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Abstract: The transient electromagnetic (TEM) method is a time-domain, controlled source,
electromagnetic (EM) geophysical technique which is often applied to image the subsurface
conductivity distributions of shallow layers due to its effectiveness and adaptability to complex
site working conditions. The means for an express analysis of such experimental data in several
practical cases have advantages and are suitable for use. We developed our approach for determining
the approximate one-dimensional (1D) model of background conductivity based on the formal
transformation of the TEM experimental data and the mathematical analysis of continuous functions.
Our algorithm, which allows the 1D model’s parameters to be obtained in terms of a layer’s thickness
and resistivity, widely utilizes the numerical differentiation of experimental curves as well as of
transformed ones. Since the noise level increases with time in the attenuating TEM signals and
differentiation even enhances it, special procedures are required to calculate the derivative values.
We applied the piecewise cubic spline approximation to solve this problem. In that case, the derivatives
are obtained using polynomial coefficients which are available for each node. The application of the
created facilities is demonstrated using real experimental data of the TEM soundings.

Keywords: transient electromagnetic method; decay curve; mathematical model; formal
interpretation; geoelectric cross section

1. Introduction

Induction electromagnetic methods of geophysics are all based on the fact that the magnetic field
varies in time and thus, in accordance with Faraday’s law (second Maxwell’s equation), induces an
electric current in the conductive earth. When measuring electric and magnetic fields on the ground,
inferences are made about the conductivity distribution in the subsurface.

In the transient electromagnetic (TEM) method (which also known as time-domain
electromagnetic—TDEM), a current is artificially generated in the ground by a step-shaped current
(Heaviside function) transmitted to the earth. There are many source–receiver configurations used to
carry out TEM measurements. For shallow investigations, a loop source is usually used and induction
coil or a wire loop are used as receivers for recording the vertical component of the magnetic field.
In fact, it will be its time derivative. Such a TEM sounding configuration is called the “central loop”
configuration (also known as “in-loop”), and it is widely used in many surveys due to its effectiveness
and adaptability to complex site working conditions. Additionally, it has several advantages, since in
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central loop TEM sounding no current has to be injected into the ground directly and so the results
are less sensitive to the galvanic distortions due to local resistivity inhomogeneities which can be a
severe problem in other EM methods [1,2]. This feature also allows this configuration to be applied
to many areas where the current injection into the ground is almost impossible or impractical. Last,
but not least, since the measurements are curried out exactly over the current system caused by the
source loop, it leads to a superior depth-to-lateral-resolution ratio [3]. Therefore, compared to other
configurations, 1D layered earth models can interpret the central loop TEM measurements better.

The TEM technique finds important application in near-surface engineering investigations and
geological studies (e.g., mapping faults and fracture zones, landslides, etc.) [4] and archeological explorations.
It is also extensively used in groundwater [2] and environmental investigations such as mapping pollution
plumes in groundwater [5,6], in addition to being an exploration tool for mineral deposits [7].

The main objective of geoelectrical interpretation is to get the subsurface resistivity distribution
and, if possible, to determine the location and shape of conductive bodies and their conductivity values.
The inversion of the sounding results for the TEM method in terms of subsurface resistivity structure is
quite complicated. Three-dimensional inversion codes have been developed [8,9], but they are still
very computationally demanding, so it is still practical to interpret TEM data with the 1D inversion at
each measured site and subsequently to construct 2D and/or 3D pseudo models on this basis [4].

The geoelectric data process combines a large amount of different semistructural data. The features
of big data processing are given in [10–14]. The value, and variety, volume characteristics of big data
are important for geoelectric data processes. They allow data to be processed in distributed and parallel
modes. Different machine learning techniques such as associative rules, classification, clustering, and
prediction are used for data analysis. The most popular technique for geoelectric data is time series.
The created data series can be presented on different layers. The algorithms of business process analysis
based on layer data analysis are given in [15–18].

The objective of this paper is to develop a simple approach for an express analysis of the
experimental TEM data which could be applied, even in field conditions, during experimental data
acquisition for obtaining the approximate 1D model of subsurface conductivity distribution.

2. Theoretical Basis

In the central loop configuration, the magnetic field is created by transmitting a current of known
magnitude through a loop of wire (source loop) on the earth’s surface and when the current is abruptly
turned off, the magnetic field starts to decay with time. The related change in the primary magnetic
field induces an electromotive force in the conducting surroundings. In the ground, this electrical field
will result in a current, which again will result in a secondary magnetic field.

Immediately after the transmitter is switched off, the secondary magnetic field in the ground will
be equivalent to the primary magnetic field and will be caused by currents close to the surface, so the
measured signal primarily reflects the resistivity of the top layers. As time passes, the current will
weaken by the resistance in the ground. At later decay times, the current density maximum has diffused
deeper into the ground and moves outwards, so the measured signal then contains information about
the resistivity of the deeper layers.

Because the wire loop (receiver loop) or induction coil are used to measure the magnetic field, the

actual measurement is proportional to the changes in magnetic flux passing through that loop (∂Bz(t)
∂t —time

derivative of the vertical magnetic field). This signal is measured as a function of time t. By measuring the
voltage in the receiver loop, we expect to obtain information about the resistivity as a function of depth.

The transient response in the receiver coil due to the abruptly turned off current in the source loop
(Heaviside’s step function) on the surface of the homogeneous conductive half-space can be written in
a quasi-stationary approximation as [19–21]:
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where M = Q I is the transmitter dipole moment, Q is the cross-sectional area, I is the current, r is the

radius of the transmitter loop, ρ is the resistivity of half-space, Φ(u(t)) =
√

2
π

∫ u(t)
0 e−x/2dx is the error

function, = 2π r
τ = r

√
µ0/2tρ = r

δ , µ0 is the magnetic permeability of vacuum, τ = 2π
√

2tρ/µ0 is the
analog of wavelength in the time domain, and δ =

√
2tρ/µ0 is the skin depth in the half-space when

r� τ, t→∞, u→ 0.
When the current has moved out an appreciable distance from the source, there is a large region

where the vertical magnetic field is not dependent from the position. This time is defined as the
late-time stage. The late time is usually considered if 1/u > 10 [19]. At such a late-time, a considerable
simplification occurs in the expression for the EM field components:

Then, for the late-time approximation, Equation (1) becomes:

∂B(t)
∂t

=
µ0QI

20

(
µ0

πρτ

)3/2 1
t5/2

(2)

Since at the late-time the magnetic field is more or less homogeneous on the area of the receiver
coil, the measured voltage on the coil can be expressed as:

Vt =
∂B(t)
∂t

q = −
µ0IQq

20

(
µ0

πρτ

)3/2 1
t5/2

(3)

where q is the cross-sectional area of the receiver coil.
The measured voltage as a function of time (Equation (3)) after a steady current (square wave

form) is abruptly turned off in the source loop at time t = 0, is used as experimental data for the TEM
method, and is called the decay curve.

The decay curve is typically plotted on a bi-logarithmic scale (Figure 1).
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Figure 1. Transient electromagnetic (TEM) decay curve as time dependencies from the beginning of the
transient process.

3. Construction of Model

There are several techniques (also known as transformations) that are typically applied for
determination of the approximate 1D distribution of the underground resistivity on the basis of
experimental TEM data. The most widely used approach to the central loop TEM data is based on a
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moving thin sheet approximation of conductive half-space also known as S-inversion [22]. An actual
inhomogeneous half-space at time t is characterized by an apparent surface conductance of an effective
layer with a thickness approximately equal to the effective skin-depth. This layer is replaced by
a conductive sheet of zero thickness with the apparent conductance Sτ positioned at the effective
depth hτ. For such a thin sheet model and for the late transient time, the value of Sτ can be found
analytically [19–21]:

Vt =
3IQq

16πSτ
1

(hτ + t/µ0Sτ)
4

(4)

The values of interest Sτ and hτ cannot be resolved simultaneously from Equation (4) for a certain
time delay t. Several approaches exist to resolve this problem, however the so-called “differential” [23],
based on the ratio of the measured signal to its first time derivative, is quite common. In this case the
apparent conductivity of the thin sheet corresponding to the time delay t can be written as:

Sτ = 16
(

π

3IQq

)1/3 1
µ04/3

·
|Vt|

5/3

(V′t)
4/3

(5)

where V′t is the first time derivative of the measured voltage, which can be calculated as a first
difference from the decay curve (Equation (3)).

Having the values of the apparent conductivity and the effective depth from the simultaneous
solution of Equations (4) and (5) and plotting them as Sτ(hτ) for the same time delay t, the approximate
1D resistivity distribution can be calculated from such a plot as a relation of first differences (Figure 2):

ρ(h) = ∆h/∆S. (6)

The 1D model’s parameters (i.e., the layer’s thickness and resistivity) can be calculated based on the
formal dependence of resistivity with the depth (Equation (3)) which is the result of the transformation.

The idea of the algorithm is as follows. Since the ρ(h) curve (Figure 2) is more or less a weighted
averaging of true resistivity, we can suppose that the true resistivity of the layer has to be closer to the
curve’s extrema (max/min), so for a crude approximation we have to find these values. The extrema
can be easily found by finding the abscissa values where derivative of resistivity with respect to depth
are equal to zero:

∂ρ(h)
∂h

= 0.

Exploiting the same idea, the thickness of layers can also be calculated. The inflection points of
the resistivity curve ρ(h) relate to the zero values of the second derivative of this curve with respect

to depth ∂2ρ
∂h2 = 0. So, in such a way we can obtain the preliminary approximation of the 1D model’s

parameters by finding the zeros of first and second derivative of the resistivity curve ρ(h) Equation (6).
The derivatives can be estimated in several ways. The simplest approach is the direct application

of the finite difference formulas to the mentioned ρ(h) curve or by calculating some approximation
function for which the derivatives can be easily calculated analytically. Since the noise level increases
with time in the attenuating TEM signals and differentiation enhances it, we applied the piecewise
spline approximation to the experimental curve ρ(h). In that case, the derivatives are obtained using
polynomial coefficients, which are available for each node. We even omit calculation of the first
derivative in our algorithm. See next section.

4. Step-by-Step Description of the Algorithm for Express Analysis

1. Loading and rescaling data. Time delay values T(i) have to be in seconds and the voltages
induced in a receiver loop at certain time delay V(i) have to be in volts.

2. For further calculations, the log10(T(i)) and log10(V(i)) are used.
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3. Since the experimental TEM data in our case have slightly irregular logarithmic steps,
we calculate the new regularly spaced delay time grid with the step 0.05 in log10(T(i)), which
corresponds to 20 values per order in time.

4. Interpolation of measured voltage decay values by cubic spline for the new regular time
sequence based on the three independent experimental data sets, created by choosing every third
value from the irregular experimental sequence and subsequently averaging them to obtain a single
regularly spaced decay curve.

The nearby layers with different resistivity cause the decay curve slope to change, so such an
approach to interpolation provides that the conductive layer of interest is detected by at least three
measurements at subsequent delays, otherwise the data is treated as measurement noise and averaging
will reduce the influence of such data on the resulting model.

5. The derivatives of the averaged decay curve are calculated for each regularly spaced time node
based on the piecewise polynomial coefficients returned by the spline algorithm.

6. The experimental curve interpolated in such a way as well as the derivatives are used in the
S-inversion algorithm. So, subsequent steps from 7 to 11 are repeated for each time delay i.

7. The experimental values of the auxiliary function ϕ(m) are calculated:

ϕi(m)exp =
3µQq
π r3

Ei
′

Ei2
.

This function ϕ(m) is based on asymptotic expressions for the transient process of the decaying
electromagnetic field in the conducting halfspace, r is the side of the source loop, Ei = ∆V/I, and
Ei’ = ∆V’/I.

8. The value mi at which the experimental and the theoretical functions ϕ(m) coincide is found by
a numerical minimization algorithm:

mi = m, @ ϕ(m)theor = ϕ(m)exp.

The theoretical values of the function ϕ(m) are defined by the formula:

φ(m)theoret =
(3− 96m2 + 128m4) (1 + 4m2)

5/2

m2(3− 8m2)2 .

9. The integral conductance is calculated using values of mi:

S(i) = Si =
3Qq
π r4

mi(3− 8m2
i )

(1 + 4m2
i )

7/2

1
Ei

.

10. The depth to the conductive thin sheet is calculated by the formula:

hi = 0.75 mi r.

11. Having the values of the apparent conductivity S(t) and the effective depth h(t) the approximate
1D resistivity distribution ρ(h) is calculated as a relation of first differences:

∂h
∂S

(i) =
hi − hi−1

Si − Si−1
.

12. Calculating the spline coefficients for each node of the ρ(h) curve.
13. Calculating the second derivative of the ρ(h) curve.
14. Analyzing node by node, we find the abscissa value where the second derivative changes

its sign.
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15. The case when the three successive nodes are changing the sign of the second derivative to
opposite is considered as measurement noise, and is not accounted as a layer boundary. Only the case
when the sign of the second derivative changes after two or more successive nodes with the similar
sign is considered as a layer boundary.

16. For each detected layer the maximum or minimum resistivity value is calculated depending
on the sign of the second derivative. This approach allows us to omit the use of the first derivative.

17. Output of results.
The algorithm was realized in the GNU Octave programming language [24].

5. Results

The application of the developed algorithm is demonstrated on real experimental TEM data, which
were acquired with the in-loop configuration. Single-turn square loops with side of 20 m × 20 m and
10 m × 10 m were used as transmitting and receiving loops, respectively. Recorded data is represented
in Table 1, where the first column is the time delay (in µs) from the beginning of the transient process
and the second column is the electromotive force normalized on the current in the source loop (in µV/A)
induced in the receiving loop. The appropriate experimental decay curve is plotted on a bi-logarithmic
scale in Figure 1.

Table 1. Experimental transient electromagnetic (TEM) data.

T (µs) V (µV/A) T (µs) V (µV/A)

2.00 157,650.0 28.00 2080.0
3.00 103,650.0 30.00 1760.0
4.00 75,500.0 35.00 1185.0
5.00 55,950.0 40.00 840.0
6.00 43,250.0 45.00 599.5
7.00 34,350.0 50.00 462.0
8.00 27,900.0 60.00 289.0
9.00 22,950.0 70.00 195.0
10.00 19,150.0 80.00 136.5
12.00 13,700.0 90.00 102.0
14.00 10,150.0 100.00 77.0
16.00 7750.0 120.00 48.0
18.00 5825.0 140.00 30.0
20.00 4610.0 160.00 22.0
22.00 3715.0 180.00 16.0
24.00 3030.0 200.00 12.0
26.00 2500.0

As a result of the application the developed algorithm to the experimental data (steps 1 to 11) we
obtained the numerical array represented in Table 2.

Table 2. Results of application the S-transformation to the experimental data.

T (µs) V (µV) h (m) ρτ (ohm)

2.00 157,650.0000 6.3252 12.5688
3.00 103,650.0000 6.3545 8.4572
4.00 75,500.0000 6.4167 6.4676
5.00 55,950.0000 6.5825 5.4449
6.00 43,250.0000 6.7494 4.7705
7.00 34,350.0000 6.9232 4.3022
8.00 27,900.0000 7.0971 3.9560
9.00 22,950.0000 7.2829 3.7029
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Table 2. Cont.

T (µs) V (µV) h (m) ρτ (ohm)

10.00 19,150.0000 7.4689 3.5050
12.00 13,700.0000 7.8586 3.2336
14.00 10,150.0000 8.2499 3.0546
16.00 7750.0000 8.6332 2.9269
18.00 5825.0000 9.1297 2.9095
20.00 4610.0000 9.5295 2.8529
22.00 3715.0000 9.9202 2.8106
24.00 3030.0000 10.3140 2.7850
26.00 2500.0000 10.7072 2.7705
28.00 2080.0000 11.1064 2.7680
30.00 1760.0000 11.4754 2.7580
35.00 1185.0000 12.4371 2.7768
40.00 840.0000 13.3414 2.7959
45.00 599.5000 14.3542 2.8769
50.00 462.0000 15.1162 2.8714
60.00 289.0000 16.6327 2.8970
70.00 195.0000 18.0137 2.9126
80.00 136.5000 19.4046 2.9573
90.00 102.0000 20.5604 2.9512

100.00 77.0000 21.8013 2.9864
120.00 48.0000 24.0163 3.0200
140.00 30.0000 26.6827 3.1953
160.00 22.0000 28.3008 3.1453
180.00 16.0000 30.2586 3.1960
200.00 12.0000 32.1546 3.2481

The appropriate resistivity curve as well as the 1D resistivity model which is the result of our
algorithm (steps 12 to 17) are shown in Figure 2.Electronics 2020, 9, x FOR PEER REVIEW 8 of 10 
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6. Discussions and Conclusions

The transformation mentioned above as well as other similar ones (e.g., [25]) yield qualitative
information about geological cross-sections. For the effective interpretation of such results, additional
information is required for referencing (i.e., wells logging data, geological information, results of other
geophysical methods, etc.), and even the correlation of such TEM results from several neighboring sites
allows the reliability to be improved. Therefore, simple approximate schemes for TEM data analysis
have often been proposed [26,27].

The proposed rapid approach for determining the approximate 1D model of background
conductivity, despite its simplicity, can be successfully applied in a number of practical cases. First, it
can be applied at each field site right after taking the measurements to immediately assess the acquired
data quality and crude comparison of the obtained resistivity cross section with the expected one,
which can be known before as the additional geological information about the place under study,
which allows optimization of the logistics of field works. Secondly, it can be used to construct 2D
and/or 3D pseudo models, which will not be sufficiently precise, but main objects of interest should be
highlighted so that the suspicious zones and places for further detailed study can be revealed without
the involvement of time-consuming modeling and inversion algorithms. Finally, it can provide the
initial 1D models for the further application of the EM inversions.

Obviously, the second and third conclusions have become less relevant recently because of the
significant progress in computers as well as in computational algorithms. Even so, the simple models
with between three and five layers are used as the starting model for the inversions [27]. However,
in field conditions where the deployment of source and receiver loops consumes up to 90% of working
time, the simple but reliable classical approach to express analysis is acceptable for supporting the
decision undertaking to optimize the logistics of field works and quickly assess the danger state of
geological medium.

The proposed method can be used for big data approaches and allows parallelization [9]. Thanks to
the time series approach [11], the proposed method can also be used for other artificial intelligence tasks.
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