 1 0 89.57%
S5 0 0 0 11 527 0 0 0 0 0 0 0 97.96%
S6 0 0 0 0 4 540 1 0 0 0 0 0 99.08%
T1 0 0 0 2 2 0 19 0 0 0 0 0 82.61%
T2 0 0 0 0 0 0 2 8 0 0 0 0 80.00%
T3 0 0 0 0 0 0 0 0 31 0 1 0 96.88%
T4 0 0 0 1 0 0 0 0 0 16 0 8 64.00%
T5 1 0 0 1 1 1 0 0 4 0 41 0 83.67%
T6 0 0 0 1 0 0 0 0 0 9 1 16 59.26%

Precision 95.53% 98.25% 97.84% 96.60% 90.24% 99.63% 86.36% 100% 88.57% 64.00% 93.18% 66.67% 95.48%

4.3. Comparison of MANN to Standard Methodologies in HAR

In the previous section, MANN was compared to architectures proposed in other studies.
However, since TAs in the SBHAR dataset have not been treated by anyone else, it was not clear
how much MANN improved the classification accuracy for these activities. To test this, here, MANN
was compared to other architectures commonly used in HAR applications [19,31] considering both
TAs and NTAs. In particular, the following were considered: a Logistic Regressor (LR) with the L2
regularization strength set as 1, a Support Vector Machine (SVM) with the penalty parameter set as 1, a
Random Forest (RF) with 300 trees, a K-Nearest Neighbors (KNN) with k = 5, and an Artificial Neural
Network (ANN) with one hidden layer containing 82 neurons.

To make the analysis statistically more robust, in this section, a personalized train-test split is
employed, since using the standard 21+9 train-test split of the previous section only provided a single
confusion matrix. In particular, a stratified 3-fold cross validation with 10 random sub-samples was
used: data were divided into 3 folds, making sure that labels (i.e., activities to be recognized) were
equally distributed in these 3 portions of the dataset, and in turn, two of the three folds were used as
training sets and the other one as test set, where a confusion matrix was computed. By doing so, the
performance of the architecture was evaluated without any bias, since no data from the training set
were included in the test set. This procedure was repeated 10 times, randomly shuffling data before
partitioning, and thus, 30 independent confusion matrices, i.e., performance measurements, were
obtained. Finally, these 30 matrices were averaged to produce the mean and standard deviation for
each value of interest.

It is important to point out that here, the train-test split was not user-independent: when
randomly shuffling the dataset, data for each user were included in both the training and the test
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sets. Consequently, the performance scores presented here should not directly be compared to those
discussed in Section 4.2.

Since the analyses of this section required the knowledge of the classification accuracy for each
activity, the performance parameter taken into consideration was the recall ri (Equation (2)), which
was the ratio of correctly classified test items for the activity i. For any of the 30 pairs of training and
testing, the recall of each activity was measured and then averaged to produce the mean and standard
deviation of the mean as the final evaluation:

r̄i =
∑30

α=1 rα
i

30
, (4)

σi =

√
∑30

α=1
(
rα

i − r̄i
)2

29
, (5)

σ̄i =
1√
30

σi, (6)

where rα
i is the recall for the activity i measured in the train-test split with index α (α runs from 1 to 30,

which is the number of independent train-test splits), r̄i is the mean recall for the activity i, and σ̄i is
the standard deviation of the mean for the activity i, which is the statistical error of r̄i. As an overall
performance score, we then computed the mean recall for all activities:

r̄m =
∑12

i=1 r̄i

12
, (7)

σ̄m =

√
∑12

i=1 σ̄2
i

12
. (8)

Figure 4 shows the comparison between the performances of all classifiers, plotting the mean
recall r̄i of all activities and the average mean recall r̄m (where the errors σ̄i and σ̄m are indicated as
error bars).

MANN soundly outperformed the other classifiers: its average recall was 90.18%, which was
considerably higher than both ANN (87.93%) and LR (87.85%), which were the most efficient out of
the other classifiers. It was clear that most of the improvement by MANN could be tracked down to
TAs, and in particular to the activities “sit-to-lie” and “stand-to-lie”, where MANN reached a recall
of respectively 89.78% and 90.57%, whereas ANN only had 77.10% and 76.83%, and LR obtained
74.28% and 77.91%. These two TAs were difficult to classify because they had a similar pattern, since
in both cases, the user lied down, either from a sitting position or from a standing one. MANN was
able to improve the classification performance for these TAs thanks to the memory buffer: accessing
the information of previous times, it was able to discriminate between sitting and standing and,
consequently, to correctly identify from which position the user was laying down. On the other hand,
no particular improvement was observed for NTAs, although it is interesting to observe a slight
improvement in classifying “sitting” and “standing” activities, which have been proven to be tough to
distinguish by machine learning algorithms [22]; MANN obtained a recall of 96.34% for the former
and 97.09% for the latter, while ANN obtained 95.93% and 96.62% and LR 94.90% and 95.78%.
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Figure 4. Comparison between classifiers’ classification performances. For each classifier, we compare
the average recall related to each activity (S1: walking, S2: walking upstairs, S3: walking downstairs,
S4: sitting, S5: standing, S6: laying, T1: stand-to-sit, T2: sit-to-stand, T3: sit-to-lie, T4: lie-to-sit, T5:
stand-to-lie, T6: lie-to-stand, M: mean recall). MANN outperforms other classifiers.

Successively, it was investigated how MANN was able to treat noise compared to the other
architectures. Indeed, a classification algorithm in an HAR application should be resilient to noise
contamination, since in real life, applications data are not as clean as in laboratory conditions (e.g.,
data from the accelerometer and the gyroscope are affected by an error due to an uneven surface on
which the user is walking). To perform this analysis in a controlled way, data were contaminated with
noise after the feature extraction procedure explained in Section 3.2. In particular, after data were
processed and separated into training and test sets, the test data were contaminated with a noise source,
simulated as a Gaussian distribution with zero mean and the standard deviation set as a parameter α

(the bigger α was, the stronger the noise source was). Since data were previously standardized (i.e.,
values for each feature were linearly transformed so that items had 0 mean and a standard deviation
1), this approach allowed the noise to be equally weighted for every feature extracted. The parameter
used to quantify noise resilience was the loss L, defined as:

L(α) = r̄m(α = 0)− r̄m(α) (9)

where r̄m(α = 0) was the average of the 12 recalls for each activity (measured, as described previously,
using the 30 independent train-test pairs) with no noise source (i.e., α = 0) and r̄m(α) is the average
recall when the noise source has strength α. Thus, the loss quantified how much the noise reduced
the overall recall, and consequently, if a classifier had a strong noise resilience, its loss should be
small (ideally zero) even for high values of α. The results are shown in Figure 5, where α ranges
from 0.1 to 1.5.
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Figure 5. Noise robustness comparison. It shows how, as noise grows, MANN has a good
noise resilience.

Overall, MANN had a good noise resilience: for small α values, the loss was negligible (0.1%
for α = 0.1), and it increased up to 10% for α = 1.5: this meant that the performance worsening due
to random noise in the test set was always inferior to 10%. It is particularly interesting that MANN
increased noise robustness with respect to standard ANN, where the loss was almost double for a
strong noise source (20% for α = 1.5). Thus, the introduction of the memory buffer to the neural
network not only improved the classification accuracy, but also made it more robust to random noise
sources. The classifier which showed the best behavior for noise contamination was KNN (L = −1%
for α = 0.1 and L = 4% for α = 1.5), which was understandable given the nature of its classification
approach relying on the neighborhood. On the other hand, both RF and SVC showed poor noise
robustness performances, the former being the worst for low noise source and the latter being the
worst for high ones: for α = 0.4, L = 8% for RF, and L = 0.1% for SVC, while, for α = 1.5, L = 40% for
RF, and L = 80% for SVC, which meant that these classifiers lost almost all predictive capabilities if a
strong noise source contaminated the data.

Lastly, learning times for each classifier were compared to test whether the memory buffer
increased them dramatically for MANN. For each training set, the time required by each classifier to
learn its weights was measured (each training set was composed of approximately 3000 items), and
then, these times were averaged over all sets. The results are shown in Figure 6.

MANN was comparatively quick at learning the data, requiring about 7 seconds for each training
set. ANN and LR were the quickest, requiring only 4 seconds; this was understandable, since the
memory buffer in MANN increased the number of input and hidden neurons, thus having more
weights to optimize. However, the increase in learning time observed for MANN was not too high,
making it feasible to use it in real-time classification problems. Finally, the other classifiers had higher
learning times (11 seconds for RF, 18 seconds for SVC and 20 seconds for KNN).
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Figure 6. Comparison between classifiers’ training times. The usage of a memory does not crucially
slow down the proposed neural network.

5. Conclusions

This research introduced an innovative machine learning approach for human activity recognition
in IoT environments. Specifically, a neural network extended with a short memory was designed to
enable the implementation of algorithms aimed at efficiently classifying human activities. In particular,
different from other approaches from the literature, the proposed method was proven to be particularly
suitable for detecting transitional human activities, and moreover, it provided a high level of robustness
with respect to noise in data. Indeed, the accuracy of the MANN method was comparable to existing
approaches when applied to non-transitional activities (96.24%), and it provided a very high accuracy
(95.48%), with respect to some of the most used machine learning algorithms, when transitional
activities were included. Finally, the proposed method yielded good performance also in terms of
training time, that was very low with respect to other machine learning algorithms such as random
forests, k-nearest neighbors, and support vector machine. As a result of this, it can be stated that
the MANN algorithm represents a suitable method to be embedded in IoT frameworks where the
human activity recognition represents a critical task to enable the delivery of the right set of services to
the users’ systems. In the future, the proposed approach for HAR will be compared to other similar
techniques incorporating memory to further prove its capabilities in classifying non-transitional and
transitional human activities. Specifically, the proposed method will be compared with recurrent neural
networks [25–27] and time-delay neural networks [28–30] on a set of datasets different from SBHAR.
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Abbreviations

The following abbreviations are used in this manuscript:

HAR Human Activity Recognition
TA Transitional Activity
NTA Non-Transitional Activity
NN Neural Networks
ANN Artificial Neural Networks
MANN Memory Artificial Neural Networks
LR Logistic Regressor
SVC Support Vector Classifier
RF Random Forest
KNN K-Nearest Neighbor
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