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Abstract: Image-to-image translation based on deep learning has attracted interest in the robotics and
vision community because of its potential impact on terrain analysis and image representation,
interpretation, modification, and enhancement. Currently, the most successful approach for
generating a translated image is a conditional generative adversarial network (cGAN) for training
an autoencoder with skip connections. Despite its impressive performance, it has low accuracy
and a lack of consistency; further, its training is imbalanced. This paper proposes a balanced
training strategy for image-to-image translation, resulting in an accurate and consistent network.
The proposed approach uses two generators and a single discriminator. The generators translate
images from one domain to another. The discriminator takes the input of three different configurations
and guides both the generators to generate realistic images in their corresponding domains
while ensuring high accuracy and consistency. Experiments are conducted on different datasets.
In particular, the proposed approach outperforms the cGAN in realistic image translation in terms of
accuracy and consistency in training.

Keywords: generative adversarial network; convolutional neural network; consistent image-to-image
translation network; autoencoders

1. Introduction

Translating images between different domains has many important applications in the field of
robotics and computer vision, including terrain shape estimation, tip-over and collision avoidance,
scene understanding, image colorization, styling, de-noising, and modification. Effectively translating
images between different domains requires semantic knowledge about pairwise embedding by
exploiting natural correspondences. The correspondence between different domains can be categorized
considering different aspects and problems. Such relations are naturally recognized by humans.
For example, there is a natural relationship between an RGB image and its corresponding depth map,
between edge-based representation and its real image correspondence, and between an aerial image
and a map image. We explore this image-to-image translation task as a problem of translating image
representation from one domain to the corresponding domain, given sufficient training data.

The image-to-image translation problem is related to either computer vision, where the mapping
is from many to one, or computer graphics, where the mapping is from one to many. Despite the similar
nature of these tasks, they have been tackled separately by [1–13]. However, in our approach, we tackled
this in a unified framework. Moreover, the existing approaches are limited in performance in terms of
generalization and accuracy because of imbalanced training strategies. Accurately understanding the
scene and estimating the terrain from the available information are critical for collision and tip-over
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avoidance in the field of robotics. Image-to-image translation plays a vital role in this; RGB images are
translated to their corresponding depth maps by exploiting their natural correspondence. Although
the current approaches are effective, they are less accurate and lack generalization. The proposed
approach addresses these issues because of its balanced training strategy.

Recent advances in deep neural networks, specifically generative adversarial networks (GANs)
with a generator and discriminator with a wide range of training data, are an efficient and powerful
tool for high-quality image-to-image translation. This is because the objective of GAN is based on
game theory, where the generator attempts to fool the discriminator by generating realistic images.
The discriminator attempts to discriminate between real images and synthetic images generated by
the generator. The generator and discriminator are trained until the discriminator fails to discriminate
between the real and synthetic images. Although it has impressive performance in generalization and
effective image-to-image translation, it has limitations such as stability and consistency in terms of
training GAN-based image translation networks, which affect the accuracy of the network. To address
the problem of inconsistency in training, we propose a consistent image-to-image translation network
with improved accuracy and generalization. Further details are provided in Sections 3 and 4.

The remainder of this paper is organized as follows. Section 2 discusses the related work.
Section 3 discusses the motivation and problem statement. Section 4 introduces the proposed
consistent image-to-image translation network for accurate cross-domain image-to-image translation
and discusses its training procedure. In Section 5, the experimental results are described, and they are
analyzed. Section 6 presents the discussion and future scope. The last section concludes our study.

2. Related Work

Thus far, a significant amount of work has been done on the same and cross-domain
image-to-image translation from the perspective of regression with convolutional neural networks
(CNNs) as the basic platform for a wide variety of image prediction problems. Same-domain
image-to-image translation has applications in domain adaptation [1–5,11,13] super-resolution [6],
style transfer [7], and photo editing [8]. Cross-domain image-to-image translation has applications
in data generation [9], data interpretation [10], and image completion [10,14,15]. The success of
CNN-based approaches is because of the availability of a large amount of paired data with a
natural correspondence. These approaches outperform state-of-the-art non-CNN approaches [16,17].
For the effective representation learning of image translation, several deep generative networks such
as autoencoders (AEs) [18], variational AEs [19,20], GANs [9], moment-matching networks [21],
pixel-CNN [22], and plug-and-play generative networks [23] have been proposed. Recently, many
variants of deep AEs, and of GAN, have been proposed, including [19,20], LapGAN [24], DCGAN [25],
WGAN [26], and the conditional generative adversarial network (cGAN) [10]. However, the
combination of AE and GAN has shown the best performance in automated image translation [10].

Shrivastava et al. proposed image translation based on cGAN in [14]. They addressed the problem
of performance degradation of a deep neural network for real data after training with synthetic data, by
bridging the gap between the simulated and real images in the deep learning network. They translated
synthetic images to real images using cGAN. Their study aimed to minimize the cost function based
on the L1 distance between the synthetic and real images along with the adversarial loss. This task of
translating synthetic images to real images is simple with a simple loss function. However, the job
becomes challenging when dealing with natural images. Minimizing the L1 distance between the real
and synthetic images is a challenge, both in terms of generalization and realistic translation.

Isola et al. proposed pix2pix cGAN in [10]. They used the exact correspondence of images in
both domains for training the image translation network. Although it was effective at translating
images from one domain to the corresponding domain, it had an imbalanced training strategy, thus
lacking consistency. The pix2pix approach in [10] used the exact correspondence of pairs for image
translation. In contrast, Yi, Zili, et al. proposed DualGAN [15] by exploiting dual learning to map
the source and target images. DualGAN can learn image translation without exact correspondence
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because its learning rule is based on the invertibility of the mapping while utilizing cyclic consistency
loss. However, it fails to learn translation effectively when the corresponding objects in the target
domain are not available [27].

Recently, in [28], BA-DualAEcomprising two AEs with individual latent spaces associated with
a bidirectional regression network was proposed. It can translate images between different domains
with an additional capability of image completion, proving its generality. However, it does not
accurately recover local pixel intensity values. Furthermore, the association network in BA-DualAE
translates the latent space of one domain to another using a fully connected network, which provides
excellent generalization. However, it loses fine details in the input samples, resulting in low accuracy.
BA-DualAE is effective for simple inputs where association does not affect the accuracy, but is limited
in terms of scene images where accuracy is vital.

Conditional adversarial frameworks have shown limitations in generality and accuracy because
of the inconsistency in the training strategy [10]. We attempt to address this issue by considering [10]
as the basic platform. The proposed network shows improved performance in terms of accuracy, as
discussed in Section 5.

3. Problem Statement

An image-to-image translation network based on a deep neural network (DNN) can be generalized
because the DNN-based approaches are data driven and learn the representation of the data. In other
words, an image-to-image translation network is not task specific and not limited by data variation.
Despite its impressive performance, there are three main challenges: (1) accuracy, (2) slow convergence,
and (3) consistency. To address these problems, an effective image translation network is required that
can explore the natural correspondence between different domains. The goal of the image-to-image
translation network is to translate images x of one domain x to images y′ of the corresponding domain
y as close as possible to target images y of domain y as follows.

G(x) = y′ subject to y′ ∼= y (1)

where G is a generator that takes images x and generates the translated images y′ subject to y′ ∼= y.
In addition, an appropriate training methodology such as “consistency in training” is required for
faster convergence with high accuracy.

To address the above-mentioned problems related to accuracy, convergence and consistency,
we propose a consistent image-to-image translation network to translate images effectively from
one domain to the required corresponding domain, as shown in Figure 1. The proposed network
was inspired by cGAN [10], which takes advantage of the deep AE [18], volumetric CNN [8,18],
and GAN [9]. The consistent image-to-image translation network is comprised of two cross-domain
generators and a discriminator. The cross-domain generators translate the images from one domain
to another. The real and generated fake pairs are input to the discriminator in three different
configurations to achieve faster convergence and maintain consistency and high accuracy.
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Figure 1. Consistent image-to-image translation network, where G1 and G2 are generators that translate
images from domain x to domain y and from domain y to domain x, respectively. The discriminator
takes the input in three different configurations, as shown on the right side of the figure.

4. Proposed Approach

To address the above-mentioned problems, the proposed consistent image-to-image translation
network is comprised two cross-domain generators and a global discriminator. The cross-domain
generators take images from their respective domains and generate images in the required
cross-domains. The discriminator takes real and fake pairs in three different configurations. (1) In the
first configuration, for the real pair, both inputs are real input images, and for the fake pair, both input
images are generated by the cross-domain generators. (2) In the second configuration, the fake pair
has one real image from domain x and one fake image from domain y. (3) In the third configuration,
the fake pair consists of one real image from domain y and one fake image from domain x. The real
pairs in all configurations are the same. Both cross-domain generators are trained simultaneously,
and the training is end-to-end. The discriminator takes the input in the above-mentioned different
configurations and guides both the cross-domain generators to generate realistic output images.
The proposed approach provides stability in training and fast convergence while achieving a sufficient
level of generality and high accuracy.

4.1. Network Architecture

The proposed consistent image-to-image translation network consists of two cross-domain
generators and a discriminator. The first cross-domain generator G1 takes the 2D input images
x from domain x with a resolution of [256 × 256], and it translates them to their corresponding
cross-domain representations as G1(x) = y′ with the same resolution as that of the input images.
In contrast, the second cross-domain generator G2 translates the 2D input images y from domain y to
their corresponding 2D images of domain x as G2(y) = x′. We follow the architecture of cGAN [10],
where both the cross-domain generators, G1 and G2, have the same configuration.
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4.2. Training Details

To learn the parameters of the proposed network, we need to design an objective function
that provides a more consistent model with high accuracy. In image-to-image translation tasks
using a generative adversarial network for translating images from one domain to another domain,
consistency plays a significant role in the successful training of the generator and the discriminator
and for generating more realistic and accurate results. The objective function in the proposed network
is designed in such a way that it controls the learning of the generator and discriminator at an equal
pace to ensure consistency in training. In image translation tasks, the discriminator takes a pair of
real images and classifies them as a real pair in the first step. Next, the discriminator takes a fake
pair and classifies them as fake. The fake pair is the output of the generator; however, in the existing
cGAN-based approach [10], the fake pair contains one real image and one generated image. Hence,
it results in imbalanced training of the discriminator, which affects the training of the generator in
producing more realistic images. In the proposed training approach, we provide every possible
combination of the inputs as a fake pair to the discriminator by adding one more generator in the
reverse direction.

The training procedure of the proposed consistent image-to-image translation network is given
below. The objective function of the discriminator is as follows.

LD = γd(D(x, y) + 1− D((G1(x), G2(y))) + D(x, y) + 1− D((G1(x), y)) + D(x, y) + 1− D((x, G2(y)))) (2)

where γd is the learning rate and (x, y) is the real pair input to the discriminator. (G1(x), G2(y))
represents a fake pair where both images are generated by G1 and G2, respectively. (G1(x), y) is a fake
pair where G1(x) is the domain x fake image generated by G1 and y is the real image from domain y.
Similarly, (x, G2(y)) is a fake pair where x is the real image from domain x and G2(y) is the domain y
fake image generated by G2.

The objective functions of the cross-domain generators are based on the weighted mean squared
error loss along with the conventional generative adversarial loss. The weighted mean squared loss is
used to quantify the differences between the real data and the corresponding model outputs along
with providing stability to the generative adversarial network learning.

LG1 = γg(1− D((G1(x), G2(y))) + 1− D((G1(x), y)) + 1− D((x, G2(y)))) + γ||x− x′||22 (3)

LG2 = γg(1− D((G1(x), G2(y))) + 1− D((G1(x), y)) + 1− D((x, G2(y)))) + γ||y− y′||22 (4)

where γg and γ are the learning rates for the GAN loss and the mean squared error loss, respectively,
and ||x − x′||22 and ||y − y′||22 represent the mean squared error losses of generators G1 and G2,
respectively. Finally, LG1 and LG2 are the total losses of generators G1 and G2, respectively. To optimize
the parameters of the proposed framework, we used the ADAM optimizer [29] with β = 0.5.

5. Results

The main purpose of our approach was to perform robust and accurate translation between
different domain images while maintaining consistency in training and fast convergence. For this
analysis, we used two different datasets, NYU [30] and Cityscapes [31], and evaluated the approach
qualitatively and quantitatively by performing different experiments.

The NYU dataset is comprised of approximately 50,000 pairs of RGB and their corresponding
depth images. However, in the experiments, we selected 20,000 samples and then randomly selected
5% testing samples from them. The remaining samples were used as training samples. The Cityscapes
dataset is comprised of approximately 2957 pairs of RGB and their corresponding label samples for
training. We randomly selected 500 sample pairs for testing.

We trained the proposed consistent image-to-image translation network to learn the translation
between different domain samples by following the training algorithm as discussed above.
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We analyzed the experimental results qualitatively and quantitatively by defining the mean squared
error (MSE) and structural similarity index (SSIM) from the ground truth for the translated images,
as shown in Tables 1 and 2. The consistent image-to-image translation network was implemented by
using TensorFlow 1.13, an open-source deep learning framework, on the GPU-based PC, which was
comprised of an Intel(R) Core i9-9940X CPU, 132.0 GB RAM, and four NVIDIA GeForce RTX 2080 Ti
graphics cards.

Table 1. MSE and SSIM based on reconstructing input test samples using the NYU dataset [30].

Approach MSE per Pixel MSE per Image SSIM per Pixel SSIM per Image

BA-DualAE-based Approach [28] 0.0010937 71.6767 8.7586−06 0.574
cGAN-based Approach [10] 0.0002298 15.0585 1.2541−05 0.821

Proposed Approach 0.0001738 11.3912 1.3352−05 0.875

Table 2. MSE and SSIM based on reconstructing input test samples using the Cityscapes dataset [31].

Approach MSE per Pixel MSE per Image SSIM per Pixel SSIM per Image

BA-DualAE-based Approach [28] 0.0009063 59.4014 6.7803−6 0.4443
cGAN-based Approach [10] 0.0005462 35.7950 9.5650−6 0.6268

Proposed Approach 0.0004449 29.1625 1.1113−5 0.7283

5.1. Qualitative Analysis

After training the proposed consistent image-to-image translation network for translating images
from one domain to another by using different datasets, we evaluated its performance in terms
of realistic translation between different domains. In the first experiment, we used the NYU
dataset [30] for training and testing, and in the second experiment, we used the Cityscapes dataset.
The performance of the proposed approach was evaluated qualitatively in comparison with the
cGAN-based approach using the test datasets. The qualitative analysis is shown in Figures 2–6.

5.1.1. Translation from Domain x to Domain y

In the first experiment, we performed a comparative qualitative analysis of translating images
from domain x to domain y. Domain x contained real natural scene images, and domain y contained
the depth or labels of the scenes in domain x. We used two different datasets in the analysis. The first
analysis was based on the NYU dataset [30], as shown in Figure 2, and the second on the Cityscapes
dataset, as shown in Figure 3. In the first analysis, we first translated images from domain x to domain
y and then evaluated the translated results based on the L1 norm between the ground truth images
and the translated images. Figure 2 summarizes the overall comparative results for the NYU dataset.
The first row shows the real natural scene images used as input; the second shows the ground truth
images; and the third shows the translated images from the proposed consistent image-to-image
translation network. To show the effectiveness of the proposed approach in translating images from
one domain to the corresponding cross-domain, we calculated the L1 norm between the ground
truth images and the translated images by using the proposed approach. The resulting images were
considered as the error between the ground truth images and the generated images, shown in the
fourth row of Figure 2. The fifth row shows the images generated by the cGAN-based approach,
and the last row shows the error between the ground truth images and the generated images by the
cGAN-based approach.
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Figure 2. Input test samples in domain x are translated to domain y samples by the proposed approach
and the cGAN-based approach [10]. The difference between the ground truth and generated images of
the proposed approach and the cGAN-based approach are compared.

Figure 3. Input test samples in domain x are translated to domain y samples by the proposed approach
and cGAN-based approach [10]. Comparative analysis was performed for the difference between the
ground truth and images generated by the proposed approach and the cGAN-based approach.
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The lower the L1 norm was, the more accurate and realistic the image translation was. Here, the
L1 norm was the pixel-wise difference between the ground truth images and the generated images
from the proposed approach and the cGAN-based approach. We calculated the L1 norm to show the
effectiveness of the proposed approach in terms of per-pixel loss. From the fourth row, it can be seen
that the difference between the translated images and their corresponding ground truth images was
small compared with the cGAN-based approach in the last row. The shade of the objects is more
prominent in the last row compared with the fourth row (the proposed approach) because of the
high per-pixel loss. This showed that the proposed approach had more realistic translation compared
with the cGAN-based approach. When directly comparing the outputs of the proposed approach and
cGAN-based approach (the third and fifth rows), it was difficult to see the difference between them.
However, the L1 norm highlighted the error regions, thus providing a meaningful way for analyzing
the performance of the proposed approach. In the second analysis, we used the Cityscapes dataset
and followed the same procedure to evaluate the effectiveness of the proposed approach. The overall
analysis is shown in Figure 3. The input images are shown in the first row, which were translated by
the proposed approach and the cGAN-based approach, shown in the third and fifth rows, respectively.
The L1 distance between the outputs and their corresponding ground truth images is shown in the
fourth and last rows, respectively. From the translated images, we can observe that the fine details in
the images generated by the cGAN-based approach were not well represented, compared with the
proposed approach. In Figure 3, the electric poles in the green box were not well translated by the
cGAN-based approach, whereas the output of the proposed approach in the third row was closer to
the ground truth image in the second row. Furthermore, the “van,” which is indicated by the green
circle in the second row, was missing in the image translated by the cGAN-based approach, as shown
in the sixth row; it was well translated by the proposed approach, shown in the third row. Moreover,
the green ovals in the fourth and last rows represent the high-error regions, where the error was more
prominent in the output of the cGAN-based approach compared with the proposed approach. This
clearly showed the advantage of the proposed approach over the cGAN-based approach.

5.1.2. Translation from Domain y to Domain x

In the second experiment, we performed a comparative qualitative analysis for translating images
from domain y to domain x using the NYU dataset [30]. First, we translated images from domain y to
domain x and then evaluated the translated results based on the L1 norm between the ground truth
and translated images. Figure 4 summarizes the overall comparative results based on the NYU dataset.
The first row shows the input domain y images; the second shows the ground truth images; and the
third shows the images translated by the proposed approach. The error between the ground truth
and the generated images is shown in the fourth row of Figure 4. The fifth row shows the images
generated by the cGAN-based approach, and the last shows the error between the ground truth and
the images generated by the cGAN-based approach. We followed the same procedure discussed in the
previous section to evaluate the effectiveness of the proposed approach and the cGAN-based approach
for translating images to the corresponding cross-domain. We observed that the proposed approach
outperformed the cGAN-based approach in translating images from domain y to domain x.
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Figure 4. Input test samples in domain y are translated to domain x samples by the proposed approach
and cGAN-based approach [10]. The comparative analysis was performed for the difference between
the ground truth and images generated by the proposed approach and the cGAN-based approach.

5.1.3. Analyzing the High Erroneous Regions

Figures 2–4 compare the proposed approach with the cGAN-based approach. However, to further
elaborate the comparative analysis, we highlighted the high-error regions. For this, we used a threshold
value for the error output and marked the high-error regions in red, as shown in the fourth and last
rows of Figures 5 and 6. Figure 5 shows the comparative analysis of the NYU dataset and Figure 6 of
the Cityscapes dataset. After applying the threshold to the erroneous output, we analyzed the results.
The proposed approach had fewer erroneous regions than the cGAN-based approach for both the NYU
and Cityscapes datasets. For example, the high-error regions in Figure 5 inside the green boxes from
the proposed approach were almost negligible, compared with the high-error regions inside the yellow
boxes from the cGAN-based approach. Furthermore, for the proposed approach, the error regions were
mostly lying on the edges where the gradient was high. This was understandable because the nature
of the convolution operation that learned the correlation in the pixels in the input space resulted in the
smoothing of the boundaries of the high gradient regions. The output of the cGAN-based approach
was affected by the boundary regions and also had erroneous regions in the low gradient regions.
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Figure 5. Comparative analysis of the proposed approach with cGAN [10] with emphasis on the
high-error regions using the NYU dataset.

Figure 6. Comparative analysis of the proposed approach with cGAN [10] with emphasis on the
high-error regions using the Cityscapes dataset.
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5.2. Quantitative Analysis

The qualitative results discussed above showed the effectiveness of the proposed approach for
realistically translating images from one domain to their corresponding cross-domain, compared with
the cGAN-based approach. However, for insight into the analysis of the proposed approach, we
performed a quantitative analysis in this section. We used two different quantitative measures, the
mean squared error (MSE) and SSIM, for the comparative analysis [10]. First, we randomly selected
two batches of input test samples from the NYU [30] and Cityscapes [31] datasets and translated these
samples to their corresponding cross-domains by using the proposed approach, the cGAN-based
approach [10], and the BA-DualAE-based approach [28]. The sample-wise comparative analysis for the
NYU and Cityscapes datasets in terms of the MSE is shown in Figure 7a,b, respectively. The green plot
shows the error of the proposed approach, and the blue and cyan plots show those of the cGAN- and
the BA-DualAE-based approaches, respectively. We could observe that 70% of the samples translated
by the proposed approach from the NYU dataset had fewer errors than the cGAN-based approach,
and more than 80% of the translated samples had fewer errors than the BA-DualAE-based approach.
For the Cityscapes dataset, all samples generated by the proposed approach had a lower MSE than
the cGAN- and the BA-DualAE-based approaches. Furthermore, the per-pixel and per-image MSEs
between the ground truth and the generated samples from the proposed approach, the cGAN-based
approach, and the BA-DualAE-based approach are listed in Tables 1 and 2. Tables 1 and 2 summarize
the comparative analysis for the NYU dataset and the Cityscapes dataset, respectively. This quantitative
analysis showed that the proposed approach outperformed the cGAN- and the BA-DualAE-based
approaches by more than 26%. Furthermore, we also analyzed the structure of the images generated
by the proposed approach, the cGAN-based approach, and the BA-DualAE-based approach; for this,
we used SSIM. SSIM showed the structural similarity between the data generated by the network
and the corresponding ground truth samples. The higher the SSIM was, the better the results were.
The per-pixel and per-image SSIM results for the NYU and Cityscapes datasets are listed in Tables 1
and 2, respectively. The per-pixel and per-image SSIM values were higher for the proposed approach
than the cGAN- and the BA-DualAE-based approaches for both datasets, showing that the proposed
approach outperformed the cGAN- and the BA-DualAE-based approaches.

Figure 7. Per-image MSE of randomly selected input test samples from the (a) NYU dataset and (b)
Cityscapes dataset. The green plot shows the MSE of each input sample, and the blue and cyan plots
represent the MSEs from cGAN [10] and BA-DualAE [28], respectively.

6. Discussion

Image-to-image translation can be broadly categorized as explicit and implicit image translation
tasks based on its application. The problem of implicit image translation is multimodal, and it
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has applications in domain adaptation, super-resolution, imaging, and photo editing. Thus far, it
has shown impressive performance in domain adaptation [1–5,11,13], super-resolution [6], style
transfer [7], and photo editing [8]. In contrast, the explicit image translation was unimodal, and the
image from one domain was explicitly translated into its cross-domain. Recent work on explicit image
translation was done in [2,10,11]. The current approaches for explicit image translation were based
on GANs. GAN is comprised of two networks, the discriminator and generator. Its learning was
based on game theory, where the generator attempted to fool the discriminator by generating realistic
images. The discriminator attempted to discriminate between real images and synthetic images
generated by the generator. The generator and discriminator were trained until the discriminator
failed to discriminate between the real and synthetic images. This training mechanism was based
on the adversarial objective, which was sensitive in terms of stability, which resulted either in failed
training or low accuracy. Several learning tricks and variants of the GAN have been proposed to
overcome the stability issues of GAN, such as LapGAN [24], DCGAN [25], WGAN [26], cGAN [10],
and EBGAN [32]. This study focused mainly on minimizing the effect of adversarial loss by embedding
the AE loss either in the generator or discriminator part of the network. However, in our study, we
selected cGAN [10] as the first step of our approach and carefully analyzed the learning mechanism.
We found that the learning of the cGAN [10] was inconsistent, where the discriminator took a
pair of real and fake images. The fake pair in the cGAN [10] had one real input image and one
generated image, and the real pair had both real images. The discriminator discriminated between
real and fake pairs; however, in this scenario, the task of the discriminator was easy, and it converged
faster than the generator. Hence, it resulted in low generator output accuracy. We proposed a
consistent image-to-image translation network to address the problem of inconsistency in cGAN [10].
The consistent image-to-image translation network was comprised of two cross-domain generators
and one discriminator. The cross-domain generators translated images from their respective domains
to the corresponding cross-domains. The discriminator took the input of real and fake pairs in three
different configurations and guided the cross-domain generators to generate accurate results. In this
way, the proposed approach provided stability in training and fast convergence, while achieving a
sufficient generality and high accuracy.

To further elaborate the stability and accuracy related to the existing cGAN-based approach
in terms of imbalanced and inconsistent training, we considered an example given in Figure 8.
The first image is the input to the image-to-image translation network; the second is the ground
truth representation; and the last is the output of the cGAN-based approach. The training mechanism
was imbalanced because the discriminator took the real and fake pairs in an imbalanced manner,
resulting in unstable training. This made the discriminator converge faster than the generator. The fast
learning of the discriminator inhibited the realistic output by the generator, which affected the accuracy.
In Figure 8, the green boxes in the input and the corresponding ground-truth images show a “van.”
The last image is the output of the cGAN-based approach where the “van” was not translated in the
output image. Similarly, the red boxes in the input and the corresponding ground-truth images have
different object labels, but the translated image from the cGAN-based approach showed the group
of “people”.

To address the challenges of low accuracy due to an imbalanced and inconsistent training strategy,
we modified cGAN with a balanced and consistent training strategy, where the discriminator consumed
every possible combination of the fake pairs. We then evaluated the effectiveness of the modified
training strategy in terms of realistic image translation, as shown in Figure 9. In Figure 9, we can
observe that the “van” was translated in the output image, which was missing in Figure 8 with an
imbalanced training strategy. Moreover, the red box objects in Figure 9 were also translated reasonably
well, compared with the imbalanced cGAN in Figure 8. This showed the effectiveness of the balanced
training strategy in terms of realistic image-to-image translation.
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Figure 8. Evaluating the stability and accuracy of the GAN, where imbalanced training results in
instability that affects the accuracy.

Figure 9. Evaluating the stability and accuracy of the consistent image-to-image translation network,
where the balanced training results in stable learning that generates more accurate results.

7. Conclusions

We presented a consistent bidirectional image-to-image translation network, called the consistent
image-to-image translation network. As we demonstrated, the proposed network was highly robust
for generating realistic images with a high degree of generality with high accuracy. For the MSE,
which represented a rough measure of robustness, the network was 26% better than the conventional
cGAN-based approach. Furthermore, the balanced training strategy of the proposed network, where
the discriminator took three different configurations of fake input pairs, ensured consistency and
accuracy. The experimental results showed the effectiveness of the proposed network for generating
realistic images in the required domain. In our future work, we will extend the image translation with
further analysis for image modification, image style transfer, and accurate terrain shape estimation.
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