
electronics

Article

Unilateral Route Method to Estimate Practical Mutual
Inductance for Multi-Coil WPT System

Seon-Jae Jeon , Sang-Hoon Lee and Dong-Wook Seo *

Department of Radio Communication Engineering, Korea Maritime and Ocean University (KMOU),
Busan·49112, Korea; seonjae@kmou.ac.kr (S.-J.J.); shlee@kmou.ac.kr (S.-H.L.)
* Correspondence: dwseo@kmou.ac.kr; Tel.: +82-51-410-4427

Received: 20 January 2020; Accepted: 21 February 2020; Published: 24 February 2020
����������
�������

Abstract: Multi-coil WPT systems require mutual inductance information between coils to increase
the power transmission efficiency. However, in the high frequency (HF) bands such as 6.78 MHz
and 13.56 MHz, the presence of surrounding coils changes the value of the mutual inductance
between the two coils due to the parasitic element effect of the coils. These parasitic effects make
it harder to estimate the mutual inductance among three or more coils. In contrast to ideal mutual
inductance, which has a constant value regardless of frequency and surrounding coils, we define
the practical mutual inductance as the mutual inductance varied by parasitic elements. In this
paper, a new method is presented to estimate the practical mutual inductance between multiple
coils in the HF band. The proposed method simply configures the expression of practical mutual
inductance formula because only one of two bilateral dependent voltage sources generated by
mutual inductance is considered. For several coils placed along the same axis, the practical mutual
inductances between coils were measured with respect to the distance between them to validate
the proposed method. The practical mutual inductance obtained from the proposed method was
consistent with the simulated and measured values in HF band.

Keywords: multiple coils; mutual inductance; parasitic effect; practical mutual inductance; transfer
impedance; wireless power transfer

1. Introduction

Recently, multi-coil wireless power transfer (WPT) systems using three or more coils have been
proposed to achieve a high power transfer efficiency (PTE) at greater distance than in the case of a
conventional two-coil WPT system [1–12]. The multi-coil WPT systems are categorized into the domino
structure and multiple transmitting (or receiving) coils structure. The domino structure means that one
or more coils are placed between transmitting and receiving coils [1–6]. To achieve a long transmission
distance, the structure adjusts the capacitance of each coil or gaps among coils. On the other hand,
multiple transmitting (or receiving) coils correspond to the multiple input single output (MISO) or
single input multiple output (SIMO) system in the wireless communication field [7–12]. The WPT
system with multiple transmitting coils usually maximizes the power in the receiving coil through
entering power of different magnitude or phase into transmitting coils. Sometimes, this technique is
called magnetic beamforming [7,8].

The trouble in implementing these multi-coil WPT systems is that the mutual inductances
(or coupling coefficients) among coils should be basically known. For the domino structure, the coupling
coefficient information is used to estimate the target free-resonant frequencies, that is the resonant
capacitances, or target distances between adjacent coils. For the multiple transmitting coils, power
can be transferred into a not-aligned receiving coil by controlling the phase and magnitude of signal
components input to each transmitting coil, where the mutual inductance information is used to
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calculate the phase and magnitude of input power [7,8]. This technique is referred to as magnetic
beamforming. Similarly, for the multiple receiving coils, the output power can be maximized by
adjusting the phase of the received power based on the mutual inductance information. Therefore,
the accurate value of mutual inductance between coils is important to obtain high efficiency of multi-coil
WPT systems such as domino, MISO, and SIMO structures in common. On the other hand, inaccurate
mutual inductance causes interruption of maximum performance for the multi-coil systems.

The ideal mutual inductance between coils is completely separated from the operating frequency
or presence of surrounding coils. In practice, when the mutual inductance between coils is measured,
the measurement frequency and the presence of surrounding coils affect the measurement results.
These phenomena can be inferred by the effect of the parasitic elements of the coil. We refer to the
mutual inductance affected by the parasitic elements as the practical mutual inductance.

As is well known, the parasitic effect of a component is commonly frequency dependent, which
becomes large as the frequency increases [13]. That is, the parasitic effects are not significant and can
be ignored in low frequency (LF) bands such as 100–205 kHz. Therefore, most previous researches
on the mutual inductance for the WPT system have focused on the estimation of the ideal mutual
inductance of two coils with respect to the alignment status [14–18]. For WPT systems used in the HF
band such as 6.78 MHz and 13.56 MHz, the practical mutual inductances between the transmitting
and receiving coils are different from the theoretical value due to the effect of the parasitic component.
S. Hackl et al. proposed an equivalent circuit model for the radio frequency identification (RFID)
system with two coils operating at a very close distance considering not only the parasitic capacitors
but also the capacitive coupling between coils [19]. However, the capacitive coupling between coils is
generally taken account for 1 cm or less gap between coils, while the WPT system in the HF band is
mainly used for a distance of tens or several cm. In addition, the method is difficult to expand to three
or more coils because of complicated formulation.

In HF band, the practical mutual inductance between two coils can be easily measured using a
vector network analyzer (VNA). However, it cannot be used to measure the practical mutual inductance
among three or more coils since public VNAs usually have only two ports. Moreover, it is obvious that
the number of transmitting or receiving coils tends to increase steadily. As the number of coils increases,
the parasitic effect becomes greater. Therefore, an effective method is highly required to estimate
the practical mutual inductance among multiple coils with parasitic effects using a two-port VNA in
HF band. In this paper, a new method is proposed to obtain the practical mutual inductance among
multiple coils using a general two-port VNA under the assumption that the coils are unilateral instead
of reciprocal characteristics. The proposed method is suitable for general HF band WPT systems used
at several cm distance and the simple expression of the formula allows to determine the effect of the
presence of surrounding coils through every possible route among coils. We also verify the proposed
method by comparison with measured and simulated mutual inductance among multiple coils.

2. Theoretical Analysis

This section presents theoretical analysis for the proposed unilateral route method.

2.1. Practical and Ideal Mutual Inductance between Two Coils

Figure 1a,b shows the equivalent circuit model of two ideal coils and two coils with parasitic
element, respectively. If the two coils are considered as a two-port network, the two-port network can
be represented by various two-port parameters such as impedance parameter and scattering parameter.
For the two ideal coils of Figure 1a, the mutual inductance between the two coils is independent of the
operating frequency. From the definition of the impedance parameter, the transfer impedance between
two ideal coils is given by

Z21 =
V2

I1

∣∣∣∣∣
I2=0

= jωM21, (1)
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where Vi and Ii are the voltage and current of the ith port, and ω is the angular frequency. M21 is
the mutual inductance between the coils and the two-port network is reciprocal so that Zij = Zji and
Mij = Mji. Equation (1) means that Zij can be found by exciting port j with the current Ij, open-circuiting
all other ports, and measuring the open-circuit voltage at port i. From Equation (1), the mutual
inductance (M21) between the coils can be easily obtained by measuring the transfer impedance (Z21).
This method is commonly used to measure the mutual inductance between the coils.
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Figure 1. The equivalent circuit model: (a) Ideal two coils; and (b) real coils with parasitic capacitors.

On the other hand, as the operating frequency increases, the coil is not presented as a single inductor
but combined with parasitic elements such as resistor and capacitor. However, the parasitic capacitor
is only considered as shown in the equivalent model of Figure 1b. This is because the parasitic resistor
of coils is usually much smaller than the impedance (ωL) of the inductor in HF band, R << ωL1,
and then the reactance is dominant in determining the current flowing on the inductor and series
parasitic resistor. Moreover, the parasitic capacitor of real coil connected in parallel makes a closed-loop,
which causes the current path. Therefore, while the real coil is open-terminated in HF band, the
practical mutual inductance between two coils is changed by the current path. From the circuit theory,
the transfer impedance between the two coils with parasitic capacitors is given by

Z21 =
V2

I1

∣∣∣∣∣
I2=0

=
i1
I1
·

v2

i1
·

V2

v2

∣∣∣∣∣
I2=0

=

1
jωC1

1
jωC1

+ jωL1 +

(
ω2M12

2

1
jωC2

+ jωL2

) · jωM21 ·

1
jωC2

1
jωC2

+ jωL2
(2)

The transfer impedance Z21 is presented by multiplying the ideal transfer impedance jωM and
other terms. From Equation (2), causes of the parasitic effect are categorized into two. First, not all
of the input current (I1) of port 1 flows through L1 due to the presence of C1 and only part (i1) of the
current flows; then, the induced voltage (v2) on L2 decreases. In addition, the induced voltage (v2)
generates the current (i2) flowing closed current path, which consists of L2 and C2, even when port
2 is opened. Then, the current (i2) flowing through L2 induces the voltage (v1) on L1 by the mutual
inductance. Consequently, this lowers the amount of the current (i1) flowing through L1 and also
lowers the induced voltage (v2). This effect is expressed as the first term of the right side of Equation (2).
Second, the voltage (v2) induced in Coil 2 is divided into L2 and C2 so that only a part of the induced
voltage (V2) is delivered into port 2. This voltage distribution is expressed by the third term on the
right side of Equation (2).

Similar to Equation (1), we define the transfer impedance using the practical mutual inductance
(M21(practical)) as

Z21 = jωM21(practical). (3)
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Comparing Equation (3) with Equation (2) yields that M21(practical) is obviously different with M12

and strongly dependent on the coils’ inductance, L1 and L2, and the parasitic capacitance, C1 and C2,
as well as the angular frequency, ω.

The term in parentheses in the first term denominator of Equation (2) means that some of the
voltage induced from Coil 1 to Coil 2 is induced again to Coil 1 through mutual inductance. Except for
special cases where the coils are very close to each other or operate near the self-resonant frequency
(SRF) of the coils, it is small enough to be negligible compared to other terms. Therefore, Equation (2)
can be approximately expressed as follows in combination with Equation (3)

M21(practical) =
Z21

jω
'

1
jωC1

jωL1 +
1

jωC1

·M21 ·

1
jωC2

jωL2 +
1

jωC2

. (4)

Equation (4) is equivalent to the circuit diagram of Figure 2 that shows the dependent voltage
source on L1 removed in Figure 1b. That is, it is assumed that the coils are unilateral. If the coils’
parameters, L1, C1, L2 and C2, are known, the ideal mutual inductance M21 can be obtained by
measuring the transfer impedance Z21 and using Equation (4). Conversely, if the coil’s parameters and
ideal mutual inductance M21 are known, the practical mutual inductance M21(practical) in the HF band
can be estimated by using Equation (4).
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Figure 2. The equivalent circuit model of two coils with Route 1.

2.2. Measurement Method for the Coil’s Parameters and Ideal Mutual Inductance between Two Coils

As mentioned above, the coil’s parameters and ideal mutual inductance should be known in
order to estimate the practical mutual inductance between two coils. Figure 3 shows the proposed
procedure to obtain the coil’s parameters and ideal mutual inductance. First, parameters of each single
coil are measured without surrounding coils or the object. Since the parasitic effect rarely appears in
the LF band, the input impedance Z11 of a single coil is simply expressed as R1 + jωL1. Therefore,
the self-inductance and resistance of each coil are directly obtained by measuring the input impedance
of the coil using a VNA at the lowest possible frequency in the LF band. Next, the parasitic capacitance
C1 of the coil can be obtained from the SRF of the coil as given by

C1 =
1

ω02L1
=

1

(2π f0)
2L1

, (5)

where f 0 is the SRF at which the reactance of the coil is zero, and it can be easily measured from the
Smith Chart of S11 or the input impedance plot on the VNA. Finally, the ideal mutual inductance M21

between two coils can also be obtained from measuring the transfer impedance Z21 between the coils
using the VNA in the LF band. Therefore, the parameters of coils measured through the procedure of
Figure 3 can be used to estimate the practical mutual inductance between two coils. Moreover, if the
ideal mutual inductances among three or more coils are well defined, the measured parameters can
also be used to estimate the practical mutual inductance.
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2.3. Transfer Impedance of Multi-Coil Using the Proposed Circuit Model

For three coils shown in Figure 4a, we should estimate the transfer impedance Z31 between Coils 1
and 3 to obtain the practical mutual inductance between the coils. From the definition of impedance
parameter, the current applied to the first port can directly induce the voltage on the opened third
port and also indirectly induce the voltage via the second port. Strictly, the induced voltage makes a
current in the closed loop formed by the parasitic capacitor, and the current in the third inductor can
affect other inductors. However, since the high order mutual effects are weak, under the assumption
that the coils are unilateral, the transfer impedance between Coils 1 and 3 is obtained as the sum of two
routes in Figure 4b. Thus, the practical mutual inductance between Coils 1 and 3 is given by

M31(practical) =
Z31

jω
'

ZR−1 + ZR−2

jω
, (6)

where ZR−1 and ZR−2 are the transfer impedances of the direct and one-hop indirect routes between
Coils 1 and 3, respectively, as shown in Figure 4b. Using Equation (4) the transfer impedance of the
direct route is given by

ZR−1 =

1
jωC1

jωL1 +
1

jωC1

· jωM31 ·

1
jωC3

jωL3 +
1

jωC3

. (7)
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From unilateral characteristics, the transfer impedance of the indirect one-hop route is also easily
obtained by

ZR−2 = V
I = i1

I · jωM21 ·
−1
Z2
· jωM32 ·

V
v3

=
1

jωC1
jωL1+

1
jωC1

· jωM21 ·
−1

jωL2+
1

jωC2

· jωM32 ·
1

jωC3
jωL3+

1
jωC3

, (8)

where M21, M32 and M31 are ideal mutual inductances, and the minus sign is due to the dot notation
between Coils 1 and 2.

For four coils shown in Figure 5, there are four possible routes from Coil 1 to Coil 4 under the
unilateral assumption. The transfer impedance of the fourth route is given by

ZR−4 =
V
I
=

i1
I
· jωM21 ·

−1
Z2
· jωM32 ·

−1
Z3
· jωM43 ·

V
v4

. (9)
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four routes.

The practical mutual inductance is summarized as

M41(practical) =
Z41

jω
≈

ZR−1 + ZR−2 + ZR−3 + ZR−4

jω
. (10)

If the number of coils is n, the transfer impedance is determined as

Zn1 ≈

2n−2∑
k=1

ZR−k. (11)

3. Experimental Results and Discussion

To verify the proposed method in the HF band, we analyzed the practical mutual inductance by
changing the number of coils as shown in Figure 6. Two types of coils were used for the experiment,
and parameters of the coils are summarized in Table 1. Coila has three turns and a single layer printed
on an FR-4 substrate and dimensions 95.7 mm × 105.7 mm. Coilb has six turns and two layers printed
on an FR-4 substrate of the same dimensions as the Coila. All coils were arranged coaxially in order
to maximize the parasitic effect and the effect of surrounding coils. The practical mutual inductance
among multiple coils was measured with respect to the distance using the four-port VNA, Agilent’s
E5071, as shown in Figure 7. Therefore, the [S] matrix for three coils that are directly connected to ports
of the multi-port VNA was measured and then converted into the [Z] matrix using the equation in [20]
on the Keysight’s ADS.
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Table 1. The parameter for designed coils.

Parameter Coila Coilb

Inductance (µH) 1.13 3.83
Parasitic cap. (pF) 8.22 15.17
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Additionally, we simulated the practical mutual inductance from the full circuit models with
all parasitic components and dependent voltage sources using the ADS, and the measured practical
mutual inductances are compared with the simulated results as well as those from the proposed
method in several cases.
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3.1. Two Coils Analysis

For two coils of Figure 6a, where the two coils used are identical to Coila in Table 1, the S parameters
were measured without surrounding coils and the practical mutual inductances were estimated by
substituting the Z parameters converted from S parameters into Equation (4). Figure 8 shows the
measured and simulated practical mutual inductances with those of the proposed estimation method.
As the distance between the coils decrease, the ideal mutual inductance increases and then the practical
mutual inductance also increases. On the other hand, at 13.56 MHz, the practical mutual inductance
has a higher level than 6.78 MHz. This result comes from the first and third terms of the right-hand
side of Equation (4), being a function of frequency. As the frequency increases, the magnitude of the
denominators of the terms dramatically increases more than those of the numerators. The mutual
inductances estimated by the proposed method are in good agreement with the simulated and measured
values over the distance. The closer the distance between the coils and the higher the frequency, the
larger the practical mutual inductance becomes due to the parasitic effect. The proposed method
accurately simulates these effects.
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3.2. Three Coils Analysis

For three coils of Figure 6b, the experiments were conducted on the two cases of Table 2, where
Coil 2 was located in the middle of Coils 1 and 3. The self-inductance of Coil 2 for Case#2 is larger
than the value for Case#1. Figure 9 shows the simulated, measured, and estimated practical mutual
inductances with respect to distance at 6.78 MHz and 13.56 MHz. It is noticed that the variation in
the mutual inductance with Case#2 is greater than Case#1. This means that the larger the inductance
of the surrounding coils, the greater the influence on the mutual inductance between other coils.
In addition, the variation of the practical mutual inductance is greater at 13.56 MHz than at 6.78 MHz.
That is, the parasitic effect is larger at a higher frequency. On the other hand, the proposed method
exactly estimates the practical mutual inductance all over the distance, even if the parameters of the
coil change.

Table 2. Configuration of three coils for two cases.

Two Cases Coil 1 Coil 2 Coil 3

Case#1 Coila Coila Coila
Case#2 Coila Coilb Coila

To show the accuracy of the proposed method, we calculate the mean and normalized root-mean-square
error (NRMSE) of difference between the results of measurement and the proposed method shown
in Figures 8 and 9, and summarize them in Table 3. While the mean and NRMSE increase as the
number of coil and frequency increases, the mean and error are less than 20×10−10 (0.002 µH) and 3%,
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respectively, for all cases. This means that the proposed method accurately estimates the practical
mutual inductance as measured by a multi-port VNA.
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Table 3. Mean and normalized root-mean-square error (NRMSE) of difference between the results of
measurement and the proposed method for Figures 8 and 9.

6.78 MHz 13.56 MHz

Mean (µH) NRMSE (%) Mean (µH) NRMSE (%)

Two coils −2.7 × 10−4 0.68 16.9 × 10−4 1.67
Case#1 −5.8 × 10−4 1.03 20.0 × 10−4 1.92
Case#2 −6.5 × 10−4 0.84 7.3 × 10−4 2.81

3.3. Analysis of Unilateral Method for the Number of Coils

Figure 10 shows the practical mutual inductance as a function of the frequency at several distances
for two, three, and four coils as shown in Figure 6. The parameters of all arranged coils are identical
with Coila in Table 1. The ideal mutual inductance does not depend on the frequency, but the practical
mutual inductances are proportional to frequency. In addition, as the number of coils increases,
the mutual inductance increases further due to the parasitic effect. In these cases, the results of the
proposed method are almost identical to the simulated value.Electronics 2019, 8, x FOR PEER REVIEW 10 of 12 
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Figure 11 shows the simulated transfer impedance of each route for four coils, which is normalized
by the transfer impedance of the direct route, ZR−1. The transfer impedances of one- and two-hop
indirect routes are presented in Figure 11a,b, respectively. As the number of hops increase, the transfer
impedance decreases dramatically. In other words, the normalized transfer impedance of one-hop
routes have a value smaller than 0.1, while those of two-hop routes have a very small value of less
than 0.005. Thus, the two-hop route is almost unaffected as an element to obtain the practical mutual
inductance in a four-coil array. This means that among 2n−2 routes for n coils, only the direct and
one-hop routes are practically dominant, so the transfer impedance between the primary and the nth
coil can be approximately expressed as

Zn1 '

2n−2∑
k=1

ZR−k '

n−1∑
k=1

ZR−k. (12)
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Finally, for four coils, the practical mutual inductances by all routes and the routes except two
more hopping routes with respect to the frequency are as shown in Figure 12. Even if the two-hop
routes are not taken into account, the calculated mutual inductances are in good agreement with the
results of all the routes as well as the simulated results.Electronics 2019, 8, x FOR PEER REVIEW 11 of 12 
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4. Conclusions

The multi-coil WPT systems commonly use three or more coils to improve efficiency in HF bands
as well as LF bands. These systems are basically required to estimate or measure the practical mutual
inductance between coils. In this paper, the unilateral approach method is proposed to estimate the
mutual inductance among multiple coils. With the proposed method, it is not only simple to configure
the expression of formulas but also possible to estimate the practical mutual inductance through
several routes for multiple coils since the assumption that only one voltage generated with respect
to the coil pair was considered. To verify the validity of the proposed method, we coaxially placed
several coils along the distance and confirmed the consistent results with simulation and measurement.
In reality, it is difficult to analyze the mutual inductance in multiple coils using a public VNA that has
only two ports. However, the proposed method can provide the mutual inductance using a public
two-port VNA. Furthermore, it will be quite useful for the multi-coil WPT systems with a regular array
of identical coils.
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