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Abstract: The direction-of-departure (DOD) and the direction-of-arrival (DOA) are important
localization parameters in bistatic MIMO radar. In this paper, we are interested in DOD/DOA
estimation of both single-pulse and multiple-pulse multiple-input multiple-output (MIMO) radars.
An iterative super-resolution target localization method is firstly proposed for single-pulse bistatic
MIMO radar. During the iterative process, the estimated DOD and DOA can be moved from initial
angles to their true values with high probability, and thus can achieve super-resolution estimation.
It works well even if the number of targets is unknown. We then extend the proposed method to
multiple-pulse configuration to estimate target numbers and localize targets. Compared with existing
methods, both of our proposed algorithms have a higher localization accuracy and a more stable
performance. Moreover, the proposed algorithms work well even with low sampling numbers and
unknown target numbers. Simulation results demonstrate the effectiveness of the proposed methods.

Keywords: MIMO radar; target localization; super-resolution; DOD/DOA; unknown target numbers

1. Introduction

A multiple-input multiple-output (MIMO) technique [1–4] can improve the spectral efficiency
and transmission rate without increasing transmitting power. It has been one of the most critical
techniques in 4th-generation (4G) wireless communication systems. MIMO radars [5–7] combine
MIMO and digital array techniques. They are capacitated to simultaneously transmit and receive
linearly independent signals [8,9] by using multiple antennas. The correlation coefficient of waveforms
is an important parameter representing the degree of this waveform diversity. The correlation
coefficient of the orthogonal waveform MIMO radar is equal to zero, which means that all waveforms
are orthogonal to each other. That of the phased array radar is equal to one, which means that all
waveforms are identical. Similarly, for partial correlation waveform MIMO radar, its correlation
coefficient is between zero and one. Compared with traditional phased-array radars, MIMO radars
can estimate more targets with higher detection accuracy, which has attracted attention in recent years.

The direction-of-departure (DOD) and the direction-of-arrival (DOA) [10–12] are important
parameters in bistatic MIMO radars. In this paper, we consider two types of bistatic MIMO radars,
which correspond to single-pulse and multiple-pulse configurations, respectively.

There are many DOD/DOA estimation methods based on radar-imaging techniques, such as
Capon [13,14] and MUSIC [11,15,16] algorithms. The two-dimensional (2D) Capon (2D-Capon) and
2D MUSIC (2D-MUSIC) methods localize targets via scanning their 2D output spectra and looking
for peaks in a range of interested angles. In [13], a reduced-dimension Capon (RD-Capon) algorithm
is proposed in bistatic MIMO radar, which can estimate DODs/DOAs by a one-dimensional (1D)
search. The paper [14] is an extended version of [13], which realizes the automatic pairing of DODs
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and DOAs. A reduced-dimension MUSIC (RD-MUSIC) algorithm is proposed in [11] for localizing
targets. It also only requires the 1D search and pairs automatically. Compared with a 2D search,
the complexity of reduced-dimension algorithms is reduced. The paper [16] combines beam-space
processing and reduced-dimension transformation for monostatic MIMO radar localization in order
to further alleviate the computational burden. However, their angular resolution is still dominated
by the scanning step size, and a small step size leads to high complexity. Therefore, the localization
methods based on 1D or 2D radar-imaging techniques may be significantly time-consuming for high
angular resolution cases.

ESPRIT [17–19] is also a commonly used target localization algorithm with high resolution and
high efficiency. It utilizes the rotational invariance of the signal subspace, which is caused by the shift
invariance of the transmit and receive antenna arrays. In [18], a unitary ESPRIT algorithm using the
real-valued signal matrix transformed by the received data matrix is developed for bistatic MIMO
radar for target localization. It can achieve automatic angle pairing and has lower complexity than the
ESPRIT method in [17]. The paper [19] puts forward a ESPRIT-like method suitable for the coexistence
of circular and noncircular signals in bistatic MIMO radar.

However, a growing number of scenarios allows signals to be represented in the form of tensors,
i.e. multidimensional matrices. Tensor-based decomposition frameworks such as parallel factor
(PARAFAC) decomposition and Tucker decomposition, which make full use of the strong algebraic
structure of multidimensional signals, are widely used for MIMO radar target localization [20–22].
The paper [21] shows a tensor-based real-valued subspace scheme, which combines the higher order
singular value decomposition (HOSVD) technique with the methods based on real-valued subspace to
estimate DODs and DOAs. In [22], a unitary PARAFAC method based on the transmit beam-space is
proposed for bistatic MIMO radar. These tensor-based methods enhance the estimation performance
to some degree. However, they are only applicable to multiple-pulse radar configuration and thus are
limited in application scope.

Recently, a novel compressed sensing method was proposed in [23] for 1D line spectral estimation.
It utilizes the iterative reweighted (IR) scheme for sparse signal recovery. In [24], the IR scheme
in [23] is extended to 2D millimeter-Wave (mmWave) channel estimation, and achieves higher channel
estimation accuracy than conventional solutions.

Inspired by the idea of the IR algorithm, we firstly propose a new super-resolution target
localization method for single-pulse bistatic MIMO radar, which can be abbreviated as the ISR-S
method. It does not require extra angle pairing. We then develop it to multiple-pulse radar in an
effort to initialize the trilinear alternate least squares (TALS) algorithm for estimating target numbers
and localizing targets, i.e. the proposed ISR-M algorithm. In this configuration, due to the superior
angle estimation performance of the proposed ISR-S algorithm, it demonstrates better localization
performance than Capon and MUSIC algorithms at a low signal-to-noise ratio (SNR) even when only
one pulse-period-received signal is utilized to localize targets.

Our contributions are as follows.
(1) Compared with existing Capon, MUSIC, and ESPRIT methods, both of the proposed ISR-S and

ISR-M methods have better angle estimation performance in single-pulse and multiple-pulse scenarios,
respectively.

(2) Since the proposed ISR-M method optimizes the initial values before the alternately iterative
process, it has a more stable performance and a faster convergence speed. The average iteration
number of the ISR-M method is reduced by nearly half compared with the traditional TALS algorithm.

(3) In contrast to tensor-based methods in [20–22], the two proposed schemes do not need to
transmit mutually orthogonal waveforms. In addition, the proposed ISR-M method has more easy
uniqueness conditions than the algorithm in [20].

(4) Traditional Capon, MUSIC, ESPRIT, and TALS methods cannot effectively localize targets
when the number of targets is unknown. However, both of the proposed ISR-S and ISR-M methods
not only can perform localization in this case, but also have high localization accuracy.
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The remainder of this paper is organized as follows. In Section 2, we present the considered
single-pulse bistatic MIMO radar model in detail and derive the optimization formulas. Besides,
the proposed ISR-S algorithm for target localization is also given in this section. In Section 3,
we present the considered multiple-pulse bistatic MIMO radar model and the constructed tensor
model. In addition, the ISR-M algorithm is also introduced in this section. Section 4 shows simulation
results to verify the performance of our two proposed methods. Conclusions are drawn in Section 5.

Notation: (·)T, (·)H, and (·)−1 represent the transpose, the conjugate transpose, and the
inverse-operation, respectively. diag (·) is a diagonal matrix whose diagonal elements are the entries of
a vector. vec (·) is a vector obtained by stacking the columns of a matrix one after another. Di (A) is a
diagonal matrix formed by the i-th row of A. The notation⊗,�, and ◦ stand for the Kronecker product,
the Khatri-Rao product (or the column-wise Kronecker product), and the outer product, respectively.
The N × N identity matrix is denoted by IN . The l0 -norm and l2-norm are denoted by ‖·‖0 and ‖·‖2,
respectively.

2. Single-Pulse Bistatic MIMO Radar

2.1. System Model

Figure 1 shows a bistatic MIMO radar system model. In this subsection, we consider a single-pulse
bistatic radar consisting of MT transmit antennas and MR receive antennas. Transmit and receive arrays
considered in this paper are all uniform linear arrays (ULAs) with half-wavelength spacing. Each target
is treated as a point-source in the far field as described in existing works [18,20]. The transmit steering
vector and the receive steering vector can be respectively written as

aT(φT,k) =
[

1 exp
(
(−j 2π

λ )d sin φT,k
)
· · · exp

(
(−j 2π

λ )d(MT − 1) sin φT,k
) ]T

∈ C
MT×1

,

aR(φR,k) =
[

1 exp
(
(−j 2π

λ )d sin φR,k
)
· · · exp

(
(−j 2π

λ )d(MR − 1) sin φR,k
) ]T

∈ C
MR×1

(1)

where K is the number of targets in a range-bin of interests, φT,k and φR,k are DOD and DOA,
respectively, k = 1, · · · , K, d is the spacing of two adjacent antennas, and λ is the wavelength.
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Figure 1. Schematic illustration of the considered bistatic MIMO radar.

The signals matrix is first transmitted by the transmit antenna array and then reflected by the
targets. The reflected waveform vector with DOD φT,k is aT

T(φT,k)S, in which S =
[
s1, s2, · · · , sMT

]T ∈
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CMT×L is the transmitted waveform matrix, and L is the number of samples. Therefore, the signals
reflected from targets with different DODs are linearly independent. The signals matrix is then received
by MR receive antennas, which can be expressed as

Y =
K

∑
k=1

βkaR(φR,k)a
T
T(φT,k)S + V (2)

where βk is the radar cross section (RCS) fading coefficient, and V ∈ CMR×L is the additive Gaussian
white noise (AWGN) matrix.

By defining θT,k = d sin φT,k/λ and θR,k = d sin φR,k/λ as the normalized spacial angles,
the transmit and receive steering matrices can be expressed as

AT (θT) =
[

aT(θT,1) ... aT(θT,K)
]
∈ CMT×K,

AR (θR) =
[

aR(θR,1) ... aR(θR,K)
]
∈ CMR×K

(3)

where θT =
[

θT,1 · · · θT,K

]T
and θR =

[
θR,1 · · · θR,K

]T
. Then, (2) can be expressed

equivalently as follows [25,26]:

Y = AR (θR)diag (c)AT
T (θT) S + V (4)

where c =
[

β1 · · · βK

]T
∈ CK×1. After vectoring Equation (4), we obtain

y =
(
ST ⊗ IMR

)
(AT (θT)�AR (θR)) c + v (5)

where y ∈ CLMR×1 and v ∈ CLMR×1.

2.2. Optimization Formulas

The target localization problem of this single-pulse bistatic MIMO radar can be formulated as

min
ĉ,θ̂T,θ̂R

‖ĉ‖0, s.t.
∥∥y−

(
ST ⊗ IMR

) (
AT
(
θ̂T
)
�AR

(
θ̂R
))

ĉ
∥∥

2 6 ε (6)

where ĉ is the estimated RCS fading coefficient vector, ‖ĉ‖0 represents the estimated number of targets,
θ̂R and θ̂T are the estimation of the normalized spacial angles, and ε is the error tolerance parameter.
Equation (6) can be transformed into the following log-sum function [23,27,28]:

min
ĉ,θ̂T,θ̂R

G (c) =
K

∑
k=1

log
(∣∣β̂k

∣∣2 + δ
)

, s.t.
∥∥∥y−

(
ST ⊗ IMR

) (
AT
(
θ̂T
)
�AR

(
θ̂R
))

ĉ
∥∥∥

2
6 ε (7)

where δ > 0 makes sure the function is well-defined. We then introduce a regularization parameter α

and have

min
ĉ,θ̂T,θ̂R

P (c, θT, θR) =
K

∑
k=1

log
(∣∣β̂k

∣∣2 + δ
)
+ α

∥∥∥y−
(

ST ⊗ IMR

) (
AT
(
θ̂T
)
�AR

(
θ̂R
))

ĉ
∥∥∥2

2
. (8)

We further use the following iterative surrogate function instead of the above formula for
angle estimation

min
ĉ,θ̂T,θ̂R

R(i) (c, θT, θR) = α−1ĉHΣ(i) ĉ +
∥∥∥y−

(
ST ⊗ IMR

) (
AT
(
θ̂T
)
�AR

(
θ̂R
))

ĉ
∥∥∥2

2
(9)
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where
Σ(i) = diag (ρ1, · · · , ρK) , (10)

and ρk =
1∣∣∣β̂(i)k

∣∣∣2+δ
.

2.3. Localization via the Proposed ISR-S Method

Firstly, we simplify R(i) (c, θT, θR) as follows

R(i)(c, θT, θR) = α−1ĉHΣ(i) ĉ + (y− Fĉ)H (y− Fĉ)
= α−1ĉHΣ(i) ĉ + yHy− yHFĉ− ĉHFHy + ĉHFHFĉ

= ĉHWĉ− ĉHFHy− yHFĉ + yHy

(11)

with
F =

(
ST ⊗ IMR

) (
AT
(
θ̂T
)
�AR

(
θ̂R
))

=
(
ST ⊗ IMR

) [
vec

(
aR,1aT

T,1

)
· · · vec

(
aR,KaT

T,K

) ] (12)

and
W = α−1Σ(i) + FHF. (13)

We then derive the following partial derivative with regard to c

∂R(i)(c, θT, θR)

∂c
= ĉHW− yHF. (14)

After setting Equation (14) to zero, we obtain the optimal ĉ(i) and the corresponding optimal
value of R(i) as follows:

c(i)opt (θT, θR) = arg min
c

R(i)(c, θT, θR)

= W−1FHy
(15)

R(i)
opt(θT, θR) = min

c
R(i)(c, θT, θR)

= yHy− yHFW−1FHy.
(16)

After that, the normalized spatial angles θT and θR are optimized by using the gradient descent
method as follows:

θ
(i+1)
T = θ

(i)
T − η∇θT R(i)

opt

(
θ
(i)
T , θ

(i)
R

)
,

θ
(i+1)
R = θ

(i)
R − η∇θR R(i)

opt

(
θ
(i)
T , θ

(i)
R

) (17)

where η is the chosen step size to ensure R̂(i+1)
opt (θT, θR) 6 R̂(i)

opt (θT, θR), ∇θT R(i)
opt

(
θ
(i)
T , θ

(i)
R

)
, and

∇θR R(i)
opt

(
θ
(i)
T , θ

(i)
R

)
are gradient functions upon θT and θR, respectively.

We take ∇θT R(i)
opt

(
θ
(i)
T , θ

(i)
R

)
as an example for analysis and replace R(i)

opt

(
θ
(i)
T , θ

(i)
R

)
with Ropt for

notational brevity. After taking partial derivative with regard to θT,k, we have

∂Ropt
∂θT,k

= −yH ∂F
∂θT,k

W−1FHy− yHF ∂W−1

∂θT,k
FHy− yHFW−1 ∂FH

∂θT,k
y

= −yH ∂F
∂θT,k

W−1FHy + yHFW−1 ∂W
∂θT,k

W−1FHy− yHFW−1 ∂FH

∂θT,k
y

(18)

where
∂W

∂θT,k
=

∂FH

∂θT,k
F + FH ∂F

∂θT,k
(19)
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and
∂F

∂θT,k
=
(

ST ⊗ IMR

) [
0 · · · 0 vec

(
aR,1

∂aT
T,1

∂θT,k

)
0 · · · 0

]
. (20)

The proposed iterative super-resolution target localization algorithm is summarized as
Algorithm 1. In order to speed up the convergence of the algorithm, the singular value decomposition
(SVD) [24] can be used to initialize θ̂

(0)
T and θ̂

(0)
R . In Step 7, we regard β̂k as noise and prune it if it is

too small during the iteration process. Alternatively, Step 7 can be omitted if the number of targets is
given beforehand. Correspondingly, the initial value Kinit is fixed to K. More specifically, we calculate
the estimation error

e(i) =
∥∥∥θ̂

(i+1)
T − θ̂

(i)
T

∥∥∥
2
+
∥∥∥θ̂

(i+1)
R − θ̂

(i)
R

∥∥∥
2

(21)

in the i-th iteration, and we assume that the convergence condition is reached when e(i) 6 eth.

Algorithm 1 The proposed ISR-S algorithm
Input: y and S.
Step 1 Initialization: Set i = 0; Initialize the target numbers Kinit to ensure K < Kinit; Initialize θ̂

(0)
T , θ̂

(0)
R ;

Initialize ĉ(0) and R̂(0) by Equations (15) and (16), respectively;
Step 2 i = i + 1;
Step 3 Calculate ∇θT R(i)

opt

(
θ
(i)
T , θ

(i)
R

)
and ∇θR R(i)

opt

(
θ
(i)
T , θ

(i)
R

)
;

Step 4 Update the angle estimation θ̂
(i)
T and θ̂

(i)
R using Equation (17);

Step 5 Update ĉ(i) and R̂(i) by Equations (15) and (16), respectively;
Step 6 Repeat Step 2 to Step 6 until convergence;
Step 7 Prune β̂k when β̂k < βth, where βth is a threshold.
Output: K̂, θ̂T, θ̂R, and ĉ.

3. Extension to Localize Targets in Multiple-Pulse Bistatic MIMO Radar

In this subsection, we consider a multiple-pulse bistatic radar model, i.e. the coherent processing
interval (CPI) consists of Q (Q > 2) pulses. It is assumed that the transmit and receive steering matrices
do not vary with pulses. In the q-th pulse period, the L reflected sample signals observed by all MR

receive antennas can be expressed as

Yq =
K

∑
k=1

χqkaR(φR,k)a
T
T(φT,k)Sq + Vq (22)

where χqk is a composite coefficient consisting of Doppler shift and RCS fading effects. Sq ∈ CMT×L

and Vq ∈ CMR×L are the transmitted waveform matrix and the AWGN matrix in the q-th pulse period,
respectively. In the multiple-pulse configuration, χqk has two forms, corresponding to Swerling I and
Swerling II target models, respectively. χqk = βkexp (j (q− 1) fk) is defined for the Swerling I target
model, in which fk is the Doppler frequency of the k-th target, exp (j (q− 1) fk) corresponds to the
Doppler effect coefficient of the k-th target for the q-th pulse period, and βk is the RCS coefficient of
the k-th target for all Q pulse periods. This means that the RCS coefficients are invariant during the
CPI. For the Swerling II target model, χqk = βqkexp (j (q− 1) fk), where βqk is the RCS coefficient of
the k-th target for the q-th pulse period, which means that the RCS coefficients change with pulses.
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3.1. Constructed Tensor Model

The transmitted signals for different pulses are designed to be the same, i.e. Sq = S for all
q = 1, . . . , Q. Therefore, Equation (22) can be further written as

Yq =
K
∑

k=1
χqkaR(φR,k)ãT

T(φT,k) + Vq

= AR (φR)diag
(
cq
)

ÃT
T (φT) + Vq

(23)

where ãT(φT,k) = STaT(φT,k) and ÃT (φT) = STAT (φT) ∈ CL×K. cq =
[
χq1, · · · , χqK

]T ∈ CK×1 is a
column vector. For notational conciseness, ÃT and AR are used to represent ÃT (φT) and AR (φR),

respectively. Let us define C =
[

c1 . . . cQ

]T
∈ CQ×K. Equation (23) then becomes

Yq = ARDq (C) ÃT
T + Vq. (24)

According to [29], the following PARAFAC model is constructed after stacking Yq for all q =

1, . . . , Q:

Y− =
K

∑
k=1

aR(φR,k) ◦ ãT(φT,k) ◦ ck + V− (25)

where ck ∈ CQ×1 is the k-th column of C, Y− ∈ CMR×L×Q and V− ∈ CMR×L×Q are third-order tensors

with Yq and Vq as their q-th matrix slice, respectively. The scalar elements y (m, l, q) in tensor Y− can be
expressed as

y (m, l, q) =
K

∑
k=1

aR (m, k) ãT (l, k) c (q, k) + v (m, l, q) (26)

for m = 1, · · · , MR, l = 1, · · · , L, and q = 1, · · · , Q. aR (m, k), ãT (l, k), c (q, k), and v (m, l, q) represent
the (m, k)-th, (l, k)-th, (q, k)-th, and (m, l, q)-th scalar elements of AR, ÃT, C, and V− , respectively. The
three matrix unfolded forms of this PARAFAC model can be written as

Y(1) = (C�AR)ÃT
T + V(1) (27)

Y(2) = (ÃT � C)AT
R + V(2) (28)

Y(3) = (AR � ÃT)CT + V(3) (29)

where Y(1) ∈ CQMR×L, Y(2) ∈ CLQ×MR , and Y(3) ∈ CMRL×Q.
According to the uniqueness theorem [29], AR, ÃT, and C are unique in the presence of column

permutation and scaling ambiguities if

kAR + kÃT
+ kC > 2 (K + 1) (30)

where kA means the Kruskal-rank (k-rank) of A. The composite coefficient matrix C has a Vandermonde
structure for the Swerling I target model, but no specific structure for the Swerling II target model.
Since the RCS coefficients are randomly distributed, C has full k-rank. The two steering matrices
AT and AR have a Vandermonde structure. Since there are no special constraints on the transmitted
signal waveforms, such as orthogonality, ÃT has no specific structure. However, it still has full k-rank
because S is randomly generated. Therefore, AR, ÃT, and C have full k-rank. The condition expressed
by Equation (30) becomes

min (MR, K) + min (L, MT, K) + min (Q, K) > 2 (K + 1) . (31)
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This implies that only min (MT, MR, Q) > K and L > 2 are needed to satisfy the condition
expressed by Equation (31). However, MIMO radars in [20] send mutually orthogonal signals and thus
require L > MR, which takes up more spectral resources.

3.2. Localization via the Proposed ISR-M Method

Since the TALS algorithm is efficient and simple to implement, it is commonly used to fit tensor
models, such as PARAFAC [22,29], PARATUCK2 [30], and Tucker2 [31]. However, the fitting accuracy
and speed of this iterative algorithm are greatly affected by its initial value. Poor initial values can
lead to poor localization results. Due to the fact that transmit and receive steering matrices AT and AR

are invariant for different pulses during the CPI, one of Yq for q = 1, . . . , Q can be used to estimate AT

and AR. Therefore, we develop a new preconditioning scheme to initialize the TALS algorithm in this
subsection. This initialization scheme can also estimate the number of targets. The complete fitting
process is described in Algorithm 2.

At the first stage, the received signals from one pulse period during CPI, i.e. Yq =

ARdiag
(
cq
)

ÃT
T + Vq, are selected to initialize AT and AR. Analogous to the description in Section 2,

the objective problem is firstly formulated as an iterative surrogate function as shown in Equation (9).
Optimal formulas for the RCS coefficient vector cq, DODs, and DOAs are then obtained by calculating
the partial derivative, i.e. Equations (14)–(20). As described in Algorithm 1, DODs and DOAs are
iteratively estimated, and the target numbers represented by K are also obtained. The transmit and
receive steering matrices ÂT and ÂR are further constructed based on the estimated DODs and DOAs;
hence ˆ̃AT = STÂT is obtained.

According to the convergence condition in Algorithm 1 (i.e., the algorithm is considered to be
convergent if e(i) 6 eth), the required number of iteration may be considerable when a small eth
is assumed. This setting improves estimation performance by increasing calculation cost. In this
subsection, the estimation results from Algorithm 1 are utilized to initialize the TALS algorithm. As a
result, there is a relatively easy requirement for accuracy. We choose a number of iteration equal to 10
in an effort to reduce computational complexity.

At the second stage, the TALS algorithm is exploited to iteratively estimate AR, ÃT, and C. The
least-square (LS) fitting formulas corresponding to Equations (27)–(29) are respectively given by

ˆ̃AT = arg min
E

∥∥∥Y(1) − (Ĉ� ÂR)ÃT
T

∥∥∥2

F

=
[
(Ĉ� ÂR)

†
Y(1)

]T
. (32)

ÂR = arg min
ÂR

∥∥∥Y(2) − ( ˆ̃AT � Ĉ)AT
R

∥∥∥2

F

=

[
( ˆ̃AT � Ĉ)

†
Y(2)

]T (33)

Ĉ = arg min
C

∥∥∥Y(3) − (ÂR � ˆ̃AT)CT
∥∥∥2

F

=

[
(ÂR � ˆ̃AT)

†
Y(3)

]T
.

(34)

The cost function with regard to AR, ÃT, and C are alternatively minimized until∣∣∣e(i) − e(i−1)
∣∣∣/e(i) < ∆th. It is assumed that ∆th = 1× 10−6 in this paper.

Optimized initial values help to converge. Therefore, the number of iterations of the ISR-M
algorithm is significantly reduced compared with the traditional TALS algorithm, which can be
confirmed by Tabel 1.
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DODs and DOAs can be extracted based on the maximum likelihood (ML) algorithm [32].
They are respectively given by

φ̂T,k = arg max
φT,k

∣∣∣ ˆ̃aH
T,kSTaT(φT,k)

∣∣∣∥∥∥ ˆ̃aH
T,k

∥∥∥
2

∥∥STaT(φT,k)
∥∥

2

(35)

φ̂R,k = arg max
φR,k

∣∣∣âH
R,kaR(φR,k)

∣∣∣∥∥âR,k
∥∥

2

∥∥aR(φR,k)
∥∥

2
(36)

where ˆ̃aT,k and âR,k represent the k-th column of ˆ̃AT and ÂR, and φT,k and φR,k are unknown parameters.
In the traditional scheme [20], the Vandermonde structure of AT and AR is one of the key factors

in recovering angles. However, the angle extraction method in this paper takes no account of the
special structure of AT and AR and thus is more applicable than the traditional scheme in [20].

Algorithm 2 The proposed ISR-M algorithm.
First stage:
Input: Yq and S.
Step 1.1 Apply the vec (·) operator to Yq;

Step 1.2 Set i = 0; Initialize the target numbers Kinit to ensure K < Kinit; Initialize θ̂
(0)
T , θ̂

(0)
R , ĉ(0), and

R̂(0);
Step 1.3 For i = 1, . . . , Imax

Step 1.3.1 Update the angle estimation θ̂
(i)
T and θ̂

(i)
R using Equation (17);

Step 1.3.2 Update ĉ(i) and R̂(i) by Equations (15) and (16), respectively;
Step 1.4 End for
Step 1.5 Prune β̂k when β̂k < βth, where βth is a threshold.
Output: K̂, θ̂T, and θ̂R.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Construct ÂT and ÂR from Equations (1) and (3);
Calculate ˆ̃AT = STÂT.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Second stage :
Input: ˆ̃AT, ÂR, Y(1), Y(2), and Y(3).

Step 2.1 Set i = 0, Â(0)
R = ÂR, ˆ̃A

(0)
T = ˆ̃AT;

Step 2.2 i = i + 1;
Step 2.3 Calculate the LS estimate of C:

Ĉ(i) =

[
(Â(i−1)

R � ˆ̃AT
(i−1)

)
†
Y(3)

]T

;

Step 2.4 Calculate the LS estimate of ÃT:

ˆ̃A
(i)
T =

[
(Ĉ(i) � Â(i−1)

R )
†
Y(1)

]T
;

Step 2.5 Calculate the LS estimate of AR:

Â(i)
R =

[
( ˆ̃AT

(i)
� Ĉ(i))

†
Y(2)

]T

;

Step 2.6 Calculate e(i) =
∥∥∥∥Y(1) − (Ĉ(i) � Â(i)

R ) ˆ̃A
(i)T
T

∥∥∥∥2

F
;

Step 2.7 Repeat Step 2.2-Step 2.6 until
∣∣∣e(i) − e(i−1)

∣∣∣/e(i) < ∆th.

Output: ˆ̃AT, ÂR, and Ĉ.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Estimate φ̂T,k and φ̂R,k for all k = 1, . . . , K according to Equations (35) and (36).
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4. Simulation Results

The performance of the two proposed target localization methods is studied in this section. Define
the root mean square error (RMSE) [11–14,16] as

RMSE = 1
K

K
∑

k=1

√
1
N

N
∑

n=1

[(
θ̂T,k,n − θT,k

)2
+
(
θ̂R,k,n − θR,k

)2
]

(37)

where N is the number of Monte Carlo simulations, and θ̂T,k,n and θ̂R,k,n denote the estimated values of
θT,k and θR,k for the n-th Monte Carlo trial, respectively. For each Monte Carlo simulation, the RCS
fading coefficients are randomly regenerated, while the DODs and DOAs remain constant. Throughout
the simulations, we assume that the number of transmit antennas and receive antennas are equal, i.e.
MT = MR = J.

4.1. Single-Pulse Bistatic MIMO Radar

In this subsection, we focus on the single-pulse bistatic MIMO radar. In order to ensure that the
proposed ISR-S method can effectively and efficiently localize all targets, the condition min (J, L) > K
needs to be met. A larger min (J, L) with a certain K means a better localization performance and a
lower convergence speed.

Each element of c, i.e. the RCS coefficient βk for all k = 1, . . . , K, is randomly drawn from a
Gaussian distribution with zero mean and unit variance. βth is a small value that defines the range
of β̂k. Therefore, we reasonably set βk > 0.02, i.e. βth = 0.02, which means that we regard β̂k as noise
and prune it if β̂k < βth. The carrier frequency fc is equal to 1 GHZ, and the wavelength λ is equal
to 3× 108

/
fc in meters. The spacing of two adjacent antennas for the transmit and receive antenna

arrays is equal to half-wavelength λ/2. The transmitted waveform matrix S is generated by a complex
Gaussian random matrix with zero mean and unit variance by default. The SNR is defined as SNR =

10log10
(
‖x‖2

2

/
‖v‖2

2

)
dB for the single-pulse configuration, in which x =

(
ST ⊗ IMR

)
(AT �AR) c.

The error tolerance eth is set to 1× 10−10 for a given target numbers.
In the first example, we assess the target localization performance of the proposed ISR-S method

with unknown target numbers. The DODs and DOAs are (−70◦,−55◦), (−30◦,−15◦), (15◦, 30◦), and
(60◦, 80◦). The rest system parameters are K = 4, SNR = 20dB, J = 5, and L = 12. As shown in
Figure 2, we can clearly see that our proposed algorithm can localize all targets accurately and estimate
DODs and DOAs effectively. In addition, its performance is well even with low sampling numbers, i.e.
L = 24

In the second example, we compare the proposed ISR-S method with existing Capon, MUSIC,
and ESPRIT methods through Monte Carlo simulations with given target numbers, where K = 3 and
N = 500. Figures 3 and 4 show the impact of different sampling numbers L and antenna numbers
J on the RMSE performance for the above methods, respectively. To ensure that Capon, MUSIC,
and ESPRIT algorithms work, orthogonal transmitted waveforms are considered in this example. In
addition, the angular resolution of Capon and MUSIC algorithms is set as 0.001◦ for a fair comparison.
However, such a small step size greatly increases the complexity. In order to save time to some degree,
we look for all peaks in two stages. At the first stage, a scanning step size of 1◦ is chosen to find
K peaks. At the second stage, we refine the angle estimation around these K peaks with a step size
of 0.001◦. It can be seen in Figures 3 and 4 that the RMSE of all methods decreases as L and J increase,
and the proposed super-resolution method is superior to existing methods when the SNR is above a
certain threshold. The Capon and MUSIC methods cannot accurately localize all targets at each Monte
Carlo run and thus results in a poor angle estimation performance at a low SNR. Their performance is
also greatly sensitive to sampling numbers, represented by L, and antenna numbers, represented by J.
Though the ESPRIT method has better performance than the Capon and MUSIC methods, there is still
a large gap between the ESPRIT method and the proposed ISR-S method. At an RMSE of 1× 10−3, the
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gap between the ESPRIT method and the proposed ISR-S method is about 3.3 dB for L = 32, 128 and
3.9 dB for J = 8, 12.
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K = 4, L = 12, J = 5, SNR = 20 dB

True angle
ISR-S

Figure 2. Target localization performance of the proposed ISR-S method, K = 4 is unknown.
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 L = 32, 128

ISR-S, L=32
Capon, L=32
MUSIC, L=32
ESPRIT, L=32
ISR-S, L=128
Capon, L=128
MUSIC, L=128
ESPRIT, L=128

39 39.5 40
0.5

1

1.5
×10-4

Figure 3. Comparison with existing MIMO radar target localization methods for different sampling
numbers L, J = 8.

In the third example, we study the influence of the proposed ISR-S method for different target
numbers through Monte Carlo simulations, where L = 24, J = 12, and N = 500. In particular,
we consider the case that the number of targets is unknown. The proposed ISR-S method is carried out
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following Algorithm 1 with eth = 1× 10−5, 1× 10−4, 1× 10−3 and Kinit = 6, 9, 12 for K = 2, 3, 4,
respectively. The existing Capon, MUSIC, and ESPRIT methods cannot work in this case. It can be seen
in Figure 5 that the RMSE performance of the proposed ISR-S method is improved as K decreases in
both cases of known and unknown target numbers. We can also observe in Figure 5 that the proposed
method still has high estimation accuracy above an SNR threshold even with unknown target numbers
and low sampling numbers, i.e. L = 24.
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Figure 4. Comparison with existing MIMO radar target localization methods for different antenna
numbers J, L = 48.
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Figure 5. RMSE performance of the proposed ISR-S method for different target numbers, represented
by K.
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4.2. Mutiple-Pulse Bistatic MIMO Radar

In this subsection, we focus on the multiple-pulse bistatic MIMO radar. According to the
uniqueness theorem of the PARAFAC model, min (J, Q) > K and L > 2 should be met for the
second stage of our proposed ISR-M method. Meanwhile, min (J, L) > K should be met for the first
stage of the ISR-M method. Therefore, min (J, L, Q) > K and L > 2 are needed to be met for effectively
and efficiently localizing all targets in this configuration.

For the Swerling I target model, the RCS coefficient βk is randomly drawn from a Gaussian
distribution with zero mean and variance σ2

βk
.; for the Swerling II target model, βqk for all q = 1, . . . , Q

are randomly drawn from a Gaussian distribution with zero mean and variance σ2
βk

. As in Section 4.1,
we also set βth = 0.02. The Dopper frequency fk is equal to 2πvkTp/λ, in which vk is the velocity of
the k-th target, Tp is the period of the q-th pulse and is equal to 5× 106 in seconds. The Swerling II

target model is chosen, and the SNR is defined as SNR = 10log10

(
Q
∑

q=1

∥∥Xq
∥∥2

F

/
Q
∑

q=1

∥∥Vq
∥∥2

F

)
dB for

the multiple-pulse configuration, in which Xq = ARdiag
(
cq
)

ÃT
T. The other system parameters are set

as in the last subsection.
In the first example, we assess the target localization performance of the proposed ISR-M method

with unknown target numbers, in which K = 4 and Q = 8. In particular, we compare the case of
J > K and J = K. The rest of the system parameters are the same as the first example in the previous
subsection. As shown in Figures 6 and 7, we can clearly see that our proposed ISR-M algorithm can
estimate DODs and DOAs effectively, and accurate localization is also achieved when J = K, even
with unknown target numbers and low sampling numbers.
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K = 4, L = 12, Q = 8, J = 5 > K, SNR = 20 dB
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Figure 6. Target localization performance of the proposed ISR-M method, J = 5 > K = 4.

In the second example, we compare the RMSE performance of the proposed ISR-M method
with that of existing Capon, MUSIC, and ESPRIT methods for different L, Q, and J values through
Monte Carlo simulations with given target numbers, where K = 3 and N = 500. In particular,
the RMSE curves of the proposed ISR-S algorithm are also plotted in this example. An angular
resolution identical to that in the second example of the previous subsection is chosen for Capon
and MUSIC algorithms. For the ISR-S method (or the first stage of the ISR-M method), the main
computational cost in each iteration rests with computing the gradient in Step 3 (or Step 1.3.1). The
computational complexity for computing the gradient in each iteration is O

(
L (MR + MT)K2). For
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the second stage of the ISR-M method, the computational complexity in each iteration for Step 2.3, 2.4,
and 2.5 are O

(
LMRK2)+ QKLMR, O

(
QMRK2)+ QKLMR, and O

(
LQK2)+ QKLMR, respectively.

Therefore, the overall computational cost is O
(
(2LMR + LMT + QMR + LQ)K2)+ 3QKLMR for the

ISR-M method. For Capon and MUSIC methods, a small scanning step size is usually chosen to
improve the angular resolution in practice, which means that the required iteration number is greatly
increased in order to achieve a localization accuracy identical to that of other algorithms. Therefore,
their complexity is usually higher than the proposed ISR-S and ISR-M methods. Since the ESPRIT
method does not involve iterations, its complexity is the lowest among these methods. Comparing
Figures 8–11, we can clearly see that the estimation performance of all methods except ISR-S is
improved as L, Q, and J increase. Note that, because only one pulse-period-received information is
used, the performance of the proposed ISR-S algorithm is not sensitive to Q and only affected by L and
J. However, the proposed ISR-S method still shows better localization performance than the Capon
and MUSIC algorithms at a low SNR. It can also be seen that the proposed ISR-M method invariably
outperforms existing methods regardless of L, Q, and J. Even in the case of a high SNR, in which the
MUSIC algorithm shows better performance than the ESPRIT algorithm, there is always a gap of at
least 6.5 dB between the ISR-M method and the MUSIC method.
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Figure 7. Target localization performance of the proposed ISR-M method, J = K = 4.
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Figure 8. Comparison with existing MIMO radar target localization methods with K = 3, L = 32,
Q = 8, and J = 8.
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Figure 9. Comparison with existing MIMO radar target localization methods with K = 3, L = 64,
Q = 8, and J = 8.
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Figure 10. Comparison with existing MIMO radar target localization methods with K = 3, L = 64,
Q = 24, and J = 8.
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Figure 11. Comparison with existing MIMO radar target localization methods with K = 3, L = 64,
Q = 24, and J = 12.

In the third example, we compare the average iteration number of the proposed ISR-M method
and the traditional TALS method through Monte Carlo simulations with the same parameters as in the
second example. The traditional TALS algorithm is susceptible to poor initial values, which results
in poor estimation performance. Its RMSE curve versus the SNR is thus not analyzable for N Monte
Carlo trials and not plotted in the second example. The proposed ISR-M algorithm greatly improves
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the stability of the TALS algorithm without any loss of estimation accuracy. Moreover, as shown in
Table 1, the average iteration number of the ISR-M algorithm is about half of the TALS algorithm,
which means that the computational complexity of ISR-M is greatly reduced.

Table 1. Comparison of average iteration number for the proposed ISR-M method and the traditional
TALS method.

SNR
(dB) −10 −5 0 5 10 15 20 25 30 35 40

L = 32, Q = 8, J = 8

ISR−M 31 9 6 6 6 7 7 8 8 9 9

TALS 59 23 16 22 15 54 20 16 28 32 14

L = 64, Q = 8, J = 8

ISR−M 23 7 6 6 7 7 8 8 8 9 9

TALS 26 19 18 18 26 20 31 20 25 35 31

L = 64, Q = 24, J = 8

ISR−M 9 6 5 5 5 5 5 6 6 6 6

TALS 17 13 15 18 12 22 17 14 19 19 17

L = 64, Q = 24, J = 12

ISR−M 10 7 4 4 4 5 5 5 6 6 6

TALS 12 14 14 14 16 14 14 18 14 16 16

5. Conclusions

We have proposed two target localization methods based on iterative super-resolution for the
bistatic MIMO radar. Both of our proposed methods can be used for accurate multiple targets
localization even if the number of targets is unknown. Compared with the existing Capon, MUSIC,
and ESPRIT methods, the two proposed methods have better DOD/DOA estimation performance. In
addition, the proposed ISR-M method shows a more stable performance and a higher convergence
speed than the traditional TALS algorithm. Simulation results verify the efficacy and accuracy of
the two proposed target localization methods. Perspectives of this work include an extension to
multiple-pulse multi-static radar systems. In this configuration, the received pulses can be expressed
as a block-component-decomposition (BCD) [33] model. We will deduce new identifiability and
uniqueness conditions, and develop new efficient target localization algorithms. The imaging technique
will also be developed in multi-static configurations [34]. In addition, a theoretical resolution [35] and
the minimal separation angles analyses of radar systems will be taken into account in our future works.
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