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Abstract: Feature detection, description, and matching are crucial steps for many computer
vision algorithms. These steps rely on feature descriptors to match image features across sets
of images. Previous work has shown that our SYnthetic BAsis (SYBA) feature descriptor can offer
superior performance to other binary descriptors. This paper focused on various optimizations and
hardware implementation of the newer and optimized version. The hardware implementation on a
field-programmable gate array (FPGA) is a high-throughput low-latency solution which is critical
for applications such as high-speed object detection and tracking, stereo vision, visual odometry,
structure from motion, and optical flow. We compared our solution to other hardware designs of
binary descriptors. We demonstrated that our implementation of SYBA as a feature descriptor in
hardware offered superior image feature matching performance and used fewer resources than most
binary feature descriptor implementations.

Keywords: synthetic basis; FPGA; feature descriptor

1. Introduction

Image processing for humans involves using sight and then mentally breaking down what is
seen to give it meaning. The human visual system can easily distinguish and recognize individual
components and quickly make deductions about them based upon prior experience. For computer vision
engineers, the task is to teach a computer to extract some desired meaning or information from an image
or series of images as well. These algorithms often involve computationally intensive tasks such as object
identification [1,2], localization and pose estimation [3], optical flow [4,5], super-resolution [6], visual
odometry [7,8], target tracking [9], 3D reconstruction [10], and many others. The primary process to
implement these algorithms is to find features in an image and then match them to corresponding features
in another image. This process generally follows three steps: feature detection, feature description, and
feature matching.

Feature detection is the process of identifying so-called “interesting” parts of an image. An image
feature is generally something trackable, distinguishable, and hopefully unique. Thus, image features
typically consist of corners, blobs, non-straight edges, or other ridges. Feature detection is often
referred to as key-point detection. After feature detection, a feature description is generated around
a feature region of interest or FRI. Feature description seeks to describe the FRI in a unique enough
way to increase the probability that the features across images will match correctly. Ideally, a feature
description is resistant to image deformations and changes such as noise, illumination, perspective,
rotation, scale, blurriness, JPEG or other compression artifacts, and more. There are many different
methods to perform feature description and these generally offer trade-offs between accuracy and

Electronics 2020, 9, 391; doi:10.3390/electronics9030391 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-1752-8146
http://dx.doi.org/10.3390/electronics9030391
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/3/391?type=check_update&version=2


Electronics 2020, 9, 391 2 of 21

run-time performance. Each method must be efficient enough to allow for a large number of features
to be compared in a relatively short time for real-time applications. This is even more difficult for low
power and low resource embedded systems which are becoming increasingly prevalent in computer
vision applications. The implementation of these algorithms on platforms such as field-programmable
gate arrays (FPGAs) and embedded processors deserve special consideration.

This paper explores and expands upon our feature description and matching algorithm called
a synthetic basis feature descriptor (SYBA) [11–13]. SYBA was designed to be hardware-friendly
by eliminating the need for operators that are generally costly to implement into FPGAs or other
hardware platforms. SYBA does not make use of multiplication, square roots, or trigonometry,
which is common for other intensity-based feature descriptors. SYBA can be implemented with
only basic hardware functions such as adders, comparators, and simple logic gates (primarily NOR).
In addition to being more hardware friendly, SYBA was designed to be efficient in general by reducing
the complexity of feature descriptions and computations, as well as reducing the storage costs for
storing the descriptors [11]. In this paper, the following accomplishments are detailed: the first-ever
hardware implementation of SYBA, key optimizations to SYBA to make it smaller and faster, hardware
optimizations that are competitive with other hardware implementations of feature descriptors, and
the hardware implementation of this optimized version of SYBA onto an XCZ7020 FPGA.

1.1. Review of Existing Algorithms for Feature Detection, Description, and Matching

The most widely used and prominent algorithms for feature detection, description, and matching
are the scale-invariant feature transform (SIFT) [14] and the speeded-up robust features (SURF)
algorithms [15]. SIFT is well-known and uses orientation and a magnitudes-of-intensity gradient-based
feature descriptor. It works very well on intensity images and provides feature descriptions that are
invariant to both rotation and scaling. This increase in robustness and complexity comes at the cost of
higher computation and storage requirements rendering it unsuitable for many resource-constrained
applications. SURF is used more commonly, as it relies on integral images that help cut down its execution
time. However, it has a relatively large storage requirement (256 Bytes) and a high computational cost.

More recently, binary feature descriptors have been developed that have more compact sizes
and lower computational requirements. These generally compute the descriptor with pixel-level
intensity comparisons. Among the most common of these are binary robust independent elementary
features (BRIEF) [16], binary robust invariant scalable keypoints (BRISK) [17], oriented fast and rotated
brief (ORB) [18], and Fast REtinA Keypoint (FREAK) [19]. These descriptors trade reliability and
robustness for computational speed. BRIEF consists of a binary string, which is the result of multiple
intensity comparisons within a single image at random but predetermined locations. A newer version
of BRIEF called rBRIEF has been developed by Rublee et al. [18]. rBRIEF uses learned pixel pairs
rather than random locations to reduce the correlation among the binary tests. Like BRIEF, rBRIEF
requires only 32 bytes to represent a feature point. BRISK relies on configurable concentric circles
with more points on the outer rings for its sampling patterns from which it also computes brightness
comparisons. It computes the orientation of the keypoint using local gradients between the sampling
pairs within the pattern that allows BRISK to be rotation invariant. Overall, this requires significantly
more computation (including division and multiplication) and slightly more storage space than BRIEF.

To address this issue, ORB was developed to maintain BRIEF’s low computational complexity but
maintain rotational invariance. ORB uses a set of 256 learned pixel pairs and only requires 32 bytes
to represent a feature point. The ORB descriptor also includes orientation information, which helps
make it rotation invariant. While ORB has this significant advantage over BRIEF for rotated images,
BRIEF tends to outperform ORB in other cases [20]. Finally, FREAK uses a sampling pattern that is
inspired by a retinal sampling grid. This means that there is higher density of points around the center
of the sampling pattern. It is similar to the human vision system where peripheral vision is blurry
compared to what is seen when looking straight ahead. FREAK uses an orientation assignment similar
to BRISK’s that allows it to be rotation invariant.
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Created at Brigham Young University’s Robotic Vision Lab, SYBA offers an alternative to other
binary feature descriptors. SYBA is also a binary feature descriptor; however, it is formed in an
entirely different way and is inspired by compressed sensing theory. Compressed sensing theory uses
synthetic basis functions to uniquely encode or reconstruct a signal. SYBA works by performing several
similarity tests between a feature region of interest (FRI) and a predetermined number of synthetic
basis images (SBIs) [11]. By only storing the similarity of the FRI to each SBI, the overall storage size is
reduced dramatically. It also makes comparisons when searching for feature matches easier.

In short, the SYBA descriptor is designed to provide real-time vision applications high feature
matching accuracy with computational simplicity, relatively low resource requirements, and a hardware
friendly design. SYBA has previously been compared with two well-known binary descriptors,
BRIEF-32 and rBRIEF, and has been shown to produce better feature matching results [11]. Figure 1
shows a summarized version of work previously performed in Reference [11], which compares SYBA
to various other feature descriptors. This work was performed on the academically common Oxford
dataset. In general, for minor rotation and scale variations, SYBA performed better than other methods.
SURF performed the best for the Graffiti sequence in which significant perspective changes cause sever
rotation and scale variations. Previous work also includes several applications of SYBA based on a
software implementation [13], including visual odometry drift reduction [21].
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1.2. Review of FPGA architectures for Feature Detection and Description

In this section, a review is presented on some of the methods used to do feature detection and
description on field-programmable gate arrays. The use of programmable logic instead of software to
do image processing enables custom hardware circuitry to accelerate the process. Many of the primary
functions for computer vision are inherently parallelizable, including thresholding, convolution, color
space conversion, feature detection, feature description, and feature matching. Pixels are generally fed
into a hardware system by some means of a pixel clock and associated data. Hardware designs have
been made that do image processing with pixel data coming in directly from a camera (including this
work), HDMI, ethernet, and off-chip DDR.

The steps for image processing with features in hardware follows the familiar process of feature
detection followed by feature description. Whether or not feature matching is included in the
implementation varies on the application. The first choice to be made is what feature detector should
be used. Some FPGA based systems have employed state of the art feature detection such as SIFT as
in References [22] and [23]. As mentioned in the previous section, SIFT requires the use of several
functions that are not very hardware friendly. This causes these implementations to have relatively
high resource usage and also requires the use of digital signal processing (DSP) slices.

Several implementations have made use of the Harris Corner feature detector to reduce resource
usage as in References [24] and [25]. Others have elected to reduce resource usage further and have
used the Features from Accelerated Segment Test (FAST) feature detector as in References [26] and [27]
since FAST is a simpler feature detector and requires fewer resources to implement.
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Following this, a feature descriptor must be chosen, with many FPGA implementations using
BRIEF, including References [26] and [27]. The usage of FAST and BRIEF on FPGAs is common because
they are generally very hardware friendly. One of the primary drawbacks of these binary feature
detectors and descriptors is a lack of scale and rotation invariance, although small changes are tolerable.
Thus, these will not have the same accuracy as implementations that make use of SIFT or SURF but
will have much lower resource usage.

In comparison to BRIEF, SYBA has been shown to have better feature matching performance as
in Figure 1. More detailed comparison results are available from previous works in References [11]
and [21]. Like the other binary methods described, SYBA is not scale or rotation invariant but will
tolerate small changes. In this work, we show that SYBA can also have significantly less resource usage
in FPGAs while maintaining its feature matching accuracy. This makes it a superior implementation to
other common binary feature descriptor implementations in hardware.

2. Algorithm

The focus of SYBA is to use synthetic basis images (SBIs) that are overlaid onto the feature region
of interest (FRI) and then compared. This comparison generates several hits that are then compared
and matched to find image correspondence. This idea was inspired by the concept of compressed
sensing theory to uniquely describe the image region and generate the binary descriptor. SYBA also
utilizes a unique matching scheme to produce accurate feature matches.

2.1. Compressed Sensing Theory

Compressed sensing theory is used to encode and decode signals efficiently and can reduce
bandwidth and storage requirements. This is an advantageous feature for resource-limited systems.
It is capable of uniquely describing signals with synthetic basis functions, and therefore, found a
suitable application for feature description. The basic idea of synthetic basis functions for compressed
sensing is to use random patterns as a guess. For image feature description, these random patterns are
simply patterns of black and white pixels being the SBIs. The black pixels are the points which are
sampled and compared against the original image. The equation to find the maximum number of
different random patterns required is given in Equation (1) [28]. Where N is the number of pixels on
the image feature region, K is in the number of random guesses per pattern, and M is the total number
of random patterns that are required to accurately encode the signal. M is smallest when K = N/2,
meaning that SBIs will be 50% black and 50% white. For example, for a 5 × 5 FRI, N = 25, K = 13, and
M = 9. For a 30 × 30 FRI, N = 900, K = 450, and M = 312.

M = C
(
K ln

N
K

)
, (1)

2.2. SYBA Feature Description

The SYBA algorithm is only used for describing and matching FRIs but cannot be used to detect
features in an image. Therefore, a feature detector is needed in conjunction with SYBA to identify
FRI’s. In the original SYBA work, SURF was used to find feature point locations. This was done
since most other literature also used SURF as the feature detector for software-based implementations.
This meant that the detected feature points would be the same, and thus, offer a fair comparison to
other papers. For feature description and detection systems that are built into hardware, simpler
detectors are commonly used. The hardware friendly feature descriptor, features from accelerated
segment test (FAST), is commonly used in these systems, and so it was also used in this work and
detailed in the hardware implementation section.



Electronics 2020, 9, 391 5 of 21

Once the feature point has been detected, the FRI must then be binarized based upon the average
intensity of the image region. This calculation allows SYBA to be illumination invariant. To do this,
an average intensity (g) of the FRI needs to be calculated as

g =

∑
x,y I(x, y)

p
, (2)

where I(x, y) is the intensity of each pixel at location (x, y), and p is the number of pixels. The binary
FRI (BFRI) is then generated using the average intensity g.

BFRI(x, y) =
{

1 I(x, y) > g
0 otherwise

(3)

Since the SBI is an image of the same size as the BFRI, the images can be overlaid for easy
comparison. As described above, the number of black pixels should be set to half the region size
(rounding up in case of odd dimensions). The images are then compared to generate a similarity value.
If each pixel is black, then this is counted as a hit, while any other combination is not a hit. This is
equivalent in a hardware setting to a NOR gate. The number of corresponding hits is then counted
for each SBI. These are represented as unsigned numbers that are concatenated together to form the
descriptor. The length of the descriptor, without considering pixel coordinates, is given by Equation (4).

L = Ns×Nb×R , (4)

where L is the length of the descriptor, Ns is the number of SBIs, Nb is the number of bits needed to
represent the maximum number of hits for that SBI, and R is the number of subregions (only used in
SYBA 5 × 5).

For SYBA 30× 30, this means that each of the 312 SBIs can have a maximum of 450 hits. This number
of hits can be represented as an unsigned number with nine bits. This means that the final descriptor
length will be 312 × 9 × 1 = 2808 bits. SYBA 30 × 30 has great image feature matching performance,
but it comes at a higher cost computationally. To be competitive with other simple feature descriptors,
SYBA 5 × 5 was developed and uses far fewer operations and still offers very good image feature
matching performance, as shown in Figure 2. For SYBA 5 × 5, only nine SBIs are needed that can each
have a maximum of 13 hits. This number of hits can be represented as an unsigned number with 4 bits.
This means that the final descriptor length will be 36 × 9 × 4 = 1296 bits.
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similarity measure with nine example SBIs (synthetic basis images).

It is worth noting that this feature description length is less than the number of bits needed for
more advanced feature descriptors such as SIFT and SURF, which use 256 bytes or 2048 bits [11]. BRIEF
has several variants with different length descriptors. BRIEF-16 uses 128 bits, BRIEF-32 uses 256 bits,



Electronics 2020, 9, 391 6 of 21

and BRIEF-64 uses 512 bits. Thus, the SYBA 5 × 5 descriptor has a larger descriptor size than BRIEF.
SYBA has still found value as a competitive feature descriptor as the authors showed that despite
being larger, it could produce better feature matching results. As part of the research in this work,
it was found that the SYBA descriptor length could be reduced significantly with minimal impact on
accuracy. The results and discussion of this are contained in Section 4. For the sake of easy comparison
to the numbers listed here, it was found that SYBA 5 × 5 with only three SBIs offers comparable image
feature matching performance and reduces calculations and descriptor length to only 1/3 of the original
size. Thus, the SYBA 5 × 5 descriptor when using only three SBIs needs only 432 bits.

2.3. SYBA Feature Matching

The first step in any feature matching algorithm is to determine the similarity between two feature
descriptions. Note that this similarity does not refer to coordinate distance between the feature points
in the image space, but rather refers to the similarity between the descriptions themselves. Euclidean
distances are often used as comparison metrics for this, but it requires complex operations such as
multiplication and square root operators.

More basic distance operations include the hamming distance, L1 norm, and L2 norm. The hamming
distance requires only an XOR operation and adders, so it is very computationally simple. The L1 norm
requires only adders and an absolute value operation, which can be implemented simply from other basic
hardware operations. The L2 norm requires adders, an absolute value operation, and a square multiplier.
SYBA makes use of the L1 norm, as it is principally interested in the difference between the numbers of
hits for each SBI and only requires simple hardware. The equation for the L1 norm is as follows:

d =
∑n

i=1

∣∣∣xi − yi
∣∣∣ (5)

where xi and yi represent the number of hits (the unsigned value) for all n comparisons, where n is the
total number of SBIs times the number of sub-regions.

The algorithm for feature matching is based on the similarity between two feature descriptors.
First, the point-to-point correspondence is determined by comparing each descriptor in the first image
to each descriptor in the second image using the L1 norm, as shown. The remaining process is divided
into two steps: a two-pass search and a global minimum requirement. The first pass of the first step
is to find the feature point in the second image that has the minimum distance to each feature in the
first image. The second pass in the two-pass search guarantees that the pair is uniquely matched.
Therefore, the second pass is to find the feature point in the first image that has the minimum distance
to each feature in the second image. In order for any pair to form a match, the minimum distance for
each feature pair from the first pass must also be the same corresponding pair from the second pass.
Each feature must be each other’s best match for it to be a match. If this is not the case, then it is not
considered a match. This is also called cross-checking.

The remaining unmatched feature points are sent to the next matching step. The second step is to
apply a global minimum requirement. This finds the minimum distance values between all remaining
feature points and looks for one-to-one matches between these feature points that are considered
matches as well. This process can be repeated with the remaining unmatched feature points until no
minimum can be found or all distances exceed the global minimum distance threshold.

The smaller the distance, the more similar the two features are. The global minimum distance
threshold can easily be adjusted to reject feature matches with a distance that is too large. A larger
global minimum will return more but lower quality matches, whereas a smaller global minimum will
return fewer matches but at a better quality.

3. Optimization and Hardware Implementation

In this section, the hardware implementation of the SYBA algorithm will be discussed and
presented. The goal is to create a pipelined implementation that can detect, describe, and match feature
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points in real-time using the SYBA algorithm. The hardware design has been written using VHDL
and has also been implemented onto an FPGA board with a ZYNQ XCZ7020 SoC. The FPGA board
that was used is the Numato Styx, as can be seen in Figure 3. The design assumed that incoming
pixels come in every clock cycle. This matches most video and imaging standards and makes it
compatible with a variety of formats such as HDMI and VGA. In addition to the aforementioned video
transmission formats, many hardware cameras also rely upon a pixel clock to transmit images. In this
design implementation, an Omnivsion OV5642 camera was used, wherein it transmits pixels into the
hardware design with a reference pixel clock. This can also be seen in Figure 3.
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3.1. Graphical Flow of SYBA Hardware

The purpose of this section is to provide a summary of the hardware described in this chapter and
to explain the visual. In Figure 4, we can see an overview of the hardware described. In this visual,
an Omnivision OV5642 is giving pixel data to the hardware system. These then enter line buffers,
which are made via shift-registers in this example. These line buffers were used for both the FAST
detector and the binarization region. Within the FAST detector, the continuity test and score calculation
are performed, and then put onto additional line buffers.
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The line buffers are used to suppress non-maximal feature points, and then the output from
the non-maximal suppression indicates that a feature is at this point. After some delay (which is
determined by the resolution of the image), the SYBA descriptor block takes in the values from the
binarized FRI. Then, it is compared to the SBIs, and the hits are counted. The pixel coordinates are
concatenated to the end of the descriptor, and this enters a first-in, first-out (FIFO) buffer for descriptor
values and coordinates. A state machine reads through these values and converts them into a 32-bit
AXI-Stream protocol. These arrive at the ZYNQ processing system which then handles the L1 Norm
feature matching.

3.2. Line Buffers

As pixels enter the hardware design, they are converted into an 8-bit grayscale value and entered
into a series of line buffers. These are necessary to be able to access regions of pixels simultaneously
in a pipelined design. Since SYBA uses a 30 × 30 FRI, 30 line buffers are needed to access 30 rows
simultaneously. Two different hardware designs were tested and implemented. (1) Use shift registers
for line buffers, and (2) use BRAMs for line buffers with a small shift register window.

The first design was implemented first and was initially easier to design. Essentially the idea was
to declare a large array of size 30 × Xres of 8-bit values and shift new pixel values in with the pixel
clock. Thus, if the image is VGA resolution at 640 × 480, this means that the shift register array is of
size 30 × 640 × 8 or 19,200 × 8 bits. Then, as new pixels enter the hardware design, subsequent pixels
are shifted in as shown in Figure 5.
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New pixels are shifted into n 0 and up through all the line buffers. To access pixels in the same
row, a simple offset into the array is needed from the incoming pixel. To access pixels in previous
rows, an offset corresponding to the Xres is used. Setting up the line buffers in this manner allows easy
parallel access to any of the needed pixels in the FRI and can also be used for any other accesses needed
such as for feature detection. This design has several shortcomings and disadvantages. The first is that
in FPGA implementations, this creates relatively high LUT usage. LUTs can be configured as shift
registers in FPGAs, so for a typical LUT6 design, a single LUT can hold 26 = 64 values. In the above
example, at VGA resolution to create 30 line buffers, a total of 19,200 × 8/64 = 2400 LUTs at a bare
minimum are needed. Additional LUTS are inserted to access needed pixels, which would be 900 in
this case for the FRI. This LUT usage grows as the image size grows, and real-time image processing
on 1080p images would require ~3 × as many LUTs, for example. A second minor disadvantage of this
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method is that it places much higher strain on CAD tools causing synthesis and implementation to be
much larger.

A better design is to take advantage of BRAMs within the FPGA to store incoming pixels.
This method dramatically reduces LUT usage within the FPGA, along with significantly reduced strain
on the synthesis and implementation tools. The problem is that BRAMs can only have a maximum
of 2 ports, a far cry from the minimum 900 parallel accesses needed for SYBA. Our solution was to
create shift registers only in the window where parallel access is needed, and place the remainder of
the line into a BRAM, as shown in Figure 6. Wres is the width of the window in pixel coordinates, y is
the height of the window−1.

Electronics 2020, 9, 391 9 of 21 

 

 
Figure 5. Using shift registers as line buffers. 

New pixels are shifted into n0 and up through all the line buffers. To access pixels in the same 
row, a simple offset into the array is needed from the incoming pixel. To access pixels in previous 
rows, an offset corresponding to the Xres is used. Setting up the line buffers in this manner allows easy 
parallel access to any of the needed pixels in the FRI and can also be used for any other accesses 
needed such as for feature detection. This design has several shortcomings and disadvantages. The 
first is that in FPGA implementations, this creates relatively high LUT usage. LUTs can be configured 
as shift registers in FPGAs, so for a typical LUT6 design, a single LUT can hold 26 = 64 values. In the 
above example, at VGA resolution to create 30 line buffers, a total of 19,200 × 8/64 = 2400 LUTs at a 
bare minimum are needed. Additional LUTS are inserted to access needed pixels, which would be 
900 in this case for the FRI. This LUT usage grows as the image size grows, and real-time image 
processing on 1080p images would require ~3 × as many LUTs, for example. A second minor 
disadvantage of this method is that it places much higher strain on CAD tools causing synthesis and 
implementation to be much larger.  

A better design is to take advantage of BRAMs within the FPGA to store incoming pixels. This 
method dramatically reduces LUT usage within the FPGA, along with significantly reduced strain 
on the synthesis and implementation tools. The problem is that BRAMs can only have a maximum of 
2 ports, a far cry from the minimum 900 parallel accesses needed for SYBA. Our solution was to create 
shift registers only in the window where parallel access is needed, and place the remainder of the line 
into a BRAM, as shown in Figure 6. Wres is the width of the window in pixel coordinates, y is the 
height of the window−1. 

 
Figure 6. Using shift registers and BRAM as line buffers. Figure 6. Using shift registers and BRAM as line buffers.

The key to making this design work was to correctly set the read and write addresses to the
BRAMs, in order to emulate a line buffer. A simple inspection revealed that these need only operate as
simple queues or FIFOs. To achieve this using the native ports of a BRAM, the following steps are
needed. First, initialize all memory in the BRAM to be zero. Second, increment the write address on
the clock and roll over when the value is Xres−Wres−1. Third, set the read address to always be the
write address + 1 accounting for rollover.

In this design, shift registers were only used in the sections of the line buffers where parallel
access was needed. Using the example above, a total of 900 × 8/64 = 113 LUTs were needed at a bare
minimum. This represented a LUT reduction of about 95%. The tradeoff of course was that a BRAM
block was needed for every line. In practice, this is a better tradeoff as the number of BRAMs used
is relatively small. Another benefit of this design is that LUT usage does not scale as the resolution
increases, since the window size remains the same. Actual implementation resource usage differences
between the two methods are shown Section 3.4.

3.3. Feature Detection

As discussed previously, the first step is to detect feature regions of interest and generate a
list of features. Any feature detector could be used for this purpose, and in this case, the features
from accelerated segment test (FAST) was chosen. FAST is a straightforward and hardware friendly
algorithm that was originally proposed by Rosten and Drummond [29] for identifying feature points
in an image. It can also be implemented in an FPGA with low resource utilization. It has also been
used in various other hardware implementations with BRIEF as a feature descriptor, so for consistency
it is also good to compare against.

FAST, like any other feature detector, is interested in identifying if certain points of an image are
of interest or not. These are generally centered corner points, and FAST is no exception. FAST works
by selecting a candidate center pixel P and a threshold T. The intensity of this pixel, Ip, is compared
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with a circle of 16 pixels around the candidate center pixel P. This occurs within a window region of
7 × 7 pixels, as shown in Figure 7. P is considered to be a corner if there exists a set of n contiguous
pixels in the circle that are all brighter than Ip + T or all darker than Ip - T. In this implementation, n has
been chosen to be n = 9. The value n can be adjusted to be more or less exclusive, for example, many
implementations of FAST use n = 12. In this work, we chose nine to be less exclusive and allow more
features points to pass through.
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Figure 7. Example of the FAST (features from accelerated segment test) feature detector.

In most software implementations, this detection is made faster by only looking at smaller subsets
of the pixel ring to determine if a pixel can be rejected more quickly. In our hardware implementation,
all comparisons were done in a single parallel step, and thus, looking at subsets of the pixel ring was
not necessary. To access these pixel values, the same line buffers which store the 30 × 30 FRI window
region are used and the location of the 7 × 7 region within the FRI is adjusted off of the center point to
account for any delays in the pipelining and line buffers. This method eliminates the need to store
feature point coordinate locations and makes the hardware solution more efficient. The result after
performing the comparisons is two 16-bit values B and D, as shown in Figure 8. It is then a simple
logic function to find if there exists n = 9 continuous bits that are all HIGH in either B or D. If this is the
case, then the pixel centered on the 7 × 7 region is considered to be a corner point.
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The final step needed for feature detection is to add non-maximal suppression. Oftentimes many
feature points are found in relatively close proximity to each other, so non-maximal suppression is
needed to only keep the best features. In this work, we used a 7 × 7 window to achieve non-maximal
suppression. This meant that at a maximum only one feature point should be in any 7 × 7 region of the
image space. This was achieved using the following steps. First, a score function V was calculated for
all the detected feature points. If the pixel was not a detected feature point, then V = 0. Otherwise, V is
the sum of absolute differences between the center pixel P and the surrounding 16 pixels. Then, this
score value was output from the detector and was stored in another seven line buffers when new score
values were entered. This allowed for a 7 × 7 area to be accessed in parallel. Finally, the center pixel
was compared to the other 48 pixels in the region and if there was any pixel with a score lower than the
center pixel, then these pixels scores were suppressed and set to 0.

The output from the final line of these line buffers of scores is what determines if the point was a
good feature point. This meant that the point was detected by FAST and passed all of the thresholds
necessary and that it was also the best feature point in its 7 × 7 region.

3.4. Feature Description

Once a region has been determined to have a good feature, a 30 × 30 feature region of interest
(FRI) is centered around the feature point. The FRI needs to be binarized, and this is done according to
Equation (2), which generates the binarized FRI (bFRI) by comparing each pixel value to the average
value in the FRI. While the approach inferred from the equation to loop through all pixel coordinates
can work well in software, there is a much more efficient way to do this in a pipelined hardware
approach. Since each pixel must be passed through the FPGA fabric, we can take advantage of this fact
to calculate the average and perform the binarization more efficiently.

This method takes advantage of the fact that we are already storing the incoming pixels into 30
line buffers. The optimization is as follows. First, as a new pixel comes into the image, its column total
is found by adding this pixel value to the other 29 pixels directly above this new pixel from the line
buffers. The column average is then found by dividing the column total by 30. These column averages
are then stored in a shift register that holds 30 of these as unsigned numbers. The area total, for all
900 pixels in the 30 × 30 area, is then found by adding the incoming column average and subtracting
the outgoing column average and then dividing by 30 again. This approach reduces the number of
additions from 899 to 29 + 1 additions and 1 subtraction. This is shown in Figure 9.
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In order to efficiently perform the two divisions by 30 to find the averages, a traditional hardware
divider can be substituted with shifts and additions since the divisor is constant. A quick analysis
shows that 1/30 ~= 0.03333. This can be quickly approximated as 1/30 ~= 1/32 + 1/512 = 0.03320.
Performing the division in this manner only costs a single adder, since performing shifts in hardware
are as simple as rearranging the bits that are being used.

Now that the area average has been calculated, binarizing the entire FRI is straightforward.
All 900 pixels in the FRI are compared to the area average as in Equation (2). Since these are all
performed every clock cycle, this necessitates the need for 900 8-bit comparators. In Section 4,
a modification to SYBA is explored to reduce the number of resources needed.

Since the resulting binary FRI (BFRI) is relatively small (900 bits = 113 bytes), it is stored in registers
and then sent to a module to calculate the unique SYBA similarity measure (SSM). As explained in
the previous chapter, this is used to measure the similarity between the FRI and the synthetic basis
images (SBIs). The SSM is made by overlaying each SBI with the BFRI and counting the number of
matching black pixels, which is implemented easily in hardware as a series of nor gates and adders.
In the original work of SYBA, two versions exist denoted as SYBA 5 × 5 and SYBA 30 × 30. SYBA
30 × 30 compares the entire 30 × 30 BFRI with 312 30 × 30 SBIs to form the SSM, whereas SYBA 5
× 5 breaks the 30 × 30 BFRI into 36 5 × 5 subsections and compares each of these to 9 5 × 5 SBIs.
In general, the SYBA 30 × 30 offers slightly better performance at the cost of more memory and
resources. In this implementation, SYBA 5 × 5 was chosen as being more balanced and practical for
hardware implementation. This meant the total descriptor length is 36 × 9 × 4 = 1296 bits = 256 Bytes,
as given by Equation (4). This is for the 36 sub regions, 9 SBIs per sub region, and 4 bits per SBI. At this
point, the descriptor is finalized and ready to be saved or matched.

3.5. Feature Matching

Feature matching can be achieved with a variety of different methods and algorithms. Often the
method of choice is based upon the application be it stereo vision, visual odometry, 3D-reconstruction,
optical flow, or any other computer vision application. Given the variety of potential user applications,
and since SYBA is a feature descriptor only, the decision is made to transition the feature descriptions to
the software side of the ZYNQ. The choice to transition from hardware to software at this point is also
supported by (1) the vastly reduced data and bandwidth at this point, and (2) the ease of programming
and modularity with software.

Compared to the raw incoming images, just transferring the feature coordinates and descriptors
reduces the data rate by more than 2 orders of magnitude, to a level that is achievable for embedded
processors. Writing software is also typically much more rapid and modular than designing hardware.
Programmers are able to leverage many common libraries such as OpenCV to perform common
algorithms. This also allows for easy connection to other peripherals and makes the device much more
practical, which enables the device as a whole to interface to other systems easily.

In order to hand off the SYBA descriptors from the programmable logic (PL) to the processor
system (PS), an AXI-Stream FIFO is instantiated. This block receives data on a 32-bit bus and is
synchronized with valid, ready, and last handshakes. In order to send the 1,296-bit descriptor, a small
state machine is made to send and shift over the correct piece of the description. Once the description
has been sent over the AXI-Stream, the final 32-bit value represents the pixel coordinate location of
the feature. The last handshaking signal is asserted to indicate end of feature descriptor transmission.
On the software side, the AXI-Stream is simply a memory-mapped component, and the received data
is saved into the DDR feature matches. From there, feature distances are calculated with the L1 Norm
as in Equation (5). With feature coordinates and distances in the DDR, it is relatively simple to use
SYBA in a variety of applications.
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3.6. Speed and Resource Utilization

The design presented in this chapter is a pipelined hardware design that is capable of processing
a new pixel with every clock cycle. This has been implemented onto a Xilinx Zynq XC7Z020 board and
meets timing with the default clock of 100 Mhz. This makes calculating the maximum frame rate for a
given image size a straightforward process, as given by Equation (6). Where Ffps is the frame rate, fclk is
the clock frequency, and Tp is the total number of pixels in the frame.

F f ps =
fclk

Tp
(6)

This maximum frame-rate analysis only considers the hardware aspect of the design, which in
this case, is the feature detector and feature descriptor. The assumption is made that the software side
of the chip can keep up with any necessary feature matching algorithms.

Careful analysis of the timing circuity could allow for faster clock speeds and thus higher potential
maximum frame rates. Higher frame rates can also be achieved with higher-end FPGAs that are built
on newer transistor processes and will also achieve higher clock speeds. The speed of image processing
usually is highly important for embedded systems that require computer vision. Often, the use of
an embedded system is required because the system will be used in an environment that has power,
weight, and size constraints, such as unmanned aerial vehicles. Since these systems are generally in
motion, a higher image processing speed is desired to be able to react quicker.

The resource utilization for just the feature detector and descriptor is given in Table 1. The table
also demonstrates how large of an impact the choice of line buffer style can have on the FPGAs
resource utilization. In Section 4, various optimizations are discussed that improve resource utilization.
Even without any significant optimizations, the result of creating a hardware implementation of SYBA
is an accurate, capable, fast, low power, and low weight solution for embedded vision systems. Table 2
shows the frame rate for different image sizes.

Table 1. SYBA resource utilization for the FAST detector and SYBA descriptor.

Implementation Type LUT FF BRAM

Shift Register Line Buffers 15447 10630 0

Block RAM Line Buffers 10049 9674 18

Table 2. Frame rates for different image sizes at a 100 MHz clock.

Image Resolution Frames per Second

640 × 480 326

1280 × 720 109

1920 × 1080 48

4. Optimizations

This section discusses the optimizations made for the SYBA algorithm to be more efficient in
general and also more hardware efficient. When these optimizations and changes are significant, it is
important to have a method to evaluate the impact on the feature descriptor performance of SYBA.

4.1. Accuracy Test and Image Sequences Used

Accuracy tests were performed on the common Oxford image dataset. These image sequences are
frequently used in academic literature to test a variety of feature descriptors, including BRIEF, SYBA,
and others. These image sequences are used to test the modifications performed to the SYBA descriptor,
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and to help understand how the optimizations made impact the descriptor. The image sequences
include disturbances such as blurring, lighting variation, viewpoint changes, and image compression.

In order to determine accuracy measurements, OpenCV was used with its Python libraries to
accelerate the process. The following steps were used to test the image sequences. First, features were
found in each image using the feature from accelerated segment test (FAST) as the feature detector in
image I1. Detection thresholds were adjusted so that the number of detected features in the first image
was about 1000 features. The original SYBA 5 × 5 descriptor was then calculated for each detected
feature. In order to match features to the second image, the dataset provides a homography H that
can be used to find the pixel coordinates of the same point in the second image. The homography is
used as in Equation (7). Where p1 is the point in the first image and p2 is the point in the second image.
The SYBA description algorithm was then used around the calculated point p2 to describe the image
feature. The features were then matched with OpenCV’s Brute-Force matcher.

p2 = H × p1 (7)

Distance is calculated using the L1 norm following the SYBA specification. This Brute-Force
matcher is very simple, wherein it takes each feature from the first image and compares it with
every feature from the second image. The closest feature is then returned and calculated as a match.
To increase the accuracy, cross-checking is enabled, which ensures that for every feature in image
1 with its minimum distance pair, that the same pair has the minimum distance for each feature in
image 2. Matches that exceed a global minimum threshold requirement are then filtered out. Enabling
cross-checking naturally decreases the total number of matches, as some matches are discarded when
the minimum distance pairs do not align. The accuracy rate is defined as the ratio of the number of
correct matches Nc to the total number of matches found Nt. The first image in every image sequence
is always used as the base image, and the following images are compared against.

4.2. Changing the Number of SBIs

One of the largest discoveries in optimizing SYBA, was that when reducing the number of SBIs, the
feature matching performance does not alter very much. This of course is an optimization that can be
applied at both the software and hardware level. While run time results for the software implementation
are not included, anecdotally it is worth mentioning that the run-times were significantly faster in the
OpenCV-Python implementation with less SBIs than would be expected. This makes sense since there
are fewer comparisons being done between SBIs and FRIs. Additionally, the size of the descriptor also
becomes smaller, so calculating the L1 Norm is faster and the entire feature matching process as well.

In order to better quantify the overall feature matching accuracy as the number of SBIs is reduced,
the average feature matching accuracy is found for every image pair and sequence. This is shown
in Figure 10. It could be seen that with the full number of SBIs (n = 9), the average feature matching
accuracy rate was 76.12%, and when the total number of SBIs reduced to n = 3, the overall feature
matching accuracy only dropped slightly to 75.98%. Even when using only a single SBI, the overall
feature matching accuracy remained at an impressive 74.44%. This was possible because Equation (1)
calculated the number of SBIs to recover the image, which was not necessary for our purposes.
We simply used the SBIs to describe the image not to reconstruct it.

What makes this a particularly intriguing optimization is that the descriptor length and calculation
complexity depend linearly upon the number of SBIs, as shown in Table 3. This roughly corresponds
to the hardware complexity for the descriptor, and so is well worth the optimization.
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Table 3. Showing linear dependency on number of SBIs for pixel comparisons and descriptor length.
Accuracy does not linearly depend on the number of SBIs.

Number of SBIs Pixel Comparisons Descriptor Length Accuracy

9 4212 1296 76.12%

8 3744 1152 76.18%

7 3276 1008 76.11%

6 2808 864 76.02%

5 2340 720 76.02%

4 1872 576 75.97%

3 1404 432 75.98%

2 926 288 75.34%

1 468 144 74.44%

Given these findings, it is the authors’ opinion that the best number of SBIs to use is 3. A small
decrease in accuracy of less than one-quarter of one percent is well worth it, as logic utilization within
the descriptor is made to be about 1/3 the usage, and the descriptor itself becomes 1/3 the length of its
previous amount, as given by Equation (4). It has also been noted that matching in software is likewise
performed about 3 times as quickly. Further reducing the number of SBIs was considered but rejected
based on the relatively larger drop in feature matching accuracy not only in the averages but also
in certain revealing image pairs. This is one of the key optimizations that has allowed SYBA to be
competitive in hardware with other small binary feature descriptors such as BRIEF. The reduction in
resource utilization can be seen in Table 4.

Table 4. Implementation type vs. hardware usage.

Number of SBIs Binarization LUT FF BRAM 36K

9 Original 10049 9674 18

9 Kernel Optimized 5944 4169 19.5

3 Original 5955 9115 18

3 Kernel Optimized 2966 3419 19.5

4.3. Changing the Method of Binarization

As mentioned previously, the feature region of interest (FRI) must be binarized around the feature
point. In the original SYBA work, this was done by calculating the average intensity of the FRI as in
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Equation (2). This optimization comes in the way the binarized image is made from the comparison
to the average value. In the original SYBA work, all 900 comparisons were made to the average
value. In a pipelined hardware design, which has a new incoming pixel every clock cycle, this would
mean that 900 8-bit comparators are needed to generate the binarized FRI. In order to reduce the
number of comparators needed, a new idea was presented to perform the binarization. The idea was
to pass a kernel over the image of size k × k and find the average value within that kernel. This can be
represented by Equation (8). Where k is the kernel size, p is the grayscale value of a pixel, and x and y
are the pixel coordinates in the image space.

avgxy =
1
k2

x+ k
2∑

i=x− k
2

y+ k
2∑

j=y− k
2

pi j (8)

The pixel in the center of the kernel is then compared to the average value and binarized.
This pixel is put onto 30 line buffers, which only hold 1-bit values. The resulting image space is given
by Equation (9), where BIMG represents the binarized image space.

BIMG(x, y) =
{

1 pxy > avgxy

0 otherwise
(9)

A 30 × 30 window into these line buffers is then used to grab the binarized FRI centered on
the detected feature point. From an FPGA hardware perspective, this method has the advantage of
only requiring a single comparator at the cost of using additional BRAMs for the binary line buffers.
This is an engineering decision tradeoff, but it is well worth it, as can be seen in Table 4 comparing
resource usage.

From a computer vision perspective, this represents a significant change to the way the image FRI
is binarized. Rather than looking at the average of just the FRI and comparing all pixels to that average,
each pixel is now compared to the average of a 30 × 30 region centered around that individual pixel.
This means that pixels near the edges will have a significant area outside the FRI used in the average
calculation. In theory this could be good, as it would give the pixel additional “context” compared to
other pieces of the image space but could also be harmful as it would no longer be considering the
entire FRI as well. Since this represents a significant departure from the method used to binarize the
FRIs in the original SYBA implementation, additional study is needed and presented below.

As was done for changing the number of SBIs, the change was implemented and tested in Python
and OpenCV, using the framework described above. Multiple kernel sizes were tested, and as would
be expected larger kernels performed better than smaller kernels. It was found that a kernel size of
30 × 30 achieved a good balance between matching accuracy and hardware usage. The impact of these
optimizations can be seen in Figure 11.

Analyzing these image sequences shows that in general, for images with only minor perturbations
to viewpoint along with blurring, lighting changes, or jpeg compression, the binarization method
either yields better or unchanged matching performance. For images with major viewpoint variations,
this binarization method results in poorer matching performance. Although SYBA has already been
extensively compared to BRIEF-32 and other descriptors in Reference [11], another comparison is
offered in this figure. In this accuracy test, the sampling pattern size for BRIEF was reduced to 33 × 33
pixels to match the hardware implementations as in Reference [26]. Matching distance thresholds are
then adjusted so that each descriptor has a roughly equal number of correspondences for each image
pair to maximize fairness. This shows that SYBA still performs favorably in comparison to BRIEF-32
even with the changes and hardware optimizations, and a different feature detector (FAST).
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4.4. Impact of SYBA Optimizations on Hardware Usage

In this section, an overview of how these changes are implemented into the physical hardware is
given, along with how these changes have impacted the resource utilization. The change in hardware
to use only three SBIs rather than nine SBIs was straightforward. Rather than instantiating 9 SBI
comparison modules in VHDL, only 3 SBI comparison modules were needed. Then the descriptor
lengths were updated accordingly. While the change is very simple, the impact on resource utilization
is high. In Table 4, the resource usage reduction can be seen. Compared to the original implementation,
just reducing the number of SBIs from 9 to 3 reduces the number LUTs by 41% (10,049 to 5955) and the
number of FFs by 9% (9674 to 9115).

The second change is a little bit more involved. As described above, an additional 30 line buffers
are needed to store the output result from comparisons of the center pixel to the average of the
30 × 30 kernel. These line buffers use less BRAM resources since they are only 1 bit wide instead of
8 bits. The location of the FAST feature detector within the 30 × 30 FRI is further adjusted to account
for the extra processing delay. The resource reduction for this method is also substantial. Compared to
the original solution, LUT usage is decreased by 41% (10,049 to 5944) and FF usage is decreased by 57%
(9674 to 4169). This comes at the cost of using another 1.5 36Kb of BRAM blocks.

When these optimizations are both applied to the design, the overall hardware reduction is
substantial. LUT usage is decreased by 70.5% (10,049 to 2966) and FF usage is decreased by 64.6% (9674
to 3419). This still comes at the cost of the additional 1.5 36Kb BRAM blocks. These optimizations
have been shown to not only reduce hardware usage, but also either improve or maintain feature
matching accuracy on images with blurring, lighting, or compression deformations. This new version
of SYBA has allowed the hardware implementation to use fewer resources than comparable hardware
accelerators of other feature descriptors while maintaining its high feature matching accuracy.

5. Results and Discussion

In this section, we discuss three important factors regarding hardware design for embedded
systems. We also compare our design to other feature descriptor implementations on FPGAs.

5.1. Clock Frequency, Latency, and Power Consumption

The maximum clock frequency is determined by a variety of factors including the nature of the
hardware design itself and the FPGA device used for implementation. The FPGA device used in this
work was a ZYNQ XC7Z020. With a 100MHz clock, all timing constraints are met and so this is what
the published results used. The worst path delay is 9.965 ns, so theoretically it could run barely faster
(100.3MHz) although not by a significant margin. In theory, the maximum clock frequency could be
faster if the design is optimized further or if a different FPGA device is chosen. This, of course, may
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impact resource utilization as well. Other clocks in the design include the camera input clock, which is
limited to a 27 MHz maximum. The camera’s output clock can be scaled to run faster using a built-in
phase-locked loop internal to the camera. In Table 2, the maximum FPS is the maximum theoretical
framerate achievable at that resolution with the current design pixel clock of 100 MHz. In principle,
with a faster camera our entire design would indeed operate at these framerates. With this current
camera, the design only ran at 60 FPS because that was the camera’s maximum output speed with a
640 × 480 output resolution.

Latency is by and large, mostly determined by the Kernel size. For example, with a 30 × 30 kernel
size, we will need to buffer 15 lines of 8-bit data (15 lines above are already in and must wait for 15 lines
below the pixel to come in and be compared) before performing the averaging. There are another 30
lines of 1-bit line buffers after the averaging and binarization. Thus, there was a total of 45 lines worth
of latency for our design. Making the kernel size smaller would decrease the latency, but could also
decrease the feature matching accuracy. Other tasks such as suppression of features detected, FAST
detection, among others, all occur before the averaging finishes.

Power consumption is another important factor for embedded systems. The Xilinx tool we used
(Vivado 2018.3) gave the following power estimates. The total on-chip power was estimated to be
1.958 W. Most of this power (1.363 W or 70%) was going to the onboard CPU processing system
(PS7), along with a few blocks of design (0.437 W or 22%) to move the data back and forth. All of the
design for FAST + SYBA to detect/describe (not including matching, since that is done in the PS7) was
estimated to be only 0.158W or 8% of total power consumption.

5.2. Comparison with Other Implementations

The implementation of feature descriptors in the FPGAs remains an active research topic in
recent years. Several works on fully pipelined FPGA accelerators for SIFT have been published since
2016 [30–33]. A parallel hardware architecture for SIFT was also reported in Reference [34]. Recent and
improved FPGA implementations for SURF [35–37] and ORB [38,39] were reported. SIFT and SURF
implementations were not included in our comparison because they were intensity-based not binary
descriptors. Although they perform better than binary descriptors for applications dealing with large
perspective transformation, they have relatively high resource usage and require the use of digital
signal processing (DSP) slices.

While ORB has this significant advantage over BRIEF for rotated images, BRIEF tends to outperform
ORB in other cases [20]. In this paper, we focused on comparing our implementation with BRIEF and
BRISK. One recent BRIEF implementation [40] reported the utilization of their entire design, not just
feature detection and description. The FPS number is biased as well because their image size was
512 × 512, whereas all other papers used 640 × 480.

This can be seen in Table 5. All of these designs are using the same hardware chip, which is
the Xilinx Zynq XC7Z020, the same clock frequency of 100Mhz, and the same feature detector FAST.
Resource utilizations included in the table show the resource usage for only the logic needed for the
feature detector and feature descriptor portions of the design. This is to remove any comparison
inconsistencies that would arise from implementation consistencies outside of these parts of logic.
For example, some designs use raw camera input, some HDMI input, and some use images from
DDR, so the logic utilization to grab the images from different sources should not be included in
the comparison.

It can be seen that the optimized version of SYBA has the lowest LUT usage of any of the included
designs, regardless of design speed. The only other design that runs as quickly as this design (326 FPS
at 640 × 480, 100 MHz clock, 1 pixel per clock) requires 39% more LUTs, 199% more FFs, and 59%
more BRAMs. Other designs run at a much slower speed and are therefore not fully pipelined. Some
of the resource utilization in these designs is lower, while many resources are still higher such as
LUTs. Given the high reduction in capable speeds, these designs were able to decrease resource usage.
When considering all of the comparisons as a whole, this shows that SYBA is capable of delivering
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excellent feature matching results, while also being very hardware efficient even when compared to
other low-resource utilization binary descriptors.

Table 5. Resource utilization of various feature detector and descriptor implementations on FPGAs.
These all have several of the same attributes. (1) They all use FAST as the feature detector. (2) They are
all using the same hardware, a ZYNQ 7020. (3) They all have the same clock speed, 100 MHz.

Implementation LUT FF BRAM KB FPS

FAST + Original SYBA 10049 9674 81 326

FAST + Optimized SYBA 2966 3419 88 326

FAST + BRIEF [26] 4118 9543 140 326

FAST + BRIEF [27] 4257 3187 72 55.5

FAST + BRIEF [41] 14398 2093 50 147

FAST + BRISK [41] 25575 7115 50 147

6. Conclusions

The focus of this work is on the improvement of one of the essential aspects of computer vision:
image feature description. This paper has improved upon and made a new version of a feature
description algorithm called SYBA. The paper began by introducing the SYBA algorithm developed by
Alok Desai several years ago. A discussion of the hardware implementation was then developed, along
with justification for several design choices. The following section discussed two novel ideas to improve
SYBA to make it more efficient. The first idea was to reduce the number of SBIs for comparison, which
significantly reduced resource usage and had minimal impact on accuracy. The second idea was to
change the binarization method from comparing all pixels in the FRI to an average value, to comparing
only the center pixel of a kernel to the average value. This also significantly reduced hardware usage
and even improved feature matching accuracy for certain types of image pairs and deformations.

The result of putting SYBA into hardware and optimizing it for better resource utilization is
outstanding. It has been shown to use significantly fewer resources than competing feature descriptors
while running at very high frame rates. SYBA has also been previously shown to have better feature
matching accuracy than these descriptors as in Reference [11]. The combination of these two facts clearly
demonstrates that the SYBA descriptor in hardware has great image feature matching performance at
low resource utilization.
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