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Abstract: Die-stacking technology is expanding the space diversity of on-chip communications by
leveraging through-silicon-via (TSV) integration and wafer bonding. The 3D network-on-chip (NoC),
a combination of die-stacking technology and systematic on-chip communication infrastructure,
suffers from increased thermal density and unbalanced heat dissipation across multi-stacked layers,
significantly affecting chip performance and reliability. Recent studies have focused on runtime
thermal management (RTM) techniques for improving the heat distribution balance, but performance
degradations, owing to RTM mechanisms and unbalanced inter-layer traffic distributions, remain
unresolved. In this study, we present a Q-function-based traffic- and thermal-aware adaptive
routing algorithm, utilizing a reinforcement machine learning technique that gradually incorporates
updated information into an RTM-based 3D NoC routing path. The proposed algorithm initially
collects deadlock-free directions, based on the RTM and topology information. Subsequently,
Q-learning-based decision making (through the learning of regional traffic information) is deployed
for performance improvement with more balanced inter-layer traffic. The simulation results show that
the proposed routing algorithm can improve throughput by 14.0%–28.2%, with a 24.9% more balanced
inter-layer traffic load and a 30.6% more distributed inter-layer thermal dissipation on average,
compared with those obtained in previous studies of a 3D NoC with an 8 × 8 × 4 mesh topology.

Keywords: die-stacking; 3D network-on-chip; heat dissipation; runtime thermal management;
Q-function; reinforcement machine learning; Q-learning

1. Introduction

Since the mid-2000s, a chip multiprocessor (CMP) has been widely used to overcome the limitations
concerning instruction-level parallelism and power walls in a single-thread/core processor [1]. However,
the ever-increasing traffic between the processing elements created bottlenecks in conventional
bus-based CMPs [2]. Initially, a 2D network-on-chip (NoC) was proposed for mitigating the complexities
in the on-chip interconnection network [3]. Although a 2D NoC has the advantages of high scalability
and simple fabrication structure, high performance is not guaranteed, owing to the rapid deterioration
in packet latency associated with increasing physical distances as the number of processing cores
increases [4]. With the advent of through-silicon-via (TSV)-based 3D integrated circuits, structural
changes have entered a new phase, beyond 2D NoCs [5]. A 3D NoC-based CMP architecture that fully
exploits die stacking using TSV technology offers a wider bandwidth, a lower packet transfer delay and
a smaller layout footprint with shorter average internode distances than a conventional 2D NoC [6].

However, the increased thermal density in a 3D NoC eventually leads to saturation in performance
and reliability, requiring additional cooling circuitry, such as a heat sink [7]. The stacked structure of
the 3D NoC results in a longer heat dissipation path and a different inter-layer cooling efficiency [8],
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as shown in Figure 1. The processor nodes in the top layer farthest from the heat sink encounter
severe thermal problems, intensifying the heat imbalance across the layers of the 3D architecture [9].
The importance of thermal management algorithms is discussed not only in 3D NoC, but also in
microfluidic processes that are widely used in other applications, such as fluid networks or chips [10].
Moreover, the TSVs used in stacked structures are constrained by larger bonding areas, complicated
scaling processes with smaller feature sizes and sharp decreases in the yield as the number of TSVs
increases [11,12], as shown in Figure 2. The severe drop in yield causes a transition to a non-stationary
irregular (NSI) mesh, rather than the fully connected mesh of a 3D NoC topology, thereby reducing
the packet routing flexibility [13]. This leads to decreased router utilization efficiency, which, in
turn, increases the risk of deflection of the traffic load distribution, further exacerbating the thermal
problems [14].
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For temperature management in a 3D NoC, numerous runtime thermal management (RTM)
methods have been proposed. RTM is classified into proactive pre-operation approaches and reactive
post-operation approaches, as presented in Table 1. Proactive RTM collects thermal information
to predict the operating duration of each node before reaching a throttling state and the thermal
distribution of the 3D NoC is adjusted by routing to nodes with larger thermal margins [9,15,16].
Proactive RTM is advantageous in preventing the occurrence of throttled nodes. However, proactive
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RTM algorithms route packets with information predicted at a specific time and it is challenging to
address temperature changes caused by sudden traffic changes. Therefore, proactive RTM cannot
guarantee that router temperatures will remain stable for normal operation. Reactive RTM in 3D NoCs
manages temperature using a post-operation, such as forcing a node with an alarm state to become
idle [5,6,17]. Reactive RTM algorithms generate routing policies, mainly focusing on traffic congestion
as they cannot estimate the thermal margin. However, excessive blocking occurs as the number of
throttling nodes increases, resulting in a negative performance, owing to reduced routing flexibility.

Table 1. Comparison between proactive and reactive runtime thermal management in 3D
network-on-chips (NoCs).

Proactive RTM Reactive RTM

Method Predictive manner, precaution Post-operation, blocking

Pros Preventing throttled nodes in advance Concentrating on performance without
thermal pre-consideration

Cons Computation overhead for prediction Cannot prevent throttled nodes in advance
Related works PTDBA [9], Cool-elevator [15], PTB3R [16] TLAR [5], TAAR [17], TTABR [6]

Detailed
operation [18]
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Considering the factors affecting the performance and reliability of 3D NoCs, it is not always
possible to simultaneously achieve the required performance and thermal management through
a heuristic approach [7]. Moreover, manually designing algorithm rules and strategies demands
substantial engineering efforts. As a result, recent studies have proposed routing algorithms based
on reinforcement machine learning, in order to automatically generate control policies for optimal
results [19]. As reinforcement learning requires no human engineering or labeled training data when
creating policies, it has the strength to directly generate optimal decision policies by learning runtime
NoC states [20].

In adaptive routing algorithms, the Q-routing method, which combines reinforcement machine
learning and routing strategy, has been proposed [21–23]. In conventional Q-routing, each node learns
the network congestion status on the basis of local and global information, i.e., packet transfer delay,
and stores the learned outcomes in a Q-table as scores that can determine an optimal packet output
channel [21]. Stored scores (Q-values) are used as a criterion for determining the priorities of all paths.
The Q-function gradually reflects traffic load information by updating the Q-value with a weighting of
the stored scores in the Q-table to produce a new estimate from the existing neighboring nodes [22]. A
routing scheme adopting this learning has a strong potential for significantly enhanced performance
compared with conventional thermal-aware routing methods, by adapting the paths of packets to
time-varying traffic loads in 3D NoCs [23]. Furthermore, the near-optimal solution of Q-learning is
advantageous for constructing an optimal routing policy that considers performance and thermal
management comprehensively in a 3D NoC, while considering more diverse factors than a 2D NoC [7].
However, the Q-table size overhead is problematic, as decisions are made using information regarding
all paths for a specific node [23].
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The contribution of this study is the proposal of a Q-function-based traffic- and thermal-aware
adaptive routing (QTTAR). QTTAR is a Q-learning-based adaptive 3D routing algorithm for improving
overall node utilization by balancing the distribution of inter-layer traffic and providing a more
accurate congestion analysis to mitigate performance degradations due to RTM. Furthermore, the
proposed algorithm mitigates differences in inter-layer cooling efficiency by balancing the distribution
of overheated regions by layer. QTTAR recognizes regional congestion and hotspots by learning rapidly
changing networks. Based on the Q-table, QTTAR generates an optimal policy and creates a routing
decision. We describe the proposed routing algorithm in the context of two purposes: obtaining a high
level of routable path diversity and developing a Q-function-based routable direction selection strategy.
The process of collecting routable paths involves an adaptive intra-layer scheme and a downward
interlayer scheme, with the final direction selection process determined based on the Q-value stored in
the Q-table.

The rest of this paper is organized as follows. In Section 2, we introduce the Q-learning-based
algorithm and other traffic- and thermal-aware routing algorithms for a 3D NoC. Section 3 describes
the proposed QTTAR algorithm. In Section 4, we discuss the simulation results. Section 5 presents
conclusions of the study.

2. Related Work

2.1. Routing Algorithms Using Runtime Thermal Management (RTM) in a 3D Network-on-Chip (NoC)

A number of traffic- and thermal-aware adaptive routing algorithms have been proposed to solve
the temperature and traffic congestion problems in a 3D NoC. They mainly differ in the routable
direction selection strategy and the RTM method. The neighbors-on-path and regional congestion
awareness strategies are primarily used for routing direction selection [24,25]. The routable direction
selection strategy is an approach for selecting an optimal direction to minimize congested nodes until
a packet reaches its destination. According to the RTM method, the routing algorithm of a 3D NoC is
classified as either proactive [9,15,16] or reactive [5,6,17].

2.1.1. Routing Algorithms Using Proactive RTM in a 3D NoC

Proactive thermal-budget-based beltway routing (PTB3R) was proposed for identifying potential
thermal hotspots based on the remaining active time of nodes before throttling [16]. The PTB3R
approach introduced the concept of calculating a mean time to throttle (MTTT) based on current
temperature difference and temperature consumption rate in order to to predict the thermal margin
of the router before throttling. It attempted to minimize the number of throttling nodes by sending
packets to areas with high MTTTs.

Thermal-aware dynamic buffer allocation for proactive routing (PTDBA) balances thermal
distribution by adjusting the depth of the router’s input buffer [9]. The PTDBA bypasses packets by
inducing traffic congestion toward a router with a high rate of temperature rise. Bypassed packets are
sent to a non-congested region with a low rate of temperature rise, thereby improving thermal balance
and reducing packet congestion.

However, the temperature consumption rates for PTB3R and PTDBA are both calculated from
traffic load information at a certain time in the past, which inhibits an accurate reflection of the current
state of the network. Moreover, differences between predictions and actual network conditions lead to
a failure in preventing throttled nodes, thereby reducing the efficiency of proactive operations.

2.1.2. Routing Algorithms Using Reactive RTM in a 3D NoC

Transport-layer assisted routing (TLAR) balances the traffic load between layers, through separate
routing in vertical and horizontal directions, based on topology information [5]. TLAR prefers
downward routing and distributed traffic to achieve a thermal balance between layers with lateral
routing through the selective use of deterministic and adaptive methods. However, when horizontal
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routable directions in the NSI mesh are insufficient, the TLAR performs mainly downward routing.
Thus, the traffic load in the bottom layer rapidly increases, reducing the traffic load imbalance
between layers.

Topology-aware adaptive routing (TAAR) provides a novel cascaded algorithm that dynamically
adjusts the packet routing mode based on network topology [17]. Concurrently, TAAR mitigates traffic
imbalances between layers using queuing analysis theory. TAAR transmits packets to a non-congested
minimal region, based on regional traffic information at the time of routing. However, contention still
occurs, owing to an excessive concentration of packets in the minimal region, which may worsen the
thermal imbalance.

A traffic- and thermal-aware adaptive beltway routing (TTABR) was introduced to solve
imbalanced traffic and temperature distributions by dynamically selecting non-minimal or minimal
routing paths [6]. The addition of non-minimal paths ensures the number of routing paths, reducing
excessive contention problems in minimal routing regions. However, as a packet is sent to a bypass
path using only traffic information at the routing point, the packet can still reach a hotspot region, as
the information to determine actual hotspots can be insufficient.

2.2. Q-Learning-Based Routing Algorithm

A Q-learning-based routing scheme alleviates packet transfer delays caused by network congestion
in a 3D NoC, with the strength to directly generate optimal decision policies by learning runtime NoC
states [7]. A learning packet containing traffic condition information is used to update the Q-table
and the optimal output channel is determined based on the stored values. The proposed routing
scheme achieves higher throughput and lower power consumption using up-to-date congestion values.
However, as the network size increases, the Q-table can cause excessive area overhead because Q-values
for all possible route paths are stored. Moreover, existing Q-learning-based routing methods do not
incorporate RTM to address thermal management.

The reactive and proactive RTM-based routing techniques described can resolve the overall
thermal and contention problems of 3D NoCs, but inter-layer traffic imbalances and performance
degradations caused by network congestion still remain challenges. In addition, previous studies
using Q-learning did not consider 3D topology and thermal awareness when constructing the Q-table.
Therefore, we propose a QTTAR algorithm that adopts RTM and also learns the traffic state of the 3D
NoC to enable routing policies to be fully aware of congested regions.

3. Q-Function-Based Traffic- and Thermal-Aware Adaptive Routing (QTTAR)

Existing 3D NoC routing algorithms with RTM reduce thermal imbalances. However, traffic
congestion owing to frequent blocking from the RTM mechanism and thermal considerations lead to
performance degradation. QTTAR adopts the blocking mechanism of reactive RTM and simultaneously
aims to alleviate performance degradation and inter-layer thermal imbalance. QTTAR generates
routing policies to enable the paths of packets to be fully adapted to the time-varying traffic conditions.
To prevent cyclic dependencies and ensure the diversity of routable directions that is important for
maximizing the efficiency of the optimal Q-learning solution searching process, the first step of QTTAR
involves collecting deadlock-free routing directions based on the topology and location of throttled
nodes. In the second step, a policy is created to minimize latency by selecting the final direction via
decision-making based on traffic congestion. Through these steps, QTTAR improves the inter-layer
traffic load distribution, balances the per-layer biased utilization, performs thermal management and
ultimately improves performance. The details of the process are as follows.

Step 1. Obtaining a high level of routable path diversity—we divide the routing process into intra-
and inter-layers to prevent deadlock generation between the vertical and horizontal directions and to
create a candidate group of directions for a packet to proceed, based on information regarding the
throttling node;
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Step 2. Q-function-based routable direction selection strategy—we check the buffer status of each
node and score traffic information for each direction. Next, each node updates the Q-table after
learning the state of network congestion and, based on the updated information, routes the packet to a
non-congested direction among the candidate groups created in the preceding step.

3.1. Obtaining a High Level of Routable Path Diversity (Step 1)

The first step in QTTAR is to identify the throttling nodes for a minimal region from the current
node to the destination node, then create a candidate group of deadlock-free directions. When the
routing function is deterministic, the flexibility of the routable direction decreases rapidly if the minimal
region is saturated with throttling nodes. In this case, there are few deadlock-free directions to choose
from during the Q-table-based routing decision. Thus, we introduce an adaptive routing function
to provide multiple deadlock-free directions. The selection of deadlock-free directions is configured
independently using intra- and inter-layer routing to prevent cyclic dependency between the horizontal
and vertical directions. Figure 3 shows the flow chart of the first step in QTTAR, where NC and ND

represent the current node and destination node, respectively. The intra-layer routing contains a
2D NoC deadlock-free “odd–even” routing algorithm [26] providing even path diversity, whereas
the inter-layer routing is based on a downward scheme. Existing thermal-aware routing algorithms
dominantly use downward schemes despite the fact that routable paths still exist in the XY plane,
resulting in an excessive thermal concentration in the lower layers [6,17]. Thus, QTTAR uses odd–even
routing when NC is located above the throttling layer to increase the flexibility of the routing function
and maximize the efficiency of Q-table-based decision making. Finding a route adaptively increases the
diversity of paths compared with a deterministic approach. However, the computational complexity
is O

(
4N

)
when all paths are found adaptively for the intra-layer region, which makes the overhead

of the selection process very high [5]. The computational overhead is reduced by only searching for
throttling nodes for minimal path regions.
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Figure 4 shows the detailed operations of the routing function for collecting deadlock-free
directions in QTTAR, where NP and Nn are the previous node and a node n-hops away from the
current node, respectively. Depending on the presence of throttling nodes in the minimal region, the
directions are classified into inter-layer and intra-layer. If no throttled node exists in the minimal path
region, the routing directions are initially selected through odd–even routing to ensure diversity for
the subsequent Q-table-based routing decision phase, as shown in Figure 4a. If a throttling node is
detected in the minimal region, intra-layer routing is performed according to the relationship of the x
and y coordinates of the nodes NC and ND. If the x and y coordinate pairs of the two nodes are the
same, downward routing occurs in the inter-layer and, if they are different, odd–even routing occurs in
the same horizontal plane, as shown in Figure 4b. Through this process, QTTAR achieves reactive
RTM by determining the final direction by bypassing the area containing the throttling nodes.
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QTTAR prohibits routing of {North, South, East, West} followed by {Up} to prevent cyclic
dependency between inter- and intra-layers, as shown in Figure 5. The {Up} direction routing is
performed only when the x and y coordinate pairs of NC and ND are all equal and the destination is in
the upper layer. This ensures that the directions selected in the first step of QTTAR are deadlock-free.
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3.2. Q-Function-Based Routable Direction Selection Strategy (Step 2)

The second step of QTTAR is updating the Q-table based on network congestion information and
selecting the direction with the most positive Q-value, as shown in Figure 6. The goal of this step
is to select a final direction towards the non-congested region. QTTAR uses Q-learning to estimate
the congestion of the network as close to the actual state as possible. Based on the estimated value, a
Q-function-based routable direction selection strategy is established. Previous studies that introduced
Q-tables in a 2D NoC [21–23] stored estimates for the paths for all nodes in the system in each node.
Figure 7a shows a conventional Q-table for a node in a 3D mesh network with an 8 × 8 × 4 topology.
In the Q-table, each row corresponds to a destination. Because a separate row is dedicated to each
destination in the network and the number of nodes increases in multiples of the number of layers
(compared to a 2D NoC), the area overhead of the Q-tables becomes problematic in a 3D NoC. To
minimize the size of the Q-table, we simplified the row index to four directions of the intra-layer rather
than using the number of destination nodes, as depicted in Figure 7b. In an n×m× l 3D mesh, the row
size of the Q-table decreases n×m× l to four.
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Updating the Q-value in the simplified Q-table is based on information from nodes that are two
hops away, because the computational cost of searching all nodes is very high. N1 is one hop away
from NC, N2 is two hops away and these nodes belong to the minimal path region in the {North, South,
East, West, Up, Down} directions of NC. N1 checks the throttling and buffer queue information of
N2 and delivers an estimate to NC. The estimate is a medium for identifying the traffic congestion
and throttling state for each direction in NC; a greater value indicates a more positive routing for that
direction. Assuming an 8 × 8 × 4 topology, an estimate passed from N1 to NC can reflect information
from up to nine nodes, including one node up and one node down for the minimal region and two hops
apart on the same plane, as shown in Figure 8. NC can identify routing information by considering
regional information, rather than network information limited to minimal regions.Electronics 2020, 9, 392 9 of 18 

 

 
Figure 8. Detailed information collection method toward minimal region. 

After receiving the estimate for each direction,  calculates the new Q-value for the final 
routing decision, by combining the old Q-value and the estimate. This is expressed in Equation (1) as ′( , ) = ( , ) + ∆ ( , ), ∈ ℎ, ℎ, , , (1)

where ( , ) represents the old Q-value being updated from the past to the present when routing 
from the current node to direction z and ′( , ) is the new Q-value updated for the packet to be 
routed, calculated as the sum of ( , ) and ∆ ( , ). In this case, the larger the Q-value, the more 
positive the value of ′( , ) . The parameter ∆ ( , )  is the delta estimate for modification and is 
expressed in Equation (2) as ∆ ( , ) = ⋅ ∑ ( , ) ( , ) , ∈ ℎ, ℎ, , , , ,  (2)

where ( , )  represents the sum of newly received estimates from neighbor nodes in each 
direction, i.e., the scores implying input buffer state of neighbor nodes. ∆ ( , ) act as modifiers to 
update the new Q-values using old Q-values and estimates from adjacent nodes. Algorithm 1 
presents the mechanism for updating the Q-table in each node. 
  

Figure 8. Detailed information collection method toward minimal region.

After receiving the estimate for each direction, NC calculates the new Q-value for the final routing
decision, by combining the old Q-value and the estimate. This is expressed in Equation (1) as

Q′(b,z) = Q(b,z) + ∆Q(b,z), z ∈ {north, south, east, west}, (1)

where Q(b,z) represents the old Q-value being updated from the past to the present when routing from
the current node to direction z and Q′(b,z) is the new Q-value updated for the packet to be routed,
calculated as the sum of Q(b,z) and ∆Q(b,z). In this case, the larger the Q-value, the more positive
the value of Q′(b,z). The parameter ∆Q(b,z) is the delta estimate for modification and is expressed in
Equation (2) as

∆Q(b,z) = α·
(∑

S(neighbor,y) −Q(b,z)

)
, y ∈

{
north, south, east, west, up, down

}
, (2)

where S(neighbor,y) represents the sum of newly received estimates from neighbor nodes in each direction,
i.e., the scores implying input buffer state of neighbor nodes. ∆Q(b,z) act as modifiers to update the new
Q-values using old Q-values and estimates from adjacent nodes. Algorithm 1 presents the mechanism
for updating the Q-table in each node.

The parameter α is a learning rate for determining the weight of a delta estimate. The learning
rate is a value between zero and one and determines how much to overwrite the old value by when
reflecting new information to the Q-table. We can observe the best average latency when the learning
rate is 0.6 (as determined through empirical experiments) and we used a learning rate of 0.6 in all
experiments. Figure 9 shows the results from analyzing a learning rate of 0.6 compared to other values.
A learning rate of 0.3 indicates that the old data have a heavy weight and 0.9 indicates that the new
data have a heavy weight. Through this process, each node in the network updates the Q-table with
the newly calculated Q′(b,z), selects the direction with the largest value and then performs routing.
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Algorithm 1 Updating Q-table.

1: Set All directions←
{
north, south, east, west, up, down

}
2: Set Neighbor data[i]←

{
validation, number o f available bu f f er slot, throttling

}
from direction i

3: Set Port data[i]← Neighbor data [All directions] received from i-th port
4: Set Q-value[i]← Estimates for direction i
5:
6: Variables
7: Bool validation
8: Bool throttling
9: Integer free_slots
10: Integer Temporal_score
11:
12: Function Update
13: for i = 0 to size (All directions) do
14: Temporal data← Port data[i]
15: for j = 0 to size (All directions) do
16: if Temporal data.Neighbor data[j].validation == valid
17: validation← true
18: else validation← false
19:
20: if Temporal data.Neighbor data[j].throttling == throttled
21: throttling← true
22: else throttling← false
23:
24: free_slots← Temporal data.Neighbor data[j].buffer slot
25: Temporal_score + = (int) validation× throttling× f ree_slots
26: end for
27:
28: Q-value[i]← (1 - Learning_rate) * Q_value[i] + Learning_rate * Temporal_score
29: end for
30: end functionElectronics 2020, 9, 392 11 of 18 
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To minimize hardware complexity from floating-point multiplication, which is a drawback of
Q-learning-based routing, we devised a method to reduce the amount of computation. QTTAR
reads a pre-calculated value from the look-up table (LUT) inside the router, rather than performing
multiplication operations every time. Based on the architecture information, the range of calculated
values is pre-determined and divided into four sections. If the estimates belong to one section, the
method reads the contents of the LUT, as shown in Table 2. This method is used to calculate ∆Q(b,z),
which changes the multiplication process to a simple index and reduces the area overhead of the
floating-point multipliers. Smax is the maximum value among

∑
S(neighbor,y) and is expressed as the

product of six directions {North, South, East, West, Up, Down} and the buffer flit size. Smax is expressed
in Equation (3) as

Smax = max
{∑

S(neighbor,y)

}
= buffer flit size× 6, (3)

Table 2. Look-up table for simplified multiplication.

Range Value

0 ≤
∑

S(neighbor,y) < 0.2× Smax 0.1× Smax
0.2× Smax ≤

∑
S(neighbor,y) < 0.5× Smax 0.35× Smax

0.5× Smax ≤
∑

S(neighbor,y) < 0.8× Smax 0.65× Smax
0.8× Smax ≤

∑
S(neighbor,y) < Smax 0.9× Smax

4. Simulation Results

AccessNoxim [27], which provides the co-simulation and 3D configuration, was used to
demonstrate the advantage of the proposed method. For the comparison of various routing algorithms,
an NoC simulator, Noxim [28] and an architecture-level thermal model, HotSpot [29], were applied
together. Table 3 presents the simulation parameters used for co-simulation comprising the network,
power and thermal models of a 3D NoC, which are default values in AccessNoxim [27]. Each 3D router
contains two extra physical channels {Up, Down} for vertical connections and the depth of each input
buffer is 16 flits without a virtual channel. We evaluated network performance, including average
latency, throughput, traffic load and temperature distribution with two related studies. One was the
topology-aware routing proposed in [17] (referred to as ’TAAR’) and the other employed the traffic-
and thermal-aware routing method proposed in [6] (referred to as ’TTABR’).

Table 3. Specification of parameters for simulation [27].

Parameter Value

Packet size 8 flits
Buffer size 16 flits

Simulation time 5× 105 cycles
Warm-up time 4000 cycles

Mesh size 8 × 8 × 4
Throttling scheme vertical throttling

Traffic pattern random, transpose-1, shuffle, bit-reversal
Temperature threshold 98 ◦C

Initial temperature 80 ◦C

4.1. Performance

Figure 10 shows an average latency comparison for random, transpose-1, shuffle and bit-reversal
traffic patterns for the same simulation time. The corresponding throughput comparison is shown in
Figure 11. QTTAR showed performance improvement over TAAR and TTABR, regardless of the traffic
pattern. Although TTABR provides greater path diversity than TAAR, the similar routing function
produces almost identical latency. QTTAR achieved the highest latency improvement (3.98 times)
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in the transpose-1 traffic pattern, as shown in Figure 10b. Considering that the transpose-1 traffic
pattern focuses on burst communication to a specific node, the result indicates that QTTAR effectively
distributes packets that have the same destination. Thus, the proposed algorithm reflects the regional
realistic congestion state in more detail through the Q-function, based on improved routing diversity
and improved congestion-aware routing compared to other algorithms. Additionally, QTTAR exhibited
a throughput improvement in the range of 14.0%–28.2% compared with TAAR and TTABR.
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their traffic load distributions are similar. The standard deviation of each node in the QTTAR is not 
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4.2. Traffic Load Distributions

Figure 12 shows the traffic load distributions under random, transpose-1, shuffle and bit-reversal
traffic patterns. The averages and standard deviations for the traffic load distributions are presented
in Table 4. QTTAR exhibited 24.9% more balanced inter-layer traffic load on average compared to
TAAR and TTABR. Because TTABR and TAAR employed a similar routing function, their traffic load
distributions are similar. The standard deviation of each node in the QTTAR is not significantly different
from that of the other algorithms, but the standard deviation of the inter-layer traffic load distribution
is the lowest in all but the shuffle traffic pattern. This is because TAAR and TTABR perform inter-layer
routing only after confirming the intra-layer adaptability, without considering the inter-layer traffic
load information. Therefore, if the destination node is located in a different layer, downward routing
prevails, causing an unbalanced inter-layer traffic load distribution. Considering that the shuffle traffic
pattern is mainly for intra-layer communication, the scale of packets processed per layer significantly
influences the inter-layer traffic load distribution. Consequently, the inter-layer traffic load distribution
of the QTTAR is unbalanced only in the shuffle traffic pattern.
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Table 4. Traffic load and temperature distribution comparison under different conditions for
thermal-aware adaptive beltway routing (TTABR), topology-aware adaptive routing (TAAR)
and QTTAR.

Random

Traffic load distribution Temperature distribution

Algorithms TTABR TAAR QTTAR TTABR TAAR QTTAR
Avg. 678,252 646,493 683,231 93.41 92.92 93.19
Stdv. 172,380 216,223 217,058 3.10 3.39 3.26

Inter-layer Stdv. 108,680 92,388 88,832 0.98 0.83 0.36

Transpose-1

Traffic load distribution Temperature distribution

Algorithms TTABR TAAR QTTAR TTABR TAAR QTTAR
Avg. 544,676 608,262 609,948 90.86 91.46 91.99
Stdv. 219,945 216,159 201,076 2.90 3.23 3.25

Inter-layer Stdv. 143,969 124,835 96,728 1.01 0.82 0.24

Shuffle

Traffic load distribution Temperature distribution

Algorithms TTABR TAAR QTTAR TTABR TAAR QTTAR
Avg. 461,710 488,110 563,517 90.66 90.91 91.80
Stdv. 171,942 200,824 179,000 2.86 3.09 3.22

Inter-layer Stdv. 38,188 49,838 45,813 0.35 0.30 0.38

Bit-reversal

Traffic load distribution Temperature distribution

Algorithms TTABR TAAR QTTAR TTABR TAAR QTTAR
Avg. 285,068 249,169 276,730 88.40 87.92 88.25
Stdv. 159,237 174,110 144,133 1.98 2.02 2.07

Inter-layer Stdv. 45,284 40,791 14,320 0.28 0.22 0.23

Unit : f lit (tra f f ic load distribution), ◦C (temperatrue distribution).
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4.3. Temperature Distributions for Traffic Patterns

Figure 13 illustrates the temperature distributions for random, transpose-1, shuffle and bit-reversal
traffic patterns. The averages and standard deviations of the temperature distributions are presented
in Table 4. Because the QTTAR improved the throughput by 14.0%–28.2%, the temperature and
standard deviation increased by 1.3% and 4.7% on average, respectively. However, the inter-layer
standard deviation for temperature was reduced by 30.6% on average, thereby indicating a more
balanced temperature distribution by layer. This is because the QTTAR sent packets in a direction that
avoided the high-temperature regions associated with excessive congestion, similar to the traffic load
distribution by layer shown in Figure 12.
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5. Conclusions

Three-dimensional die-stacked NoCs have a wider bandwidth and lower packet latency than
2D NoCs, which have significant drawbacks, such as increased thermal density and unbalanced
heat dissipation. Various RTM techniques have been introduced to reduce hotspots. However,
inter-layer traffic imbalances and performance degradations remain. In this study, we proposed a
Q-function-based 3D NoC routing algorithm with a learning scheme, to mitigate the performance
degradations of existing 3D NoC routing algorithms based on RTM. QTTAR gradually learns the
network conditions and determines the optimal paths for each direction in the runtime, establishing a
routing policy that considers the congested region more accurately, while maintaining the RTM. The
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simulation results revealed that QTTAR reduced latency and improved throughput by 14.0%–28.2%
compared to previous studies, due to its more balanced inter-layer traffic loads. Furthermore, QTTAR
provided effective inter-layer thermal management, reducing the standard deviation of the inter-layer
temperature distribution by 30.6% on average.
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