
electronics

Article

HEAP: A Holistic Error Assessment Framework for
Multiple Approximations Using Probabilistic
Graphical Models

Jiajia Jiao

College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China;
jiaojiajia@shmtu.edu.cn

Received: 27 January 2020; Accepted: 20 February 2020; Published: 22 February 2020
����������
�������

Abstract: Approximate computing has been a good paradigm of energy-efficient accelerator design.
Accurate and fast error estimation is critical for appropriate approximate techniques selection so that
power saving (or performance improvement) can be maximized with acceptable output quality in
approximate accelerators. In the paper, we propose HEAP, a Holistic Error assessment framework
to characterize multiple Approximate techniques with Probabilistic graphical models (PGM) in a
joint way. HEAP maps the problem of evaluating errors induced by different approximate techniques
into a PGM issue, including: (1) A heterogeneous Bayesian network is represented by converting an
application’s data flow graph, where various approximate options are {precise, approximate} two-state
X*-type nodes, while input or operating variables are {precise, approximate, unacceptable} three-state
X-type nodes. These two different kinds of nodes are separately used to configure the available
approximate techniques and track the corresponding error propagation for guaranteed configurability;
(2) node learning is accomplished via an approximate library, which consists of probability mass
functions of multiple approximate techniques to fast calculate each node’s Conditional Probability
Table by mechanistic modeling or empirical modeling; (3) exact inference provides the probability
distribution of output quality at three levels of precise, approximate, and unacceptable. We do a
complete case study of 3 × 3 Gaussian kernels with different approximate configurations to verify
HEAP. The comprehensive results demonstrate that HEAP is helpful to explore design space for
power-efficient approximate accelerators, with just 4.18% accuracy loss and 3.34 × 105 speedup on
average over Mentor Carlo simulation.

Keywords: error assessment; approximate computing; probabilistic graphical models; multiple
approximations

1. Introduction

Power and energy efficiency have motivated the coming forth of new approximate techniques
for designing accelerators for applications with inherent resilience to errors [1]. By relaxing the
quality of output results in image processing, data mining, pattern recognition applications, imprecise
calculation, storage and communication can achieve more power saving and performance improvement.
This approximate computing paradigm can be applied in different components of application-specified
accelerators with different quality-power (or performance) tradeoffs at different abstractions layers [2].
There have been a variety of approximate techniques proposed for gaining power saving or performance
improvement, which cover all the sites in approximate computing [3–17], approximate storage [18–30],
and approximate communication [31–36]. How to utilize these approximate techniques is a significant
issue for designing a cost-effective approximate accelerator.

Electronics 2020, 9, 373; doi:10.3390/electronics9020373 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://dx.doi.org/10.3390/electronics9020373
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/2/373?type=check_update&version=2

Electronics 2020, 9, 373 2 of 21

Error assessment (In the paper, error assessment is to evaluate the actively induced errors impacts
on application output quality, where an approximate accelerator adopts some approximate techniques
to gain power saving or performance. It is different from the random soft errors caused by high
energy particles. Error assessment, error analysis, and error estimation are interchanged to use in
the following paper) of approximate accelerators is critical for appropriate approximate techniques
selection to maximize the power saving or performance improvement with acceptable output quality.
Two kinds of approaches are usually used to characterize the error impacts of approximate techniques
on final output quality. First is Mentor Carlo simulation to capture dynamic execution of applications
exactly in approximate architectures. It often uses a large number of simulations to get the accurate
statistical results [37–39]. This general-purpose approach provides dependable estimation, but requires
too much time. The other is fast analytical modeling to characterize applications’ output quality in the
underlying approximate architectures. It calculates the output quality of approximate configuration
with a few formulas very quickly. However, these analytical models are usually limited to certain
approximate sites such as approximate adders or approximate multipliers for calculation [40,41],
approximate SRAM/DRAM/SSD/PCM [42–45] for storage, and approximate data transmission for
communication [31–36]. Particularly, there are a variety of accuracy-power/performance tradeoffs for a
specified approximate component. For example, approximate GeAr [15] performs an n-bit addition
using multiple sub-adders of smaller size. The most significant r-bits of the sub-adders are considered
as resultant bits and used in the result, while the remaining p-bits, the pervious bits, are used to
estimate the carry propagation to upper bits. Different parameters (n,r,p) can be configured as different
approximate cases. Therefore, the analytical models are fast but hard extensions from local component
to the whole architecture directly.

From the above analysis, analytical modeling is faster than Mentor Carlo simulation, and more
suitable for early design of approximate accelerator. To break the limits of the traditional analytical
modeling only for components, the probabilistic approach is a good alternative [46]. Several probabilistic
methods for error estimation in approximate adders or precise scaling have been presented
recently [47–49]. The error impacts of approximate adders are evaluated by a compiler-driven error
propagation and analysis approach in [47]. Error propagation rules are defined according to the different
instruction types, and then Depth-First Search algorithm is used to merge the probability mass functions
of all nodes through traversing the application’s data flow graph. Precision scaling is characterized
by a Bayesian probabilistic approach to predict the relation between component-level functional
approximation and application-level accuracy [48]. Each node is a three-state variable of precise,
approximate, and unacceptable to represent the precise scaling well. The Bayesian based prediction
of [48] is further extended to evaluate any application accuracy and support design exploration well
in [49]. High accuracy and low computational time make this Bayesian probabilistic modeling attractive
for assessing approximate techniques. However, the mixture of multiple approximate techniques can
exploit the fine-grain quality-power tradeoffs, but has not been considered completely.

As a supplementary work to the existing probabilistic approaches, this paper proposes HEAP,
a Holistic Error assessment framework to characterize multiple Approximate techniques with
Probabilistic graphical models (PGM) for application-specified accelerator design. We firstly construct
a unified Bayesian network via static application behavior analysis, and then can use mechanistic
modeling or simulation driven empirical modeling for PGM node parameters learning of conditional
probabilities tables (CPT). Finally, the probability of output quality at different levels can be calculated
through exact inference fast and accurately. The main contributions of our work are:

(1) Unified assessment of multiple approximate techniques via PGM. We map error analysis of
multiple approximations into a general PGM issue and propose a configurable framework HEAP
for assessing various approximate techniques via PGM representation, learning, and inference.
The heterogeneous Bayesian representation includes two types of nodes, which can configure
approximations and track error propagation, respectively. Node learning is accomplished by
mechanistic modeling or simulation driven empirical modeling to fill the CPTs of all nodes.

Electronics 2020, 9, 373 3 of 21

Exact inference can maintain the high accuracy and fast speed of error assessment for multiple
approximate techniques.

(2) Design exploration of approximate accelerators through flexible tradeoffs. Using the fast and
accurate HEAP approach, the best combination of approximate techniques can be selected
to maximize the power saving or performance improvement with guaranteed output quality.
The configurability of proposed HEAP makes approximate techniques selection easy and efficient.

(3) Comprehensive verification by a case study of 3 × 3 Gaussian kernel. The comprehensive results
demonstrate that the proposed HEAP achieves 4.18% accuracy loss and 3.34 × 105 speedup on
average over Mentor Carlo simulation (1,000,000 samples) and good flexibility in exploiting
fine-grain quality-power tradeoffs of multiple approximate techniques. A combined approximate
configuration of approximate adder, criticality-aware data cache, and dual-voltage approximate
communication performs the maximum power saving under guaranteed output quality.

The structure of this paper is as follows. Firstly, introduction and related work are described
in Sections 1 and 2, respectively. Next, Section 3 details the proposed framework HEAP, including
unified PGM structure construction via static application behavior analysis, node learning for CPTs to
characterize approximate techniques, and exact inference to calculate the probability of output quality
at three levels. Then, the experiment configuration and results are presented in Section 4. Finally,
the conclusion is drawn in Section 5.

2. Related work

In this section, we introduce the related works on a variety of approximate techniques in Section 2.1
and error estimation methods for approximate techniques in Section 2.2, respectively.

2.1. Approximate Techniques

To exploit the inherent error tolerance of applications, various approximate computing approaches
are proposed via relaxing the reliability actively for higher performance and lower power consumption.
According to the approximate sites, these approximate techniques can be classified into three categories:

(1) Approximate computing. Approximate computing can be achieved by software or hardware.
The high-level approximate software can be exploited in a more flexible way, such as approximate
aware high-level synthesis [3], neural acceleration for general approximate programs [4],
optimization of approximate kernels [5], and floating point [6]. Unlike these approximate software
solutions, approximate hardware techniques usually exploit the fine-grain approximation at
architecture-level or circuit-level. Recent approximate architectures include SAGE [7], DES [8],
SNNAP [9], Neutralizer [10], Brainiac [11], precimonious [12], neural acceleration for GPU [13],
and accelerators for machine learning [14]. Approximate circuits focus on the often-used functional
units such as approximate adders or approximate multipliers [15–17].

(2) Approximate storage. All layers of the memory hierarchy are covered, including cache, memory,
and storage. The approximate caches aim at optimizing the access performance and reducing
the cache miss overhead as well as some new types of devices, such as RFVP [18], load
value approximation [19], Texture Cache [20], a tunable cache [21], STAxCache [22], Dynamic
Energy-Quality [23], and Scratchpad Memory optimize [24]. Approximate memory structures
are also proposed by dividing the data into the critical and uncritical regions. The uncritical data
region can be set at a lower refresh rate for energy saving, or the potential of Multi-Level Cell is
considered, such as Flikker [25] and DrMP [26]. Approximate storage is often for larger capacity
for high-density image storage [27–30].

(3) Approximate communication. Approximate Communication techniques are required to reduce
communication bottlenecks in large scale parallel systems. The recent survey of approximate
communication points that most of the existing techniques related to approximate computing
and storage can help to reduce the communication pressure indirectly. The compression,

Electronics 2020, 9, 373 4 of 21

value approximation, and relaxed synchronization are the popular techniques for approximate
communication. The actual approximate communication architectures for parallel system have
come out lately. The approximate bus [31] and network on chip architectures [32–36] are
proposed for higher network throughput using the critical feature of data type information or
dual scaling voltage.

All these carefully designed approximate approaches need fast and accurate error evaluation to
verify their effectiveness on exchanging acceptable output quality loss for power or performance benefits.

2.2. Error Estimation Methods

Before designing application-specified approximate accelerators, approximate area recognition is
needed to determine the latent approximate locations. After finishing approximate accelerator design,
approximate evaluation is required to confirm the guaranteed output quality. The central task of
the two aspects is fast and accurate error assessment of various approximate techniques. The error
estimation methods for approximate diagram are often classified into two branches:

(1) Mentor Carlo simulation. Mentor Carlo simulation can be further classified into three categories
for evaluating approximate techniques: Random, representative, and equivalent. The random
way is easy to implement, but low efficiency [1], while the selective representations are usually
based on application characterization such as ARC proposed by Chippa [2]. The equivalence based
Relyzer [37] uses the static analysis of flow control and dynamic analysis of data flow to capture
the similarity degree of different instructions for fewer simulations with fault injection and higher
efficiency. On the base of the existing Relyzer, Approxilyzer [38] and gem5-approxilyzer [39] were
proposed via exploiting the one bit upset affecting the application-level output quality. However,
the optimized Mentor Carlo simulation is still time consuming due to unavoidable simulations.

(2) Analytical modeling. All levels in a design stack can use analytical modeling for fast error
assessment. High-level program analysis approaches are presented for specific program or
code. These methods almost are based on the grammar and semantics analysis, so that they can
provide higher efficiency [6]. Low-level approximate circuits are modeled based on a lookup
table technique, which characterizes the statistical properties of approximate hardware and
uses a regression-based technique for composing statistics to formulate output quality [40,50].
An analytical error analysis approach for approximate adders can predict, evaluate, and compare
the accuracy of various approximate adders and multipliers [41,51]. These existing works mostly
focus on low-level error estimation or high-level program analysis.

To both keep the fast speed of analytical modeling and achieve the complete error estimation
from various approximate techniques to quality of application output, probabilistic methods have
been presented to address the error estimation for approximate computing diagram from a new
perspective [46–49]. Preliminary information is provided on a cross-layer framework built on top of a
Bayesian model designed to perform component-based reliability analysis of complex systems [46].
A compiler-driven error analysis methodology defines the computing rules of error propagation
for different kinds of instruction operations and evaluates the behavior of errors generated from
approximate adders in the design of approximate accelerators [47]. Another probabilistic approach
predicts the relation between component-level functional approximation and application-level accuracy
by precision scaling in a Bayesian network [48,49]. These probabilistic approaches inspired us to
design a PGM based configurable framework, HEAP, for fast and accurate error assessment of multiple
approximate techniques.

Compared with these probabilistic approaches, the proposed HEAP provides a holistic framework
for multiple approximate techniques, which can be instanced as one configuration for approximate
adders [47] or precision scaling [48,49]. Additionally, the case study of 3 × 3 Gaussian kernel and
various results can prove the effectiveness of mapping error assessment problem into a general PGM
issue. HEAP can also integrate some dynamic simulation information instead of purely mechanistic

Electronics 2020, 9, 373 5 of 21

modeling to further reduce estimation accuracy loss by 1.61%, which is up to 98–99% accuracy as is
provided in [49]. Moreover, HEAP can assist approximate accelerator design well through selecting
the mixture of multiple approximate techniques in a configurable way easily and efficiently. Therefore,
to the best of our knowledge, the proposed HEAP is the first to tackle the error assessment of multiple
approximate techniques with a joint PGM framework as Section 3 describes, and proves fast and
accurate error estimation for assisting cost-effective approximate accelerators design as Section 4 shows.

3. Proposed framework HEAP

In this section, we detail HEAP the error assessment framework of multiple approximate
techniques for application-specified accelerators. First, the general PGM concept is briefly introduced
in Section 3.1. Next, the proposed HEAP framework overview is described in Section 3.2. Then, HEAP
three components design is detailed in Section 3.3.

3.1. General PGM Concept

Generally, a complete PGM framework is composed of three parts: Representation, learning,
and inference [52].

Representation. This is the fundamental and critical factor for a PGM framework and includes
directed graphical models (Bayesian networks in Figure 1a) and undirected graphical models (Markov
Random Fields in Figure 1b). In general, a PGM defines a family of probability distributions that can
be represented in terms of a graph. Nodes in graph correspond to random variables X1, X2, . . . , Xn;
the graph structure translates into statistical dependencies (among such variables) that drive the
computation of joint, conditional, and marginal probabilities of interest. For example, in Figure 1a,
the joint probability or Bayesian factorization is described by the conditional probabilities in Equation (1)
as follows:

P(X1, X2, X3, X4, X5) = P(X1)P(X2|X1)P(X3|X1)P(X5|X2)P(X4
∣∣∣X2, X3) (1)

Electronics 2020, 9, x FOR PEER REVIEW 5 of 21

approximate adders [47] or precision scaling [48,49]. Additionally, the case study of 3x3 Gaussian
kernel and various results can prove the effectiveness of mapping error assessment problem into a
general PGM issue. HEAP can also integrate some dynamic simulation information instead of
purely mechanistic modeling to further reduce estimation accuracy loss by 1.61%, which is up to
98–99% accuracy as is provided in [49]. Moreover, HEAP can assist approximate accelerator design
well through selecting the mixture of multiple approximate techniques in a configurable way easily
and efficiently. Therefore, to the best of our knowledge, the proposed HEAP is the first to tackle the
error assessment of multiple approximate techniques with a joint PGM framework as Section 3
describes, and proves fast and accurate error estimation for assisting cost-effective approximate
accelerators design as Section 4 shows.

3. Proposed framework HEAP

In this section, we detail HEAP the error assessment framework of multiple approximate
techniques for application-specified accelerators. First, the general PGM concept is briefly
introduced in Subsection 3.1. Next, the proposed HEAP framework overview is described in
Subsection 3.2. Then, HEAP three components design is detailed in Subsection 3.3.

3.1. General PGM Concept

Generally, a complete PGM framework is composed of three parts: Representation, learning,
and inference [52].

Representation. This is the fundamental and critical factor for a PGM framework and includes
directed graphical models (Bayesian networks in Figure 1a) and undirected graphical models
(Markov Random Fields in Figure 1b). In general, a PGM defines a family of probability
distributions that can be represented in terms of a graph. Nodes in graph correspond to random
variables X1,X2….Xn; the graph structure translates into statistical dependencies (among such
variables) that drive the computation of joint, conditional, and marginal probabilities of interest. For
example, in Figure 1a, the joint probability or Bayesian factorization is described by the conditional
probabilities in equation (1) as follows: 𝑃(𝑋 , 𝑋 , 𝑋 , 𝑋 , 𝑋) = 𝑃(𝑋)𝑃(𝑋 |𝑋)𝑃(𝑋 |𝑋)𝑃(𝑋 |𝑋)𝑃(𝑋 |𝑋 , 𝑋) (1)

(a) (b)

Figure 1. Two PGM network types. (a) Bayesian network; (b) Markov Random Fields.

Learning phase. The learning graphic model from data is another important concept for the
factorization of the distribution. Learning structure and learning parameters are the two most basic
learning tasks as follows:
• Structure learning. As Figure 1a shows, the deterministic Bayesian graph determines the

structure in PGM. Without the structure, the joint probability cannot be expressed by the
reduced conditional probabilities for the unknown dependencies. Therefore, it is very critical to
get the structure accurately for correct factorization.

Figure 1. Two PGM network types. (a) Bayesian network; (b) Markov Random Fields.

Learning phase. The learning graphic model from data is another important concept for the
factorization of the distribution. Learning structure and learning parameters are the two most basic
learning tasks as follows:

• Structure learning. As Figure 1a shows, the deterministic Bayesian graph determines the structure
in PGM. Without the structure, the joint probability cannot be expressed by the reduced conditional
probabilities for the unknown dependencies. Therefore, it is very critical to get the structure
accurately for correct factorization.

• Parameter learning. The parameters denote the required CPT for the joint probabilities’ calculation.
Here, we assume the conditional probability will follow the Bernoulli distribution for the
approximation induced bits upset. E.g., the node X4 in Figure 1 has three parents. It depends on
X1, X2, X3, which means the unknown parameters determine the probability of each case.

Electronics 2020, 9, 373 6 of 21

Inference phase. Based on the available structure and node information, using a given algorithm
(e.g., variable elimination and conditioning) for exact inference, we can determine the required marginal
probabilities. For example, the marginal probability can be expressed as: P(X4 = X5 = 0 |X1 = 1) =

P(X1, X2, X3, X4, X5). Then, the probability can be determined from the conditional probabilities based
on node parameters via the aforementioned efficient inference algorithms.

3.2. HEAP Overview

The proposed HEAP can solve the error assessment of multiple approximate techniques via PGM
in a joint way. We choose to work within the PGM framework, because this offers unique advantages:
(1) Efficiency potential because of PGM low complexity for the high dimensional dependencies
converted into small factorization; (2) modularity for easily integrating existing evaluation methods of a
single approximate techniques into the PGM modules; (3) perfect match due to the application-specified
data flow graph fulfilling the conditional independences.

Based on the above general PGM concept, we map the error propagation due to multiple
approximate techniques into the PGM problem as follows, which includes the instanced three main
components based on PGM flow shows: (1) Mapping the problem into the fundamental PGM
representation; (2) structure and node parameters learning to support the inference; (3) exact inference
to guarantee the estimation accuracy.

As Figure 2 shows, the workflow of HEAP is also composed of three steps. The given input data
flow graph (DFG) of specified application is firstly converted to a heterogeneous Bayesian network
by mapping rules. It is noted that, if the data flow graph is not given directly, open source tool Low
Level Virtual Machine (LLVM) can compile the application C/C++ source code and provide DFG
through intermediate representation (IR) [53]. Based on an available DFG, a Bayesian network is
constructed through the simple mapping rules. Keep the variable nodes with three states {P = precise,
A = approximate, U = unacceptable}, which uses the same handling policy in [48,49]. For example,
X1+ denotes the left sum of a and shift temporary. It has three possible states {P, A, U}. To configure
the multiple approximate sources, the two states {P = precise, A = approximate} nodes are inserted.
For example, X*1+ becomes a new parent of X1+ as a new two states node. More details about the
representation are depicted in Section 3.3.1.

Then, according to the network dependences between nodes and available multiple approximate
techniques, the CPTs are filled with modeling results from approximate library and approximate
configuration in Section 3.3.2.

Finally, variable elimination (VE) algorithm [54] uses the Bayesian network and nodes’ CPT
information to achieve the error distributions via calculating the marginal probability in Section 3.3.3.
For example, the probability of precise output is 100%, while it is only 96% under approximate
adder configuration, even lower in the mixed approximate configurations. Additionally, the power
saving or performance improvement can be further considered to select the appropriate approximate
configuration from possible options.

3.3. HEAP Components

Next, we introduce the details of HEAP’s three components respectively, including Bayesian
network representation, node parameters learning, and exact reference.

3.3.1. Mapping Problem into Bayesian Network Representation

This paper is unlike our previous work [55] using PGM to solve the soft error estimation via basic
Bernoulli distribution, where each node occurs one bit upset or not. Here, we should further consider
the bit upset causes acceptable approximate or not for the control of output quality. Therefore, node
states should be extended to {P = precise, A = approximate, U = unacceptable}. The often-used metric
error distance (ED) determines the node status P, A, or U in Equation (2). The threshold can be set on

Electronics 2020, 9, 373 7 of 21

demand, if the error distance between actual value X and approximate value X̃ is 0, the state is P. ED is
less than the threshold, and the node state is identified as A. Otherwise, it is U.

State(X̃)

P i f ED =

∣∣∣∣X − X̃
∣∣∣∣ = 0

A i f ED =
∣∣∣∣X − X̃

∣∣∣∣ < EDthreshhold

U i f ED =
∣∣∣∣X − X̃

∣∣∣∣ ≥ EDthreshhold

(2)

Electronics 2020, 9, x FOR PEER REVIEW 7 of 21

<< <<

+

+

+

b 1 d

a c

out

X*c/t_v

Xvar_b X*2<<

Xvar_c

Xcon_1 Xvar_d

Xvar_a

X*c/t_c

X*1<<

X*1+ X*2+

X*3+X1+ X2+

X3+
(out)

X1<< X2<<

OUTPUT-precise

P

A

U

OUTPUT-approx_storage

P

A

U

OUTPUT-approx_adder

P

A

U

OUTPUT-approx_adder+storage

P

A

U

Approximate
library

Configure file
(EDthreshold and

approximate
techniques

configuration)

Figure 2. HEAP workflow overview.

consider the bit upset causes acceptable approximate or not for the control of output quality.
Therefore, node states should be extended to {P=precise, A=approximate, U=unacceptable}. The
often-used metric error distance (ED) determines the node status P, A, or U in equation (2). The
threshold can be set on demand, if the error distance between actual value X and approximate value X is 0, the state is P. ED is less than the threshold, and the node state is identified as A. Otherwise, it
is U.

State(X) 𝑃 𝑖𝑓 𝐸𝐷 = 𝑋 − X = 0 A 𝑖𝑓 𝐸𝐷 = 𝑋 − X < 𝐸𝐷U 𝑖𝑓 𝐸𝐷 = 𝑋 − X ≥ 𝐸𝐷 (2)

Figure 2. HEAP workflow overview.

Electronics 2020, 9, 373 8 of 21

On the other hand, multiple approximate configurations from different components or different
levels are also characterized by inserting the corresponding nodes into the unified Bayesian network.
These kinds of nodes are different from input, intermediate, or output variables, which have three
states {P, A, U} to pass the error propagation until final output. These approximate technique nodes X∗

follow typical Bernoulli distribution and have two states {P = precise, A = approximate}. As Equation
(3) depicts, if the node value is assigned to A, the approximate technique is activated. Otherwise, P
deactivates the approximate technique.

State(X̃∗)
{

P if X∗ = 1
A if X∗ = 0

(3)

In addition, approximate calculation differs from approximate communication and approximate
storage. The former is influenced by both operator and operands, while the latter has no functional
operation and often changes the value of stored or transmitted variable directly. Consequently,
the approximate calculation, like addition, should append a three-state node for storing the computing
intermediate result. To keep consistent with the realistic scenario, we assume that the approximate
communication and storage are usually configud for input variables.

From the above analysis and description, we can summarize the following three mapping rules
to convert an application specified DFG to a Bayesian network as Figure 3 shows. It is noted that
Figure 3b only shows the mapping result of the dotted region in Figure 3a for good readability.

(1) Each input in DFG is converted to one X-type node with {P, A, U} three states to track the error
propagation, e.g., the node Xvar_a relates to the input variable a;

(2) Each operator in DFG becomes one corresponding variable node X1+ with three states {P, A, U} of
calculation result and one approximate configuration node X*1+ with two states {P, A}. Similarly,
{X1<<, X*1<<}, {X1>>, X*1>>} are the corresponding nodes pair of shift left and shift right operators.
The number 1 represents the count of this same kind of operation for locating itself in a Bayesian
network. Keep the edges between inputs and operator variables like Xvar_a->X1+. The new edge
in bold from the operator configuration node to the operator variable node is also added, e.g.,
X*1+->X1+;

(3) Insert the non-calculation type approximation node and build the directed edges to each input,
e.g., X*s/t_v-> Xvar_a. Varying input and constants are usually handled separately for their different
storage ways, e.g., X*s/t_c-> Xcon_1.

Once we get the Bayesian graph and node information like CPT as Figure 3 shows, the joint
probability is expressed as Equation (4).

P
(
X∗s/t_v, X∗s/t_c, X∗1�, X∗1+, X1�, X1+, Xvar_a, Xvar_b, Xcon_1

)
= P

(
X∗s/t_v

)
P
(
X∗s/t_c

)
P
(
X∗1�

)
P
(
X∗1+

)
P(Xvar_a

∣∣∣∣ X∗s/t_v) P(Xvar_b

∣∣∣∣X∗s/t_v)

P(Xcon_1

∣∣∣∣ X∗s/t_c)P(X1�

∣∣∣∣ Xvar_b, Xcon_1, X∗1�) P(X1+

∣∣∣∣Xvar_a, X1<<, X∗1+)

(4)

Based on the joint probability in the above Equation (4), inference can obtain different marginal
probabilities for multiple approximate configurations. For example, the marginal probability of
output node X1+ with unacceptable results P(X1+ = U |X*s/t_v = X*s/t_c = X*1<< = P, X*1+ = A)
provides the error propagation under approximate addition configuration in accelerator. Similarly,
the marginal probability of output node X1+ with unacceptable results P(X1+ = U |X*s/t_c = X*1<< = P,
X*s/t_v = X*1+ = A) under the mixed configuration of approximate addition and approximate input in
accelerator. The approximate input may be achieved by approximate communication or storage, or
even other equivalent approximate techniques.

Electronics 2020, 9, 373 9 of 21

3.3.2. Structure and Node Parameters Learning

This section provides the two learning tasks: Structure learning and node parameters learning
for the following inference. (1) Structure learning. As Figure 3 shows, we use the simple mapping
rules to construct the Bayesian network structure from a determined DFG. Therefore, the application
specified DFG is converted into an exact Bayesian representation for further inference. (2) Node
parameters learning.Electronics 2020, 9, x FOR PEER REVIEW 9 of 21

(a)

X*s/t_v

Xvar_b Xcon_1

Xvar_a

X*s/t_c

X*1<<

X*1+

X1+

X1<<

X node has three states {P,A,U},used to
track the error propagation;
X* node has two states{P,A}, used to
configure the approximation.

P(Xvar_a=P|X*s/t_v=P)=1
P(Xvar_a=A|X*s/t_v=P)=0
P(Xvar_a=U|X*s/t_v=P)=0

P(Xvar_a=P|X*s/t_v=A)=0
P(Xvar_a=A|X*s/t_v=A)=0.99
P(Xvar_a=U|X*s/t_v=A)=0.01

P(X*1+=P)=0
P(X*1+=A)=1

P(X*1<<=P)=1
P(X*1<<=A)=0

P(X1+=P|X1<<=A, Xvar_a=A, X*1+=A)=0.16
P(X1+=A|X1<<=A, Xvar_a=A, X*1+=A)=0.48
P(X1+=U|X1<<=A, Xvar_a=A, X*1+=A)=0.36

P(X1+=P|X1<<=A, Xvar_a=U, X*1+=A)=0
P(X1+=A|X1<<=A, Xvar_a=U, X*1+=A)= 0.014
P(X1+=U|X1<<=A, Xvar_a=U, X*1+=A)= 0.986

P(X1+=P|X1<<=U, Xvar_a=A, X*1+=A)=0
P(X1+=A|X1<<=U, Xvar_a=A, X*1+=A)= 0.014
P(X1+=U|X1<<=U, Xvar_a=A, X*1+=A)= 0.986

P(X1+=P|X1<<=U, Xvar_a=U, X*1+=A)= 0.002
P(X1+=A|X1<<=U, Xvar_a=U, X*1+=A)= 0.012
P(X1+=U|X1<<=U, Xvar_a=U, X*1+=A)= 0.986

P(X1+=P|X1<<=P, Xvar_a=A, X*1+=A)=0
P(X1+=A|X1<<=P, Xvar_a=A, X*1+=A)=0.95
P(X1+=U|X1<<=P, Xvar_a=A, X*1+=A)=0.05

P(X1+=P|X1<<=P, Xvar_a=U, X*1+=A)=0
P(X1+=A|X1<<=P, Xvar_a=U, X*1+=A)=0
P(X1+=U|X1<<=P, Xvar_a=U, X*1+=A)=1

P(X1+=P|X1<<=A, Xvar_a=P, X*1+=A)=0
P(X1+=A|X1<<=A, Xvar_a=P, X*1+=A)=0.95
P(X1+=U|X1<<=A, Xvar_a=P, X*1+=A)=0.05

P(X1+=P|X1<<=U, Xvar_a=P, X*1+=A)=0
P(X1+=A|X1<<=U, Xvar_a=P, X*1+=A)=0
P(X1+=U|X1<<=U, Xvar_a=P, X*1+=A)=1

P(X1+=P|X1<<=A, Xvar_a=P, X*1+=P)=0
P(X1+=A|X1<<=A, Xvar_a=P, X*1+=P)=1
P(X1+=U|X1<<=A, Xvar_a=P, X*1+=P)=0

P(X1+=P|X1<<=U, Xvar_a=P, X*1+=P)=0
P(X1+=A|X1<<=U, Xvar_a=P, X*1+=P)=0
P(X1+=U|X1<<=U, Xvar_a=P, X*1+=P)=1

P(X1+=P|X1<<=P, Xvar_a=A, X*1+=P)=0
P(X1+=A|X1<<=P, Xvar_a=A, X*1+=P)=1
P(X1+=U|X1<<=P, Xvar_a=A, X*1+=P)=0

P(X1+=P|X1<<=P, Xvar_a=U, X*1+=P)=0
P(X1+=A|X1<<=P, Xvar_a=U, X*1+=P)=0
P(X1+=U|X1<<=P, Xvar_a=U, X*1+=P)=1

P(X1+=P|X1<<=P, Xvar_a=P, X*1+=P)=1
P(X1+=A|X1<<=P, Xvar_a=P, X*1+=P)=0
P(X1+=U|X1<<=P, Xvar_a=P, X*1+=P)=0

P(X1+=P|X1<<=A, Xvar_a=A, X*1+=P)=1/6
P(X1+=A|X1<<=A, Xvar_a=A, X*1+=P)=1/2
P(X1+=U|X1<<=A, Xvar_a=A, X*1+=P)=1/3

P(X1+=P|X1<<=A, Xvar_a=U, X*1+=P)=0
P(X1+=A|X1<<=A, Xvar_a=U, X*1+=P)= 0.0145
P(X1+=U|X1<<=A, Xvar_a=U, X*1+=P)= 0.9855

P(X1+=P|X1<<=U, Xvar_a=A, X*1+=P)=0
P(X1+=A|X1<<=U, Xvar_a=A, X*1+=P)= 0.0145
P(X1+=U|X1<<=U, Xvar_a=A, X*1+=P)= 0.9855

P(X1+=P|X1<<=U, Xvar_a=U, X*1+=P)= 0.002
P(X1+=A|X1<<=U, Xvar_a=U, X*1+=P)= 0.012
P(X1+=U|X1<<=U, Xvar_a=U, X*1+=P)= 0.986

P(X1+=P|X1<<=P, Xvar_a=P, X*1+=A)=0.95
P(X1+=A|X1<<=P, Xvar_a=P, X*1+=A)=0
P(X1+=U|X1<<=P, Xvar_a=P, X*1+=A)=0.05

(b)

Figure 3. Error estimation of approximate techniques issue mapped into PGM based framework in
HEAP. (a) DFG to represent a 3 × 3 Gaussian kernel. Variable input a,b,c,d,e,f,g,h,i should be loaded
from data storage while 1,2,4 are constant as a part of instruction. Shift left (<<), shift right (>>), and
addition (+) are operators. The directed edge gives the bearing of data flow; (b) HEAP Bayesian
network representation. Purple nodes come from DFG completely, while additional pink nodes are
for approximate communication or storage, and turquoise nodes are inserted for approximate
calculation. The bold lines are new, while the normal line inherits from DFG.

Figure 3. Error estimation of approximate techniques issue mapped into PGM based framework in
HEAP. (a) DFG to represent a 3 × 3 Gaussian kernel. Variable input a,b,c,d,e,f,g,h,i should be loaded

Electronics 2020, 9, 373 10 of 21

from data storage while 1,2,4 are constant as a part of instruction. Shift left (<<), shift right (>>),
and addition (+) are operators. The directed edge gives the bearing of data flow; (b) HEAP Bayesian
network representation. Purple nodes come from DFG completely, while additional pink nodes are for
approximate communication or storage, and turquoise nodes are inserted for approximate calculation.
The bold lines are new, while the normal line inherits from DFG.

Firstly, the X*-type root nodes are used to configure the possible approximation as described in
Section 3.3.1. This kind of node’s CPT has only two cases, as Figure 3b shows. Precise shift operation is
achieved by setting the CPT of node X*1<< to P(X*1<< = P) = 1, P(X*1<< = A) = 0. If activate approximate
addition, P(X*1+ = P) = 0, P(X*1+ = A) = 1.

The rest X-type nodes’ CPTs are more complex because of dependences from their parents.
Particularly, the mixture of multiple approximate techniques further increases the difficulties of CPT
calculation for X-type nodes. We classify the calculations into six categories according to the number
of imprecise parents and parent type as follows:

(1) All precise (zero imprecise nodes).

If all parent nodes are precise, this part of CPT is determined easily. The current node must
be precise; therefore, the corresponding probability is 1, while the approximate and unacceptable
probabilities are both zero as Figure 3b shows.

(2) Approximate operator.

Considering the variety of multiple approximate techniques, we can model each given approximate
technique through Probability Mass Function (PMF) in greater detail. PMF denotes the probability P of
a discrete random variable X, to be equal to a determined value x. This is expressed as pX(x) = P(X = x).
This mechanistic modeling can be finished by fast theoretical analysis (or use simulation profiling
to build empirical modeling, it is more accurate but time consuming. More related information is
discussed in Section 4.3 and the future work of Section 5). For example, PMF of an 8-bit GeAr adder [15]
in Figure 4 can give the corresponding CPT if two operands are precise. These models of approximate
techniques are stored in an approximate library for reuse.

Electronics 2020, 9, x FOR PEER REVIEW 10 of 21

Firstly, the X*-type root nodes are used to configure the possible approximation as described in
Subsection 3.3.1. This kind of node’s CPT has only two cases, as Figure 3b shows. Precise shift
operation is achieved by setting the CPT of node X*1<< to P(X*1<< = P) = 1, P(X*1<< = A) = 0. If activate
approximate addition, P(X*1+ = P) = 0, P(X*1+ = A) = 1.

The rest X-type nodes’ CPTs are more complex because of dependences from their parents.
Particularly, the mixture of multiple approximate techniques further increases the difficulties of
CPT calculation for X-type nodes. We classify the calculations into six categories according to the
number of imprecise parents and parent type as follows:
1) All precise (zero imprecise nodes).

If all parent nodes are precise, this part of CPT is determined easily. The current node must be
precise; therefore, the corresponding probability is 1, while the approximate and unacceptable
probabilities are both zero as Figure 3b shows.
2) Approximate operator.

Considering the variety of multiple approximate techniques, we can model each given
approximate technique through Probability Mass Function (PMF) in greater detail. PMF denotes the
probability P of a discrete random variable X, to be equal to a determined value x. This is expressed
as pX(x)=P(X=x). This mechanistic modeling can be finished by fast theoretical analysis (or use
simulation profiling to build empirical modeling, it is more accurate but time consuming. More
related information is discussed in Subsection 4.3 and the future work of Section 5). For example,
PMF of an 8-bit GeAr adder [15] in Figure 4 can give the corresponding CPT if two operands are
precise. These models of approximate techniques are stored in an approximate library for reuse.

Figure 4. 8-bit approximate adder GeAr Probability Mass Function.

When the EDthreshhold is set to 4, the partial information of X1+ can be determined by the first-order
approximate impact in equation (5). Similarly, the complete CPTs of nodes Xvar_a, Xvar_b, Xcon_1 can be
available. 𝑃 𝑋 = 𝑃 𝑋 ≪ = 𝑃, 𝑋 _ = 𝑃, 𝑋∗ = 𝐴 = 0.95 𝑃 𝑋 = 𝐴 𝑋 ≪ = 𝑃, 𝑋 _ = 𝑃, 𝑋∗ = 𝐴 = 0.00 𝑃 𝑋 = 𝑈 𝑋 ≪ = 𝑃, 𝑋 _ = 𝑃, 𝑋∗ = 𝐴 = 0.05 (5)

3) One imprecise operand.
This calculation is based on operator analysis. log2(EDthreshhold) determines the acceptable lowest

bits upset in X-type node. For example, EDthreshold is set to 4. One bits upset in the lowest 2 bits can be
marked as A, otherwise, it is P. Due to the addition operator in X1+, the same ED is transmitted from
one source operand Xvar_a to the destination operand X1+. The corresponding CPT information can be
determined in equation (6). However, it is noted that the CPT information should be changed with
the varying operator. For example, if a shift operator, the bits upset from imprecise operand may be
masked and result in a different CPT. Similarly, the unacceptable operand case can be handled.

0.9532

0.0156 0.0156 0.0156
0

0.2

0.4

0.6

0.8

1

1.2

ED=0 ED=32 ED=64 ED=128

Figure 4. 8-bit approximate adder GeAr Probability Mass Function.

When the EDthreshhold is set to 4, the partial information of X1+ can be determined by the first-order
approximate impact in Equation (5). Similarly, the complete CPTs of nodes Xvar_a, Xvar_b, Xcon_1 can
be available.

P
(
X1+ = P

∣∣∣X1� = P, Xvar_a = P, X∗1+ = A
)
= 0.95

P
(
X1+ = A

∣∣∣X1� = P, Xvar_a = P, X∗1+ = A
)
= 0.00

P
(
X1+ = U

∣∣∣X1� = P, Xvar_a = P, X∗1+ = A
)
= 0.05

(5)

Electronics 2020, 9, 373 11 of 21

(3) One imprecise operand.

This calculation is based on operator analysis. log2(EDthreshhold) determines the acceptable lowest
bits upset in X-type node. For example, EDthreshold is set to 4. One bits uet in the lowest 2 bits can be
marked as A, otherwise, it is P. Due to the addition operator in X1+, the same ED is transmitted from
one source operand Xvar_a to the destination operand X1+. The corresponding CPT information can be
determined in Equation (6). However, it is noted that the CPT information should be changed with
the varying operator. For example, if a shift operator, the bits upset from imprecise operand may be
masked and result in a different CPT. Similarly, the unacceptable operand case can be handled.

P
(
X1+ = P

∣∣∣X1� = P, Xvar_a = A, X∗1+ = P
)
= 0

P
(
X1+ = A

∣∣∣X1� = P, Xvar_a = A, X∗1+ = P
)
= 1

P
(
X1+ = U

∣∣∣X1� = P, Xvar_a = A, X∗1+ = P
)
= 0

(6)

(4) Two imprecise operands.

If multiple approximate operands are together, we can finish the CPT calculation through
exhaustion of all possible cases. The process occurs only once, but can be reused many times in the
same kind of operator nodes via an approximate library. For exampl EDthreshholdis set to 4, and Table 1
lists all eighteen cases for X1+ with approximate X1<< as well as approximate Xvar_a. We can find out
three P’s, six U’s, and twelve A’s. Therefore, the CPT information can be determined. This process
also considers the error masking of two concurrent approximations into a precise result in Table 1.
For example, one operand X1<< has positive 1 of ED, while the other Xvar_a has the same negative
value -1. The addition makes the offset of two approximate operands with each other. Similarly,
one approximate plus one unacceptable operand or two unacceptable operands could be handled
in an extended way. The difference lies in CPTs of the two cases, which are influenced by bit
width. Without loss of generality, we give a mechanistic model for an arbitrary bit width n in in
Tables 2 and 3, respectively.

Table 1. Conditional probabilities table (CPT) calculation under twopproximate operands with addition.

ED(X1<<) ED(Xvar_a) ED(X1+) State of X1+

1 1
0 P

2 A

1 2
1 A

3 A

1 3
2 A

4 U

2 1
1 A

3 A

2 2
0 P

4 U

2 3
1 A

5 U

3 1
2 A

4 U

3 2
1 A

5 U

3 3
0 P

6 U

P: 1.5/9 = 1/6 A: 4.5/9 = 1/2 U:3/9 = 1/3

Electronics 2020, 9, 373 12 of 21

Table 2. CPT calculation under one approximate operand plus one unacceptable operand.

ED(X1<<), ED(Xvar_a)
Bit Width

ED(X1+) State of X1+
n 8

ED(X1<<) = 1 ED(Xvar_a) = 4 OR
ED(Xvar_a) = 1 ED(X1<<) = 4

(EDthreashold − 3) × 2 2
3 A

5 U

ED(X1<<) = 2 ED(Xvar_a) = 4,5 OR
ED(Xvar_a) = 2 ED(X1<<) = 4,5 (EDthreashold − 2) × 2 4 1 A

ED(X1<<) = 3 ED(Xvar_a) = 4,5,6 OR
ED(Xvar_a) = 3 ED(X1<<) = 4,5,6 (EDthreashold − 1) × 2 6 2 A

Others (2n
− EDthreashold + 12) ×
(EDthreashold − 1) 744 >3 U

Total (2n
− EDthreashold)(EDthreashold − 1) 756 {P,A,U}

P: 0 A: 11/756 = 0.0145 U:745/756 = 0.9855

Table 3. CPT calculation under two unacceptable operands with addition.

ED(X1<<),
ED(Xvar_a)

Bit Width
ED(X1+) State of X1+

n 8

(2n-EDthreashold)
ED(X1<<) = ED(Xvar_a)

2n
− EDthreashold 252

0 P

2*ED(Xvar_a) U

ED(X1<<)− ED(Xvar_a) = 1 OR
ED(X1<<) − ED(Xvar_a) = −1 2n

− 1-EDthreashold 251 1 A

ED(X1<<) − ED(Xvar_a) = 2 OR
ED(X1<<) − ED(Xvar_a) = −2 2n

− 2-EDthreashold 250 2 A

ED(X1<<) − ED(Xvar_a) = 2 OR
ED(X1<<) − ED(Xvar_a) = −2 2n

− 3-EDthreashold 249 3 A

Others (2n
− EDthreashold) (2n

− EDthreashold − 4) + 6 62502 >3 U

Total (2n
− EDthreashold) × 2 63504 {P,A,U}

P: 126/63504 = 0.002 A: 750/63504 = 0.0012 U: 62628/63504 = 0.986

(5) Approximate operator + one imprecise operand.

The mixture of category (2) and (3) makes this (5). If there is one approximate operand, the CPT
information is determined by its PMF and one approximate operator in Equation (7).

P
(
X1+ = P

∣∣∣X1� = P, Xvar_a = A, X∗1+ = A
)
= 0.00

P
(
X1+ = A

∣∣∣X1� = P, Xvar_a = A, X∗1+ = A
)
= 0.95

P
(
X1+ = U

∣∣∣X1� = P, Xvar_a = A, X∗1+ = A
)
= 0.05

(7)

When there is an unacceptable operand, the CPT information is determined by a higher priority
of status U, and equal to one unacceptable operand in Equation (8).

P
(
X1+ = P

∣∣∣X1� = P, Xvar_a = U, X∗1+ = A
)
= 0

P
(
X1+ = A

∣∣∣X1� = P, Xvar_a = U, X∗1+ = A
)
= 0

P
(
X1+ = U

∣∣∣X1� = P, Xvar_a = U, X∗1+ = A
)
= 1

(8)

(6) Approximate operator + two imprecise operands.

The mixture of category (2) and (4) makes this (6). If there are two approximate operands,
the CPT information is determined by weighted computing in Table 4. Similarly, the rest of the cases
can be solved via considering the operator ED with operands ED together, as the CPTs of nodes in
Figure 3b shows.

Electronics 2020, 9, 373 13 of 21

Table 4. CPT calculation under two approximate operands with addition.

ED(X1<<) ED(Xvar_a) ED(X*1+) ED(X1+) State of X1+

(0, EDthreashold) (0, EDthreashold) 0(95%)

=0 P(0.95/6)

< = EDthreashold A(0.95/2)

> = EDthreashold U(0.95/3)

(0, EDthreashold) (0, EDthreashold) >3(0.05) > = EDthreashold U(0.05)

P:0.95/6 = 0.16 A:0.95/2 = 0.48 U:0.95/3 + 0.05 = 0.36

Based on the above complete calculation policy of six categories, the local error occurrence
distribution of each approximate technique can be expressed by the node CPT information.
If mechanistic models for some existing approximate techniques are available, they can be reused
directly. If not, the simulation-based profiling can be adopted to achieve the empirical models.
The mechanistic or empirical even hybrid models help to fill the approximate characteristics into CPTs
for the further inference.

3.3.3. Exact VE Inference

Exact variable elimination (VE) [54] is chosen as the inference algorithm in this paper. Because VE
merges and adds a series of decomposition factors one by one in the PGM graph, which can achieve
accurate solutions.

The detailed algorithm description is shown in Figure 5, including four inputs: The conditional
probability table of nodes, that is, the CPTs of all nodes, the observation node X, and the query node
list Y, where Y0 is the observation value corresponding to Y; elimination order; the output is the edge
probability P (X|Y = Y0). More descriptions and accuracy proofs of the VE algorithm can be found
in the literature [54]. The complexity of VE can be measured by the number of times of numerical
multiplication and numerical addition. An optimal elimination order can bring the lowest complexity,
but how to find the optimal elimination order itself is still an NP problem. In this paper, the VE
algorithm uses the topological order that the PGM structure depends on as the elimination order.

Electronics 2020, 9, x FOR PEER REVIEW 13 of 21

Table 4. CPT calculation under two approximate operands with addition.

ED(X1<<) ED(Xvar_a) ED(X*1+) ED(X1+) State of X1+

(0, EDthreashold) (0, EDthreashold) 0(95%)
=0 P(0.95/6)

< = EDthreashold A(0.95/2)
> = EDthreashold U(0.95/3)

(0, EDthreashold) (0, EDthreashold) >3(0.05) > = EDthreashold U(0.05)
P:0.95/6=0.16 A:0.95/2=0.48 U:0.95/3+0.05=0.36

Based on the above complete calculation policy of six categories, the local error occurrence
distribution of each approximate technique can be expressed by the node CPT information. If
mechanistic models for some existing approximate techniques are available, they can be reused
directly. If not, the simulation-based profiling can be adopted to achieve the empirical models. The
mechanistic or empirical even hybrid models help to fill the approximate characteristics into CPTs
for the further inference.

3.3.3. Exact VE Inference

Exact variable elimination (VE) [54] is chosen as the inference algorithm in this paper. Because
VE merges and adds a series of decomposition factors one by one in the PGM graph, which can
achieve accurate solutions.

The detailed algorithm description is shown in Figure 5, including four inputs: The conditional
probability table of nodes, that is, the CPTs of all nodes, the observation node X, and the query node
list Y, where Y0 is the observation value corresponding to Y; elimination order; the output is the edge
probability P (X | Y = Y0). More descriptions and accuracy proofs of the VE algorithm can be found
in the literature [54]. The complexity of VE can be measured by the number of times of numerical
multiplication and numerical addition. An optimal elimination order can bring the lowest
complexity, but how to find the optimal elimination order itself is still an NP problem. In this paper,
the VE algorithm uses the topological order that the PGM structure depends on as the elimination
order.

Procedure VE),,,,(0 ρYYXΓ

 Inputs: Γ is the list of conditional probabilities (CPTs of all nodes) in a Bayesian network;
X denotes a list of query variables; Y is a list of observed variables;

0Y represents the corresponding list of observed values;

ρ is an elimination ordering for variables outside YX .
Output: P(X|Y=Y0).

1. Set the observed variables in all factors to their corresponding observed values.
2. While ρ is not empty
3. Remove the first variable z from ρ ,
4. Call sum-out(z,Γ).
5. Endwhile
6. Set h= the multiplication of all the factors on Γ .

//h is a function of variables in X.
7. Return X

XhXh)(/)(. // Renormalization

Figure 5. Variable elimination (VE) algorithm persudo code.

4. Experiments and Results Analysis

4.1. Accuracy and Speed Evaluatoin

To verify the effectiveness of proposed framework HEAP, we implement C++ language-based
Mentor Carlo simulation (MC) with 1000000 samples and proposed framework HEAP using

Figure 5. Variable elimination (VE) algorithm persudo code.

Electronics 2020, 9, 373 14 of 21

4. Experiments and Results Analysis

4.1. Accuracy and Speed Evaluatoin

To verify the effectiveness of proposed framework HEAP, we implement C++ language-based
Mentor Carlo simulation (MC) with 1000000 samples and proposed framework HEAP using academic
version of PGM library SMILE [56] for 3 × 3 Gaussian kernel, respectively. During the application
execution of MC, we insert the bits upset, following the PMF of configured approximate techniques,
such as approximate adder in Figure 4. Three different configurations are compared between MC and
proposed HEAP in Table 5. It is noted that 1,000,000 samples of MC are divided into 10 groups with
100,000 samples to compute the error bar. The results show the error bar is very small and ranges
from −0.004% to 0.002% around the mean value. The results in Figure 6 show the error distribution
differences between MC and proposed HEAP.

Table 5. Approximate configurations for estimation accuracy and speed comparison.

Approximate Configurations Approximate Techniques ALS

approx_adder Approximate addition for intermediate operation (GeAr adder) 1.53%
approx_s/t_var Approximate communication or storage for Input variables 6.38%

approx_adder+s/t_var Mixture of the above two techniques 4.64%
Average 4.18%

Electronics 2020, 9, x FOR PEER REVIEW 14 of 21

academic version of PGM library SMILE [56] for 3x3 Gaussian kernel, respectively. During the
application execution of MC, we insert the bits upset, following the PMF of configured approximate
techniques, such as approximate adder in Figure 4. Three different configurations are compared
between MC and proposed HEAP in Table 5. It is noted that 1,000,000 samples of MC are divided
into 10 groups with 100,000 samples to compute the error bar. The results show the error bar is very
small and ranges from -0.004% to 0.002% around the mean value. The results in Figure 6 show the
error distribution differences between MC and proposed HEAP.

A new metric, Accuracy Loss Sum (ALS) is defined to measure the output distribution
inaccuracy of proposed HEAP over MC in equation (9) as follows. 𝐴𝐿𝑆 = 𝑎𝑏𝑠(𝑃(𝑆𝑡𝑎𝑡𝑒(𝑜𝑢𝑡𝑝𝑢𝑡𝑠) = 𝑖) − 𝑃(𝑆𝑡𝑎𝑡𝑒(𝑜𝑢𝑡𝑝𝑢𝑡𝑠) = 𝑖)){ , , } (9)

The ALS values for three approximate configurations are calculated based on Figure 6 and
listed in Table 5. We can figure out that the inaccuracy ranges from 1.53% to 6.38%, and on average
4.18%. Among of three approximate configurations, approx_adder has the least accuracy loss, down
to 1.53%, while approx_s/t gets the most accuracy loss 6.38%. In HEAP design, Bayesian network
and variable elimination inference are both exact, while the nodes’ CPTs are filled with modeling
information in Section 3.3. For these experiments, left or right shifters adopt conservative
mechanistic modeling. This handling policy makes undetermined cases in an unacceptable status.
The errors in input variables like a,b,c with approx_s/t_var configuration will propagate to the
output through six shifters, while approx_adder configuration only go through one shifter in the
structure of Figure 3a. Therefore, it is reasonable that the error paths with more nodes related to
imprecise shifters modeling will cause higher accuracy loss. Lower accuracy loss can be achieved by
more accurate empirical modeling and will be discussed in Section 4.3. Additionally, the mixed
configuration has a medium accuracy loss 4.64% less than a single configuration of approx_s/t_var.
This obviously results from the more accurate approx_adder modeling.

Figure 6. Estimation accuracy comparison between HEAP and MC.

Table 5. Approximate configurations for estimation accuracy and speed comparison.

Approximate
configurations Approximate techniques ALS

(a)HEAP_approx_adder

P

A

U

(b)HEAP_approx_s/t_var

P

A

U

(c)HEAP_approx_adder+s/t_var

P

A

U

(d) MC_approx_adder

P

A

U

(e)MC_approx_s/t_var

P

A

U

(f)MC_approx_adder+s/t_var

P

A

U

Figure 6. Estimation accuracy comparison between HEAP and MC.

A new metric, Accuracy Loss Sum (ALS) is defined to measure the output distribution inaccuracy
of proposed HEAP over MC in Equation (9) as follows.

ALS =
∑

i={P,A,U}
abs

(
P(State(outputs) = i)HEAP − P(State(outputs) = i)MC

)
(9)

The ALS values for three approximate configurations are calculated based on Figure 6 and listed
in Table 5. We can figure out that the inaccuracy ranges from 1.53% to 6.38%, and on average 4.18%.
Among of three approximate configurations, approx_adder has the least accuracy loss, down to 1.53%,
while approx_s/t gets the most accuracy loss 6.38%. In HEAP design, Bayesian network and variable
elimination inference are both exact, while the nodes’ CPTs are filled with modeling information in

Electronics 2020, 9, 373 15 of 21

Section 3.3. For these experiments, left or right shifters adopt conservative mechanistic modeling.
This handling policy makes undetermined cases in an unacceptable status. The errors in input variables
like a,b,c with approx_s/t_var configuration will propagate to the output through six shifters, while
approx_adder configuration only go through one shifter in the structure of Figure 3a. Therefore, it
is reasonable that the error paths with more nodes related to imprecise shifters modeling will cause
higher accuracy loss. Lower accuracy loss can be achieved by more accurate empirical modeling and
will be discussed in Section 4.3. Additionally, the mixed configuration has a medium accuracy loss
4.64% less than a single configuration of approx_s/t_var. This obviously results from the more accurate
approx_adder modeling.

The estimation speed comparison between proposed HEAP and MC is shown in Figure 7.
1,000,000 samples in MC consumes thousands of seconds, while the proposed HEAP makes good uses
of the high-speed advantage of PGM framework and consumes about 5 milliseconds. Therefore, HEAP
has 334043.6× speedup on average over MC.

Electronics 2020, 9, x FOR PEER REVIEW 15 of 21

approx_adder Approximate addition for intermediate operation (GeAr
adder) 1.53%

approx_s/t_var Approximate communication or storage for Input variables 6.38%
approx_adder+s/t_var Mixture of the above two techniques 4.64%

Average 4.18%
The estimation speed comparison between proposed HEAP and MC is shown in Figure 7.

1,000,000 samples in MC consumes thousands of seconds, while the proposed HEAP makes good
uses of the high-speed advantage of PGM framework and consumes about 5 milliseconds.
Therefore, HEAP has 334043.6x speedup on average over MC.

Figure 7. Estimation speed comparison between HEAP and MC.

In all, the proposed HEAP provides fast and accurate error assessment, achieving 4.18%
accuracy loss and five orders of magnitudes speedup over MC. Moreover, this configuration
approx_s/t_var of approximate input variables in HEAP can be considered equivalent to precise
scaling in [48, 49]. The estimation accuracy loss and computational time in millisecond of HEAP
mostly keeps the same magnitude with the works in [48, 49]. The tiny accuracy difference mainly
results from the calculation policy of CPTs, our mechanistic modeling versus empirical modeling.
This will be further discussed in Subsection 4.3.

4.2. Approximate Techniques Selection Using HEAP

Once we confirm the accuracy of proposed framework HEAP, we can use it to do more analysis
so that the good approximate accelerator design can be achieved via balancing output quality and
power saving (or performance improvement) well.

Firstly, we can evaluate each single approximate technique and identify whether it is suitable
for the application-specified fast accelerator. Figure 8 gives the error distributions of approximate
storage or communication, approximate left or right shifter, and one approximate adder. We can
figure out that approximate storage (or communication) and adder are good choices for
approximate accelerator, while shifters bring higher probability of unacceptable output.

Secondly, we explore the approximation degree selection of a single approximate technique.
Figure 9 shows the increasing number of approximate GeAr adder effects on the application
specified accelerator. The X-axis represents the number of approximate adders, while Y-axis
represents the probability of acceptable output. The maximum configuration has three approximate
adders to guarantee a 90% acceptable output. This configuration can be considered the error
propagation of varying adder number and keep high fidelity, with [47] from the estimation
accuracy over Mentor Carlo simulations.

0.001

0.01

0.1

1

10

100

1000

10000

approx_s/t_var approx_add approx_add+s/t_var

es
tim

at
io

n
tim

e（
se

co
nd

s）

HEAP

MC

Figure 7. Estimation speed comparison between HEAP and MC.

In all, the proposed HEAP provides fast and accurate error assessment, achieving 4.18% accuracy
loss and five orders of magnitudes speedup over MC. Moreover, this configuration approx_s/t_var
of approximate input variables in HEAP can be considered equivalent to precise scaling in [48,49].
The estimation accuracy loss and computational time in millisecond of HEAP mostly keeps the same
magnitude with the works in [48,49]. The tiny accuracy difference mainly results from the calculation
policy of CPTs, our mechanistic modeling versus empirical modeling. This will be further discussed in
Section 4.3.

4.2. Approximate Techniques Selection Using HEAP

Once we confirm the accuracy of proposed framework HEAP, we can use it to do more analysis
so that the good approximate accelerator design can be achieved via balancing output quality and
power saving (or performance improvement) well.

Firstly, we can evaluate each single approximate technique and identify whether it is suitable for
the application-specified fast accelerator. Figure 8 gives the error distributions of approximate storage
or communication, approximate left or right shifter, and one approximate adder. We can figure out
that approximate storage (or communication) and adder are good choices for approximate accelerator,
while shifters bring higher probability of unacceptable output.

Secondly, we explore the approximation degree selection of a single approximate technique.
Figure 9 shows the increasing number of approximate GeAr adder effects on the application specified
accelerator. The X-axis represents the number of approximate adders, while Y-axis represents the
probability of acceptable output. The maximum configuration has three approximate adders to
guarantee a 90% acceptable output. This configuration can be considered the error propagation of

Electronics 2020, 9, 373 16 of 21

varying adder number and keep high fidelity, with [47] from the estimation accuracy over Mentor
Carlo simulations.Electronics 2020, 9, x FOR PEER REVIEW 16 of 21

Figure 8. Different approximate techniques comparison.

Figure 9. Different approximate degrees of a single approximate technique comparison.

Finally, we explore the combinations of multiple different approximate techniques. Figure 10
show the error distribution results of different mixed approximate configurations in Table 6. All
these configurations can satisfy a 90% acceptable output. To select the best mixture, we can consider
the relevant power saving or performance improvement.

Figure 10. Different combinations of multiple approximate techniques comparison.

Here, we assume that the full power breakdown includes 19% memory access, 12%
communication, and 69% computing [57]. This percent is the weight value, denoted as Wi.
approx_s/t_var is configured by approximate data cache [18], and can save power up to 63%, while
approx_s/t_con is approximate communication with about 50% power saving [35]. The power

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

approx_adder approx_s/t_var approx_s/t_con approx_sl approx_sr

er
ro

r d
is

tr
ib

ut
io

n

U

A

P

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8

er
ro

r d
is

tr
ib

ut
io

n

number of approximate adders

U

A

P

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

I II III IV V VI VII

es
tim

at
io

n
di

st
ri

bu
tio

n

varying combinations of multiple apprixmte techniqeus

U

A

P

Figure 8. Different approximate techniques comparison.

Electronics 2020, 9, x FOR PEER REVIEW 16 of 21

Figure 8. Different approximate techniques comparison.

Figure 9. Different approximate degrees of a single approximate technique comparison.

Finally, we explore the combinations of multiple different approximate techniques. Figure 10
show the error distribution results of different mixed approximate configurations in Table 6. All
these configurations can satisfy a 90% acceptable output. To select the best mixture, we can consider
the relevant power saving or performance improvement.

Figure 10. Different combinations of multiple approximate techniques comparison.

Here, we assume that the full power breakdown includes 19% memory access, 12%
communication, and 69% computing [57]. This percent is the weight value, denoted as Wi.
approx_s/t_var is configured by approximate data cache [18], and can save power up to 63%, while
approx_s/t_con is approximate communication with about 50% power saving [35]. The power

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

approx_adder approx_s/t_var approx_s/t_con approx_sl approx_sr

er
ro

r d
is

tr
ib

ut
io

n

U

A

P

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8

er
ro

r d
is

tr
ib

ut
io

n

number of approximate adders

U

A

P

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

I II III IV V VI VII

es
tim

at
io

n
di

st
ri

bu
tio

n

varying combinations of multiple apprixmte techniqeus

U

A

P

Figure 9. Different approximate degrees of a single approximate technique comparison.

Finally, we explore the combinations of multiple different approximate techniques. Figure 10
show the error distribution results of different mixed approximate configurations in Table 6. All these
configurations can satisfy a 90% acceptable output. To select the best mixture, we can consider the
relevant power saving or performance improvement.

Electronics 2020, 9, x FOR PEER REVIEW 16 of 21

Figure 8. Different approximate techniques comparison.

Figure 9. Different approximate degrees of a single approximate technique comparison.

Finally, we explore the combinations of multiple different approximate techniques. Figure 10
show the error distribution results of different mixed approximate configurations in Table 6. All
these configurations can satisfy a 90% acceptable output. To select the best mixture, we can consider
the relevant power saving or performance improvement.

Figure 10. Different combinations of multiple approximate techniques comparison.

Here, we assume that the full power breakdown includes 19% memory access, 12%
communication, and 69% computing [57]. This percent is the weight value, denoted as Wi.
approx_s/t_var is configured by approximate data cache [18], and can save power up to 63%, while
approx_s/t_con is approximate communication with about 50% power saving [35]. The power

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

approx_adder approx_s/t_var approx_s/t_con approx_sl approx_sr

er
ro

r d
is

tr
ib

ut
io

n

U

A

P

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8

er
ro

r d
is

tr
ib

ut
io

n

number of approximate adders

U

A

P

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

I II III IV V VI VII

es
tim

at
io

n
di

st
ri

bu
tio

n

varying combinations of multiple apprixmte techniqeus

U

A

P

Figure 10. Different combinations of multiple approximate techniques comparison.

Electronics 2020, 9, 373 17 of 21

Table 6. Multiple approximate techniques selection via comparing power.

Type

Approx_s/t_con Approx_s/t_var Approx_adder
Total Number = 8

Approx_sl
Total Number = 5 + 1

Power Saving∑
Wi PiWi Pi Wi Pi Wi Pi Wi Pi

12% 50% 19% 63% 69% × 80% 60% × Pj 69% × 20% 60% × Pj

I
√ √ √

(number = 1,Pj = 1/8) 22%

II
√ √

(number = 1,Pj = 1/6) 13%

III
√ √

(number = 2,Pj = 2/8) 20%

IV
√ √ √

(number = 1,Pj = 1/6) 19%

V
√

(number = 3,Pj = 3/8) 12%

VI
√ √ √

(number = 2,Pj = 2/8) 26%

VII
√

(number = 1,Pj = 1/8)
√

(number = 1,Pj = 1/6) 10%

Here, we assume that the full power breakdown includes 19% memory access, 12% communication,
and 69% computing [57]. This percent is the weight value, denoted as Wi. approx_s/t_var is configured
by approximate data cache [18], and can save power up to 63%, while approx_s/t_con is approximate
communication with about 50% power saving [35]. The power saving percent is denoted as Pi.
Bitwise operation like shift left or shift right is simpler and consumes lower power than addition.
Therefore, we divide the computing power into 80% addition and 20% shift. Each approximate
component is assumed to reduce power by 60% [58]. The number of configuring approximate
components also influences the power saving through Pj. The best mixture of multiple approximate
techniques is composed of two approximate adders, approx_s/t_var and approx_s/t_con. It can provide
a 91.8% acceptable output in Figure 10, with up to 26% power saving through

∑
Wi Pi in Table 6.

These results demonstrate that the mixed configuration can exploit fine-grain tradeoff between output
quality degradation and power saving.

4.3. Discussion About HEAP Optimization

To improve the estimation accuracy, there is no doubt that the more accurate CPT is required.
Simulation based empirical modeling can be used instead of mechanistic modeling. However, it is
noted that the simulation-based modeling consumes more design time and developer efforts. Therefore,
we recommend the hybrid modeling to fill the CPTs, where most information is determined by
mechanistic modeling, and little critical information like one or two approximate operands case can be
handled by simulation profiling. Taking an 8-bit left shifter for example, an empirical modeling policy
is used for two cases: One approximate operand and two approximate operands. The rest keep the
mechanistic modeling. This hybrid modeling reduces average ALS of three configurations in Table 5
down to 1.61%. This result is considerably consistent with 98–99% accuracy of Bayesian modeling
in [49]. The appropriate tradeoffs can be compromised between modeling efforts and effectiveness to
support various approximate techniques.

HEAP has good configurability. Section 4.2 has demonstrated the easy configuration of different
approximate techniques, approximate degree, and a mixture of multiple approximate techniques using
X*-type nodes. Additionally, the X*-type nodes can be modified, inserted, removed, or even merged in
a free-style. For example, the two approximate adders have different PMFs so that their related CPT
will be update and make a new error distribution. If all of the adders adopt a unified configuration, all
of the nodes can be merged into only one. Similarly, other operations can be finished to guarantee the
good configurability. This characteristic of heterogeneous Bayesian network in HEAP can support
arbitrary combination of multiple approximate techniques as Figure 10 and Table 6 gives, where a
single approximate technique is also one particular instance and can also be evaluated very well, as
Figures 8 and 9 shows.

Electronics 2020, 9, 373 18 of 21

Therefore, the proposed HEAP provides a fast and accurate error assessment approach to designing
cost-effective approximate accelerators.

5. Conclusions

In this paper, we proposed a fast and accurate error assessment framework HEAP for approximate
accelerator design that can estimate the probability of multiple approximate technique impacts
on output quality at different levels (precise, approximate, and unacceptable) in a configurable
manner using probabilistic graphical models. HEAP consists of a heterogeneous Bayesian network
representation, which has two different types of nodes, X*-type and X-type, to configure approximate
options and track corresponding error propagation, respectively. This is followed by approximate
library driven node parameters learning, which characterizes the uniform probability mass function
of available approximate techniques through mechanistic models or empirical models. Based on the
ready Bayesian network and node parameters of conditional probability tables, the exact variable
elimination inference can calculate the marginal probability of output quality at three levels of precise,
approximate, and unacceptable under given approximate configurations quickly and accurately.
Compared with Mentor Carlo simulation, the proposed HEAP framework can achieve just 4.18%
accuracy loss and 3.34 × 105 speedup for 3 × 3 Gaussian kernel. The good configurability of HEAP also
makes itself able to estimate different approximate techniques and even their diverse combinations.
Therefore, the proposed HEAP can provide flexible quality-power tradeoffs through estimating multiple
approximate techniques quickly and select the best approximate configuration for maximum power
saving with acceptable output quality.

In the future, HEAP will be extended to support more popular approximate techniques and
exploit fine-grain tradeoff among the variety of combinations efficiently in two directions: (1) Insert
mechanistic and empirical models of more approximate solutions into our existing approximate library
of HEAP for good variety. This work needs the probability mass function of available approximate
options, which should cover as many of the approximate techniques as possible, approximate hardware
architecture or approximate software approach, low-level approximate adder circuits, or high-level
approximate Cache hierarchy; (2) adopt heuristic algorithm or evolution optimization to search the
best solution from more approximate options smartly and quickly. The large Bayesian network size
causes a huge solution space to configure the approximate techniques for best tradeoffs. These efficient
search algorithms are required instead of exhaustive method. The enhanced HEAP will not only
help designers to decide the appropriate quality-power (or performance) tradeoffs faster and more
accurately, but also further shortens the time-to-market of an approximate accelerator very well.

Author Contributions: Conceptualization, J.J.; project administration, writing, and editing. All authors have read
and agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China grant No. 61502298,
No. 61603245 and No.71702100.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Li, X.; Yeung, D. Application-level correctness and its impact on fault tolerance. In Proceedings of the 2007
IEEE 13th International Symposium on High Performance Computer Architecture, Scottsdale, AZ, USA,
10–14 February 2007; pp. 181–192.

2. Chippa, V.K.; Chakradhar, S.T.; Roy, K.; Raghunathan, A. Analysis and characterization of inherent application
resilience for approximate computing. In Proceedings of the 50th Annual Design Automation Conference,
New York, NY, USA, 2–6 June 2013; p. 113.

3. Li, C.; Luo, W.; Sapatnekar, S.S. Joint precision optimization and high level synthesis for approximate
computing. In Proceedings of the 2015 52nd ACM/EDAC/IEEE Design Automation Conference, Piscataway,
NJ, USA, 8–12 June 2015; pp. 1–6.

Electronics 2020, 9, 373 19 of 21

4. Esmaeilzadeh, H.; Sampson, A.; Ceze, L.; Burger, D. Neural acceleration for general-purpose approximate
programs. IEEE Micro 2013, 33, 16–27. [CrossRef]

5. Misailovic, S.; Carbin, M.; Achour, S.; Qi, Z.; Rinard, M.C. Chisel: Reliability-and accuracy-aware optimization
of approximate computational kernels. ACM SIGPLAN Not. 2014, 49, 309–328. [CrossRef]

6. Sampson, A.; Dietl, W.; Fortuna, E.; Gnanapragasam, D.; Ceze, L.H.; Grossman, D. EnerJ: Approximate data
types for safe and general low-power computation. ACM SIGPLAN Not. 2011, 46, 164–174. [CrossRef]

7. Samadi, M.; Lee, J.; Jamshidi, D.A.; Hormati, A.H.; Mahlke, S.A. Sage: Self-tuning approximation for graphics
engines. In Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture,
Davis, CA, USA, 7–11 December 2013; pp. 13–24.

8. Chippa, V.; Raghunathan, A.; Roy, K.; Chakradhar, S. Dynamic effort scaling: Managing the quality-efficiency
tradeoff. In Proceedings of the 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC), New York,
NY, USA, 5–9 June 2011; pp. 603–608.

9. Moreau, T.; Wyse, M.; Nelson, J.; Esmaeilzadeh, H.; Ceze, L.; Oskin, M. SNNAP: Approximate computing on
programmable socs via neural acceleration. In Proceedings of the 2015 IEEE 21st International Symposium on
High Performance Computer Architecture (HPCA), Burlingame, CA, USA, 7–11 February 2015; pp. 603–614.

10. Grigorian, B.; Reinman, G. Accelerating divergent applications on simd architectures using neural networks.
ACM Trans. Arch. Code Optim. 2015, 12, 2. [CrossRef]

11. Grigorian, B.; Farahpour, N.; Reinman, G. BRAINIAC: Bringing reliable accuracy into neurally-implemented
approximate computing. In Proceedings of the 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA), Burlingame, CA, USA, 7–11 February 2015; pp. 615–626.

12. Rubio-González, C.; Nguyen, C.; Nguyen, H.D.; Demmel, J.; Kahan, W.; Sen, K.; Bailey, D.H.; Iancu, C.;
Hough, D. Precimonious: Tuning assistant for floating-point precision. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis (SC’13), Denver, CO, USA,
17–22 November 2013; pp. 1–12.

13. Yazdanbakhsh, A.; Park, J.; Sharma, H.; Lotfi-Kamran, P.; Esmaeilzadeh, H. Neural acceleration for gpu
throughput processors. In Proceedings of the 48th International Symposium on Microarchitecture, Waikiki,
Hawaii, USA, 5–9 December 2015; pp. 482–493.

14. Du, Z.; Palem, K.; Lingamneni, A.; Temam, O.; Chen, Y.; Wu, C. Leveraging the error resilience of
machine-learning applications for designing highly energy efficient accelerators. In Proceedings of the 2014
19th Asia and South Pacific Design Automation Conference (ASP-DAC), Singapore, 20–23 January 2014;
pp. 201–206.

15. Shafique, M.; Ahmad, W.; Hafiz, R.; Henkel, J. A low latency generic accuracy configurable adder.
In Proceedings of the 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco,
CA, USA, 8–12 June 2015; pp. 1–6.

16. Hanif, M.A.; Hafiz, R.; Hasan, O.; Shafique, M. QuAd: Design and analysis of quality-area optimal low-latency
approximate adders. In Proceedings of the 54th Annual Design Automation Conference 2017, Austin, TX,
USA, 18–22 June 2017; pp. 1–6.

17. Rehman, S.; Prabakaran, B.S.; El-Harouni, W.; Shafique, M.; Henkel, J. Heterogeneous approximate multipliers:
Architectures and design methodologies. In Approximate Circuits; Springer: Berlin, Germany, 2019; pp. 45–66.

18. Yazdanbakhsh, A.; Pekhimenko, G.; Thwaites, B.; Esmaeilzadeh, H.; Mutlu, O.; Mowry, T.C. RFVP:
Rollback-free value prediction with safe-to-approximate loads. ACM Trans. Arch. Code Optim. 2016, 12, 62.
[CrossRef]

19. Miguel, J.S.; Badr, M.; Jerger, N.E. Load value approximation. In Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture, IEEE Computer Society, Cambridge, UK,
13–17 December 2014; pp. 127–139.

20. Sutherland, M.; San Miguel, J.; Jerger, N.E. Texture cache approximation on GPUs. In Proceedings of
the Workshop on Approximate Computing Across the Stack. In conjunction with HiPEAC, Amsterdam,
The Netherlands, 19–21 January 2015.

21. Själander, M.; Nilsson, N.S.; Kaxiras, S. A tunable cache for approximate computing. In Proceedings of
the 2014 IEEE/ACM International Symposium on Nanoscale Architectures, Paris, France, 8–10 July 2014;
pp. 88–89.

http://dx.doi.org/10.1109/MM.2013.28
http://dx.doi.org/10.1145/2714064.2660231
http://dx.doi.org/10.1145/1993316.1993518
http://dx.doi.org/10.1145/2717311
http://dx.doi.org/10.1145/2836168

Electronics 2020, 9, 373 20 of 21

22. Ranjan, A.; Venkataramani, S.; Pajouhi, Z. STAxCache: An approximate, energy efficient STT-MRAM cache.
In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne,
Switzerland, 27–31 March 2017; pp. 356–361.

23. Frustaci, F.; Blaauw, D.; Sylvester, D.; Alioto, M. Approximate SRAMs with dynamic energy-quality
management. IEEE Trans. Very Large Scale Integ. Syst. 2016, 24, 2128–2141. [CrossRef]

24. Gilani, S.Z.; Kim, N.S.; Schulte, M. Scratchpad memory optimizations for digital signal processing applications.
In Proceedings of the 2011 Design, Automation & Test in Europe, Grenoble, France, 14–18 March 2011;
pp. 1–6.

25. Liu, S.; Pattabiraman, K.; Moscibroda, T.; Zorn, B.G. Flikker: Saving DRAM refresh-power through data
partitioning. In Proceedings of the Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Lausanne, Switzerland, 16–20 March 2011.

26. Zhang, X.; Zhang, Y.; Childers, B.R.; Yang, J. DrMP: Mixed precision-aware dram for high performance
approximate and precise computing. In Proceedings of the 2017 26th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Portland, OR, USA, 9–13 September 2017; pp. 53–63.

27. Guo, Q.; Strauss, K.; Ceze, L.H.; Malvar, H.S. High-density image storage using approximate memory cells.
ACM SIGPLAN Not. 2016, 51, 413–426. [CrossRef]

28. Malvar, H.S. Fast progressive image coding without wavelets. In Proceedings of the DCC 2000, Data
Compression Conference, Snowbird, UT, USA, 28–30 March 2000; pp. 243–252.

29. Wallace, G.K. The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 1992, 38, xviii–xxxiv.
[CrossRef]

30. Dufaux, F.; Sullivan, G.J.; Ebrahimi, T. The JPEG XR image coding standard [Standards in a Nutshell].
IEEE Signal Process. Mag. 2009, 26, 195–204. [CrossRef]

31. Stevens, J.R.; Ranjan, A.; Raghunathan, A. AxBA: An approximate bus architecture framework. In Proceedings
of the 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA,
5–8 November 2018; pp. 1–8.

32. Boyapati, R.; Huang, J.; Majumder, P.; Yum, K.H.; Kim, E.J. Approx-noc: A data approximation framework
for network-on-chip architectures. ACM SIGARCH Comput. Arch. News 2017, 45, 666–677. [CrossRef]

33. Ahmed, A.B.; Fujiki, D.; Matsutani, H.; Koibuchi, M.; Amano, H. AxNoC: Low-power approximate
network-on-chips using critical-path isolation. In Proceedings of the Twelfth IEEE/ACM International
Symposium on Networks-on-Chip, Turin, Italy, 4–5 October 2018; p. 6.

34. Raparti, V.Y.; Pasricha, S. DAPPER: Data aware approximate NoC for GPGPU architecture. In Proceedings of
the Twelfth IEEE/ACM International Symposium on Networks-On-Chip, Turin, Italy, 4–5 October 2018; p. 7.

35. Ascia, G.; Catania, V.; Monteleone, S.; Palesi, M.; Patti, D.; Jose, J. Approximate wireless networks-on-chip.
In Proceedings of the 2018 Conference on Design of Circuits and Integrated Systems (DCIS), Lyon, France,
14–16 November 2018; pp. 1–6.

36. Tatas, K. High-performance 3D NoC bufferless router with approximate priority comparison. In Proceedings
of the 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST),
Thessaloniki, Greece, 7–9 May 2018; pp. 1–4.

37. Hari, S.K.S.; Adve, S.V.; Naeimi, H.; Ramachandran, P. Relyzer: Exploiting application-level fault equivalence
to analyze application resiliency to transient faults. ACM SIGPLAN Not. 2012, 47, 123–134. [CrossRef]

38. Venkatagiri, R.; Mahmoud, A.; Hari, S.K.S.; Adve, S.V. Approxilyzer: Towards a systematic framework for
instruction-level approximate computing and its application to hardware resiliency. In Proceedings of the
49th Annual IEEE/ACM International Symposium on Microarchitecture, Taipei, Taiwan, 15–19 October 2016;
p. 42.

39. Venkatagiri, R.; Ahmed, K.; Mahmoud, A.; Misailovic, S.; Marinov, D.; Fletcher, C.W.; Adve, S.V.
Gem5-approxilyzer: An open-source tool for application-level soft error analysis. In Proceedings of
the 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
Portland, OR, USA, 24–27 June 2019; pp. 214–221.

40. Chan, W.T.J.; Kahng, A.B.; Kang, S.; Kumar, R.; Sartori, J. Statistical analysis and modeling for error
composition in approximate computation circuits. In Proceedings of the 2013 IEEE 31st International
Conference on Computer Design (ICCD), Asheville, NC, USA, 6–9 October 2013; pp. 47–53.

41. Mazahir, S.; Ayub, M.K.; Hasan, O.; Shafique, M. Probabilistic error analysis of approximate adders and
multipliers. In Approximate Circuits; Springer: Berlin, Germany, 2019; pp. 99–120.

http://dx.doi.org/10.1109/TVLSI.2015.2503733
http://dx.doi.org/10.1145/2954679.2872413
http://dx.doi.org/10.1109/30.125072
http://dx.doi.org/10.1109/MSP.2009.934187
http://dx.doi.org/10.1145/3140659.3080241
http://dx.doi.org/10.1145/2248487.2150990

Electronics 2020, 9, 373 21 of 21

42. Yang, L.; Murmann, B. SRAM voltage scaling for energy-efficient convolutional neural networks.
In Proceedings of the 2017 18th International Symposium on Quality Electronic Design (ISQED), Santa Clara,
CA, USA, 14–15 March 2017; pp. 7–12.

43. Ganapathy, S.; Teman, A.; Giterman, R.; Burg, A.; Karakonstantis, G. Approximate computing with unreliable
dynamic memories. In Proceedings of the 2015 IEEE 13th International New Circuits and Systems Conference
(NEWCAS), Grenoble, France, 7–10 June 2015; pp. 1–4.

44. Sampson, A.; Nelson, J.; Strauss, K.; Ceze, L.H. Approximate storage in solid-state memories. ACM Trans.
Comput. Syst. 2014, 32, 1–23. [CrossRef]

45. Fang, Y.; Li, H.; Li, X. SoftPCM: Enhancing energy efficiency and lifetime of phase change memory in video
applications via approximate write. In Proceedings of the 2012 IEEE 21st Asian Test Symposium, Niigata,
Japan, 19–22 November 2012; pp. 131–136.

46. Vallero, A.; Savino, A.; Politano, G.; Chatzidimitriou, A.; Tselonis, S.; Kaliorakis, M.; Gizopoulos, D.; Riera, M.;
Canal, R.; Gonzalez, A.; et al. Early component-based system reliability analysis for approximate computing
systems. In Proceedings of the 2nd Workshop on Approximate Computing (WAPCO), Accra, Ghana, 29 April
2016; pp. 1–4.

47. Castro-Godínez, J.; Esser, S.; Shafique, M.; Pagani, S.; Henkel, J. Compiler-driven error analysis for designing
approximate accelerators. In Proceedings of the 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE), Dresden, Germany, 19–23 March 2018; pp. 1027–1032.

48. Traiola, M.; Savino, A.; Barbareschi, M.; Carlo, S.D.; Bosio, A. Predicting the impact of functional
approximation: From component-to application-level. In Proceedings of the 2018 IEEE 24th International
Symposium on On-Line Testing and Robust System Design (IOLTS), Platja d’Aro, Spain, 2–4 July 2018;
pp. 61–64.

49. Traiola, M.; Savino, A.; Di Carlo, S. Probabilistic estimation of the application-level impact of precision
scaling in approximate computing applications. Microelectron. Reliab. 2019, 102, 113309. [CrossRef]

50. Lee, S.; Lee, D.; Han, K.; Shriver, E.; John, L.K.; Gerstlauer, A. Statistical quality modeling of approximate
hardware. In Proceedings of the 17th International Symposium on Quality Electronic Design (ISQED), Santa
Clara, CA, USA, 15–16 March 2016.

51. Qureshi, A.; Hasan, O. Formal probabilistic analysis of low latency approximate adders. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 2018, 38, 177–189. [CrossRef]

52. Koller, D.; Friedman, N. Probabilistic Graphical Models: Principles and Techniques; MIT Press: Cambridge, CA,
USA, 2009.

53. Lattner, C.; Adve, V. LLVM: A compilation framework for lifelong program analysis & transformation.
In Proceedings of the International Symposium on Code Generation and Optimization, 2004, CGO 2004,
San Jose, CA, USA, 20–24 March 2004; pp. 75–86.

54. Cozman, F.G. Generalizing variable elimination in Bayesian networks. In Proceedings of the Workshop
on Probabilistic Reasoning in Artificial Intelligence, Editora Tec Art São Paulo, Brazil, 20 November 2000;
pp. 27–32.

55. Jiao, J.; Juan, D.C.; Marculescu, D.; Fu, Y. Exploiting component dependency for accurate and efficient soft
error analysis via probabilistic graphical models. Microelectron. Reliab. 2015, 55, 251–263. [CrossRef]

56. SMILE: Structural Modeling, Inference, and Learning Engine. Available online: https://www.bayesfusion.
com/smile/ (accessed on 28 November 2019).

57. Howard, J.; Dighe, S.; Vangal, S.R.; Ruhl, G.; Borkar, N.; Jain, S.; Erraguntla, V.; Konow, N.; Riepen, M.;
Gries, M.; et al. A 48-core IA-32 processor in 45 nm CMOS using on-die message-passing and DVFS for
performance and power scaling. IEEE J. Solid State Circuits 2010, 46, 173–183. [CrossRef]

58. Gupta, V.; Mohapatra, D.; Park, S.P.; Raghunathan, A.; Roy, A. IMPACT: Imprecise adders for low-power
approximate computing. In Proceedings of the IEEE/ACM International Symposium on Low Power
Electronics and Design, Fukuoka, Japan, 1–3 August 2011; pp. 409–414.

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2644808
http://dx.doi.org/10.1016/j.microrel.2019.06.002
http://dx.doi.org/10.1109/TCAD.2018.2803622
http://dx.doi.org/10.1016/j.microrel.2014.09.011
https://www.bayesfusion.com/smile/
https://www.bayesfusion.com/smile/
http://dx.doi.org/10.1109/JSSC.2010.2079450
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related work
	Approximate Techniques
	Error Estimation Methods

	Proposed framework HEAP
	General PGM Concept
	HEAP Overview
	HEAP Components
	Mapping Problem into Bayesian Network Representation
	Structure and Node Parameters Learning
	Exact VE Inference

	Experiments and Results Analysis
	Accuracy and Speed Evaluatoin
	Approximate Techniques Selection Using HEAP
	Discussion About HEAP Optimization

	Conclusions
	References

