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Abstract: The present paper deals with neural algorithms to learn the singular value decomposition
(SVD) of data matrices. The neural algorithms utilized in the present research endeavor were
developed by Helmke and Moore (HM) and appear under the form of two continuous-time
differential equations over the special orthogonal group of matrices. The purpose of the present paper
is to develop and compare different numerical schemes, under the form of two alternating learning
rules, to learn the singular value decomposition of large matrices on the basis of the HM learning
paradigm. The numerical schemes developed here are both first-order (Euler-like) and second-order
(Runge-like). Moreover, a reduced Euler scheme is presented that consists of a single learning rule for
one of the factors involved in the SVD. Numerical experiments performed to estimate the optical-flow
(which is a component of modern IoT technologies) in real-world video sequences illustrate the
features of the novel learning schemes.

Keywords: singular value decomposition; initial value problem; first-order numerical method;
second-order numerical method; manifold calculus and Lie groups; learning system; Internet
of Things

1. Introduction

The computation of the singular value decomposition (SVD) of a non-square matrix [1–3] plays
a key role in a number of applications (see, for instance, [4–13]); among them, it is worth citing
applications in automatic control [14], digital circuit design [15], time-series prediction [16], and image
processing [17,18]. Efforts have been devoted to achieving the computation of the SVD of matrices in
the artificial neural networks community [19–21].

The neural algorithms utilized in the present research work to learn an SVD of a data matrix were
developed by Helmke and Moore (HM) in [1]. An HM learning rule appeared under the form of two
continuous-time differential equations over the special orthogonal group of matrices. The purpose
of the present research is to develop and compare different numerical schemes, under the form of
two alternating learning equations, to learn the SVD of large matrices on the basis of the HM learning
paradigm. The numerical schemes developed here are both first-order (Euler-like) and second-order
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(Runge-like). Moreover, a reduced Euler scheme will be presented that consists of a single learning
equation for one of the factors involved in the SVD.

The developed methods to learn an SVD of a data matrix are applied to optical-flow estimation.
Optical flow estimation is a well-known image-processing operation that allows estimating the
motion of portions of an image over a video sequence and has found widespread applications (see,
for instance, [22–29]). Optical flow is closely related to motion estimation [30]. Optical flow refers to
the change of structured light in an image and captures such change through a velocity vector field.
Most of the optical-flow estimation algorithms used in video encoding belong to either the class of
block matching algorithms (BMAs) or to the class of pixel recursive algorithms (PRAs) [31].

Optical flow estimation algorithms are essential components in a number of complex Internet
of Things (IoT) technologies, as testified by several existing applications, such as intelligent fall
detection [32,33], mobile robotics [34], intelligent flight monitoring [35], mobile object tracing [36],
automated surveillance [37], smart healthcare [38], solar energy forecasting [39], and in IoT-based
analytics in urban space, shops, and retail stores to inform policy makers, shop owners, and the general
public about how they interact with the physical space [40]. See also the interesting discussion in [41].

The majority of the current optical-flow estimation methods rely on a block-matching algorithm.
The BMA methods are based on the concept of template-matching: it is supposed that a single block
in a time-frame has moved solidly to another location in the next time-frame, so the image-block is
regarded as a template to be looked for in the subsequent frame. The BMA methods try to evaluate
the motion of a block by reducing the number of search locations in the search range and/or by
reducing the number of computations at each search location. These algorithms are either ad hoc
or are based on the assumption that the error increases monotonically from the best-match location.
However, typically, the error surface may exhibit local minima, and the majority of the BMAs get
trapped in one of the local minima depending on the starting point and on the search direction.
Furthermore, the matching algorithms aim at finding the best match with respect to some selected
mismatch (error) measure, but the best match may not represent the true motion [42].

Conversely, standard PRAs try to estimate the motion at each pixel. In the method for optical-flow
estimation considered here, based on the paper [42], a methodology similar to the PRA is employed,
except that the algorithm operates on a pixel-block basis and finds a single motion-vector for each block.
In order to make the method robust in a noisy environment, a total least squares (TLS) estimation
approach is invoked. Total least squares may be implemented numerically through singular value
decomposition (SVD). Other matrix decomposition techniques, such as eigenvalue decomposition,
have been used in the scientific literature [43].

Throughout the paper, we use the following notation: symbol Im,p denotes a pseudo-identity
matrix of size m× p and Im = Im,m, while symbol 0m,p denotes a m× p all-zero matrix, symbol X>

denotes the transpose of the matrix X, and symbol tr(X) denotes the trace of the square matrix
X, i.e., the sum of its in-diagonal entries. The special orthogonal group is denoted and defined
by SO(m) := {X ∈ Rm×m|X>X = Im, det(X) = 1}. For details on this Lie group, see,
e.g., [44]. Furthermore, the Frobenius norm of a matrix X ∈ Rp×p is denoted and defined by
‖X‖F :=

√
tr(X>X).

2. Helmke–Moore Learning and Advanced Numerical Methods

In the present section, we recall some essential details about the Helmke and Moore (HM) learning
algorithm from [1,45]. Moreover, we survey a first-order and two second-order numerical methods to
implement a learning paradigm formulated as an initial value problem (IVP, also termed the Cauchy
problem) and propose numerical schemes to extend these methods to Riemannian manifolds, of which
Lie groups are instances.

There exists a large variety of numerical methods to solve initial value problems. In order to
limit the computational burden of the learning rules considered in this paper, we considered a Euler
method, a Heun method, and a Runge method (also known as the Runge–Kutta method of the second
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order). These methods were developed to solve initial values problems over the Euclidean space Rm,
although they can be adapted to solve initial value problems over smooth manifolds or Lie groups,
as the group SO(m).

2.1. An HM-Type Neural SVD Learning Algorithm

Denoting as Z ∈ Rm×p a matrix whose SVD is to be computed and as r ≤ min{m, p} the rank of
Z, its singular value decomposition may be written Z = UDV>, where U ∈ Rm×m and V ∈ Rp×p are
(special) orthogonal matrices and D is a pseudo-diagonal matrix that has all-zero values except for
the first r diagonal entries, termed singular values. It is easily checked that the columns of U coincide
with the eigenvectors of the product ZZ>, while V contains the eigenvectors of the self-product Z>Z,
with the same eigenvalues.

The Helmke–Moore algorithm is utilized for training, in an unsupervised way, an artificial neural
network to learn an SVD of a given rectangular matrix. The HM dynamics arises from the maximization
of a specific criterion φW : SO(m)× SO(m)→ R defined as:

φW(A, B) := 2tr(WA>ZB) , (1)

where W ∈ Rp×m is a weighting kernel and we assumed that m > p. The dynamical system,
derived as a Riemannian gradient flow on SO(m)× SO(m), reads:

H := A>ZB ,
Ȧ = A(W>H> − HW) , A(0) = A0 ∈ SO(m),
Ḃ = B(WH − H>W>) , B(0) = B0 ∈ SO(m),

(2)

where an over-dot denotes derivation with respect to the time parameter. The weighting matrix W
has the structure [W1 0p,m−p], where W1 ∈ Rp×p must be diagonal with unequal entries on the main
diagonal [45].

Since the matrix A has size m×m, the matrix Z has size m× p, and the matrix B has size p× p,
then the product matrix H has size m× p.

Whereas the continuous-time versions of the learning algorithms leave the orthogonal group
invariant, this is not true for their discrete-time counterparts, which are obtained by employing
a numerical integration scheme, unless a suitable integration method is put into effect. In the present
case, we may employ a convenient Lie integration method drawn from a manifold-calculus-based
integration theory (see, e.g., the contribution [46] and previous reviews in [47–49]).

2.2. Euler Method in Rm and Its Extension to SO(m)

Consider the following initial value problem:

ẏ = f (t, y), (3)

with f : R× Rm → Rm being a regular function and with the initial condition y(0) = y0 ∈ Rm.
Whenever a closed-form solution to the IVP (3) is out of reach, the simplest numerical scheme to
approximate numerically its solution is the forward Euler method described by the iterative rule:

yn+1 = yn + h f (tn, yn), n > 0, (4)

with y0 known from the initial condition. As a reference for this method and those invoked in the
continuation of the paper, readers might refer to [50]. The constant h > 0 denotes an integration
stepsize and represents the time lapse between each time-node tn = nh and the next. The key idea
behind the above forward Euler method is to estimate the value yn+1 by the slope of the vector field
f (t, y) at the present node through a linear interpolation across the time lapse h. This Euler method
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is asymmetric: it makes use only of the value of the vector field f computed in the leftmost point of
the interval [tn, tn+1]. The right-hand side of the expression (4) coincides with the zeroth and the first
terms of the Taylor series expansion of the function f . The residue owing to truncation (also termed
“truncation error”) is of type O(h2); therefore, this method is of order one.

A learning problem on the special orthogonal group is described by the IVP:

Ẏ = f (t, Y), f : R× SO(m)→ SO(m), (5)

with the initial condition Y(0) = Y0 ∈ SO(m).
Let us recall that a smooth manifold M may be endowed with a manifold exponential map and

by a parallel transport operator:

• Manifold exponential: The exponential map derived from the geodesic associated with the
connection is denoted by exp : TM → M. Given x ∈ M and v ∈ TxM, the exponential of
v at a point x is denoted as expx(v). On a Euclidean manifold M = Rm, expx(v) = x + v;
therefore, an exponential map may be thought of as a generalization of “vector addition” to
a curved space.

• Parallel transport along geodesics: The parallel transport map is denoted by P : M× TM →
TM. Given two points x, y ∈ M, parallel transport from x to y is denoted as Px→y : TxM →
TyM. Parallel transport moves a tangent vector between two points along their connecting
geodesic arc. Given x, y ∈M and v ∈ TxM, the parallel transport of a vector v from a point x to
a point y is denoted by Px→y(v). Parallel transport does not change the length of a transported
vector, namely it is an isometry; moreover, parallel transport does not alter the angle between
transported vectors, namely, given x, y ∈M and a, v ∈ TxM, it holds that 〈Px→y(a), Px→y(v)〉y =

〈a, v〉x, i.e., we say that parallel transport is a conformal map. Formally, on a Euclidean manifold
M = Rm, Px→y(v) = v; therefore, a vector transport may be thought of as a generalization of the
familiar geometric notion of the “rigid translation” of vectors to a curved space.

In the case of a special orthogonal group endowed with its canonical metric (inherited by the
Euclidean metric), these maps read:{

expX(V) := XExp(X>V), (Exponential map)

PX→Y(V) := X
√

X>YX>V
√

X>Y, (Parallel transport operator)
(6)

where X, Y ∈ SO(m), V ∈ TXSO(m), “Exp” denotes a matrix exponential (implemented, for example,
by the function expm in MATLABr),

√
· denotes a matrix square-root (implemented, for example,

by the function sqrtm in MATLABr). Let us recall that a matrix V ∈ TXSO(m) may be rewritten as
V = XΩ, with Ω skew-symmetric and, therefore, that the following simplified expression for the
exponential map may be used:

expX(XΩ) = XExp(Ω). (7)

A rule of thumb to extend the forward Euler method to smooth manifolds is that the sum between
a variable representing a point and a vector field at that point needs to be replaced by the exponential
map applied to the point and to the vector field at that point. As a result, a Euler method on a manifold
SO(m) may be expressed as:

Yn+1 = expYn
(h f (tn, Yn)), (8)

with Y0 known from the initial condition. Likewise, the original forward Euler method, the method (8),
estimates the value of the solution at the temporal node tn+1, namely Yn+1, as the value of the solution
at the node tn interpolated by the short geodesic arc departing from the current point Yn toward the
direction indicated by the vector field f (tn, Yn).
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2.3. Heun and Runge Methods in Rm and Their Extension to SO(m)

The following methods are second-order numerical schemes that may be adopted to solve the
Cauchy problem (3).

Heun’s method reads: 
k1,n := f (tn, yn),

ỹn+1 := yn + hk1,n,

k2,n := f (tn + h, ỹn+1),

yn+1 = yn +
h
2 (k1,n + k2,n),

(9)

where h > 0 denotes again a stepsize (or time lapse between two adjacent time nodes). It is worth
summarizing an interpretation of the equations that describe the Heun method: The quantity k1

represents an estimation of the value of the vector field f at the leftmost point of the time lapse
[tn, tn + h], while the quantity k2 represents an estimation of the value of the vector field f at the
rightmost point of the time lapse [tn, tn + h]. Both k1 and k2 are estimations, in that the expression for
the quantity k1,n uses the value yn that is an estimation of the solution of the Cauchy problem obtained
in the previous iteration, while the expression for k2,n utilizes an estimation of yn+1, indicated by ỹn+1,
based on a linear interpolation from yn in the direction k1,n. The actual estimation of the solution at
tn + h is obtained as a linear interpolation in a direction computed as the arithmetic average between
the directions k1 and k2.

Runge’s method (often denoted as “RK2”) is simpler than Heun’s, although presenting the same
precision order, and is expressed as:

k1,n := f (tn, yn),

yn+1/2 := yn +
h
2 k1,n,

k2,n := f (tn +
h
2 , yn+1/2),

yn+1 = yn + hk2,n.

(10)

The quantity k1 represents again an estimation of the value of the vector field f at the leftmost
point of the time lapse [tn, tn + h], while the quantity k2 represents an estimate of the value of the
vector field f at the midpoint of the time lapse [tn, tn + h]. Both k1 and k2 are estimations, rather than
being exact evaluations. In particular, the expression for k2,n utilizes an estimation of the exact solution
to the Cauchy problem, denoted by ỹn+1/2, based on a linear interpolation from yn in the direction k1,n
extended only to half of a whole step. The actual estimation of the solution at tn + h is obtained as
a linear interpolation, from yn in a direction k2 extended to a whole step.

The above second-order numerical methods may be extended to a smooth manifold by recalling
two simple rules-of-thumb:

• The sum between a variable representing a point on a manifold and a vector field at that point are
replaced by the exponential map applied to the point and to the vector field at that point.

• The sum between two tangent vectors belonging to two different tangent spaces may be carried
out only upon transporting one of the vectors to the tangent space where the other vector lives by
means of parallel transport.

By applying the above rules, it is possible to extend the Heun method and the Runge method
from the Euclidean space Rm to the manifold SO(m).
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Heun’s method on SO(m) may be expressed as:
K1,n := f (tn, Yn) ∈ TYn SO(m),

Ỹn+1 := expYn
(hK1,n),

K2,n := f (tn + h, Ỹn+1) ∈ TỸn+1
SO(m),

Yn+1 = expYn

(
h
2

(
K1,n + PỸn+1→Yn(K2,n)

))
.

(11)

The above extension of the original Heun method was derived by following faithfully Heun’s
concept and by replacing the linear operations with manifold operations. In particular, notice that the
mean direction between K1 and K2 cannot be calculated as 1

2 (K1 + K2) because K1 and K2 belong to
different tangent spaces.

Runge’s method on SO(m) may be expressed as:
K1,n := f (tn, Yn) ∈ TYn SO(m),

Yn+1/2 := expYn

(
h
2 K1,n

)
,

K2,n := f (tn +
h
2 , Yn+1/2) ∈ TYn+1/2 SO(m),

Yn+1 = expYn

(
hPYn+1/2→Yn(K2,n)

)
.

(12)

The interpretation of the equations that constitute Runge’s method on the manifold SO(m) is
completely faithful to the original method.

In the following subsection, the forward Euler method, the Heun method, and the Runge method
are applied to solve the HM learning system of IVPs (2). This application leads to facing at least two
challenges: (1) the HM system is made of two differential equations, which entails the application of
each numerical method twice; this gives rise to a non-univocality in the extension of the equations,
which will then be presented in different versions; (2) the curved space SO(m) may be treated as
a smooth Riemannian manifold and as a Lie group; this gives rise to two different ways to design
numerical methods, which will be explored and discussed in the following, even by the help of
preliminary numerical tests.

2.4. Application of the Euler, Heun, and Runge Method to Solving an HM System

The HM-type learning system to solve is formed by two coupled neural learning
equations, namely: {

Ȧ = −A σ(A>ZBW),

Ḃ = B σ(WA>ZB),
(13)

where the skew-symmetrization operator σ(X) := X> − X has been introduced and where the initial
conditions A(0) = A0 and B(0) = B0 have been fixed.

In the following, we shall outline three different classes of numerical methods to tackle the
learning problem (13), namely the (forward) Euler class, the (explicit second-order) Heun method, and
the (explicit) Runge method (a second-order instance from the general class of Runge–Kutta methods).
For the sake of notation compactness, in the following, we shall make use of the twin vector fields:

f A(A, B) := −A σ(A>ZBW), f B(A, B) := B σ(WA>ZB). (14)

The numerical schemes adopted in this study are first- and second-order explicit. Implicit methods
are overly complex, as they require solving a non-linear problem at every iteration (the computations
involved in the implicit methods may be as complex as the problem they were designed to solve).
Higher order formulations (such as the fourth-order Runge–Kutta method) are often inappropriate in
optimization, because they were designed to provide a highly accurate estimation of the solution to
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an initial value problem at every step, while in optimization, such accuracy would be out of the scope
as the only step that needs accuracy is the final optimization goal.

2.4.1. Forward Euler Method

The Euler method on SO(m) outlined in Section 2.2, applied to solve an HM learning system,
may be expressed as:

Euler:

{
An+1 = expAn

(hA f A(An, Bn)),

Bn+1 = expBn
(hB f B(An, Bn)),

(15)

with hA > 0 and hB > 0 being two different learning stepsizes.

2.4.2. Explicit Second-Order Heun Method

The Heun method outlined in Section 2.3, applied to an HM learning problem on SO(m),
as a manifold, may be expressed as:

Heun, Version 1:



KA
1,n := f A(An, Bn),

Ãn+1 := expAn
(hAKA

1,n),

KA
2,n := f A(Ãn+1, Bn),

An+1 = expAn

(
hA

2

(
KA

1,n + PÃn+1→An
(

KA
2,n

)))
,

KB
1,n := f B(An, Bn),

B̃n+1 := expBn
(hBKB

1,n),

KB
2,n := f B(An, B̃n+1),

Bn+1 = expBn

(
hB

2

(
KB

1,n + PB̃n+1→Bn
(

KB
2,n

)))
.

(16)

It is interesting to observe that the same numerical learning algorithm may be recast in a number
of slightly different ways by operating some tiny variations on the equations. An alternative version to
the original Heun, Version 1 (16) is:

Heun, Version 2:



KA
1,n := f A(An, Bn),

Ãn+1 := expAn
(hAKA

1,n),

KA
2,n := f A(Ãn+1, Bn),

An+1 = expAn

(
hA

2

(
KA

1,n + PÃn+1→An
(

KA
2,n

)))
,

KB
1,n := f B(An+1, Bn),

B̃n+1 := expBn
(hBKB

1,n),

KB
2,n := f B(An+1, B̃n+1),

Bn+1 = expBn

(
hB

2

(
KB

1,n + PB̃n+1→Bn
(

KB
2,n

)))
,

(17)

where the differences have been highlighted. Notice that both versions are explicit numerical schemes.
From a computational burden viewpoint, it is important to underline that the above numerical

algorithms require the repeated calculation of parallel transport that contributes non-negligibly to
increasing the computational complexity of these methods.
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As an alternative, the Heun method may be rewritten without using parallel transport by
composing the partial steps in a different way over the space SO(m), namely:

Heun, Version 3:



KA
1,n := f A(An, Bn),

Ãn+1 := expAn
(hKA

1,n),

KA
2,n := f A(Ãn+1, Bn),

An+1 = An · Ã−1
n+1 expÃn+1

(
h
2 KA

2,n

)
· A−1

n expAn

(
h
2 KA

1,n

)
,

KB
1,n := f B(An+1, Bn),

B̃n+1 := expBn
(hKB

1,n),

KB
2,n := f B(An+1, B̃n+1),

Bn+1 = Bn · B̃−1
n+1 expB̃n+1

(
h
2 KB

2,n

)
· B−1

n expBn

(
h
2 KB

1,n

)
.

(18)

The differences with the Heun method, Version 1 (16), have been highlighted. It is interesting to
observe that, by swapping the order of the steps in An+1 e Bn+1 (1↔ 2), we get:An+1 = �����An · A−1

n expAn

(
h
2 KA

1,n

)
· Ã−1

n+1 · expÃn+1

(
h
2 KA

2,n

)
,

Bn+1 = ����Bn · B−1
n expBn

(
h
2 KB

1,n

)
· B̃−1

n+1 · expB̃n+1

(
h
2 KB

2,n

)
,

(19)

which is computationally lighter compared to the Heun method, Version 3 (18). It is immediate to
verify that Version 3 of the Heun method, further modified by the above equations, will result in being
computationally lighter than the versions requiring parallel transport; therefore, the Heun method
considered in the following preliminary numerical test will be:

Heun, Version 4:



KA
1,n := f A(An, Bn),

Ãn+1 := expAn
(hKA

1,n),

KA
2,n := f A(Ãn+1, Bn),

An+1 = expAn

(
h
2 KA

1,n

)
· Ã−1

n+1 · expÃn+1

(
h
2 KA

2,n

)
,

KB
1,n := f B(An+1, Bn),

B̃n+1 := expBn
(hKB

1,n),

KB
2,n := f B(An+1, B̃n+1),

Bn+1 = expBn

(
h
2 KB

1,n

)
· B̃−1

n+1 · expB̃n+1

(
h
2 KB

2,n

)
,

(20)

2.4.3. Explicit Second-Order Runge Method

The Runge method outlined in Section 2.3, applied to an HM learning problem on SO(m),
as a manifold, may be expressed as:

Runge, Version 1:



KA
1,n := f A(An, Bn),

An+1/2 := expAn

(
hA

2 KA
1,n

)
,

KA
2,n := f A(An+1/2, Bn),

An+1 = expAn

(
hA PAn+1/2→An(KA

2,n)
)

,

KB
1,n := f B(An, Bn),

Bn+1/2 := expBn

(
hB

2 KB
1,n

)
,

KB
2,n := f B(An, Bn+1/2),

Bn+1 = expBn

(
hB PBn+1/2→Bn(KB

2,n)
)

.

(21)



Electronics 2020, 9, 334 9 of 21

The same method may be expressed in a slightly different way, namely by exchanging the order
of adaptation of the variables A and B:

Runge, Version 2:



KB
1,n := f B(An, Bn),

Bn+1/2 := expBn

(
hB

2 KB
1,n

)
,

KB
2,n := f B(An, Bn+1/2),

Bn+1 = expBn

(
hB PBn+1/2→Bn(KB

2,n)
)

,

KA
1,n := f A(An, Bn),

An+1/2 := expAn

(
hA

2 KA
1,n

)
,

KA
2,n := f A(An+1/2, Bn),

An+1 = expAn

(
hA PAn+1/2→An(KA

2,n)
)

.

(22)

The last version of the HM-type learning systems is obtained by regarding the curved space
SO(m) as a Lie group with Lie algebra so(m), which leads to the following numerical method:

Runge, Version 3:



TA
1,n := −σ(A>n ZBnW) ∈ so(m),

An+1/2 := AnExp
(

h
2 TA

1,n

)
,

TA
2,n := −σ(A>n+1/2ZBnW) ∈ so(m),

An+1 = AnExp
(

h
6 TA

1,n +
h
3 TA

2,n

)
,

TB
1,n := σ(WA>n ZBn) ∈ so(m),

Bn+1/2 := BnExp
(

h
2 TB

1,n

)
,

TB
2,n := σ(WA>n ZBn+1/2) ∈ so(m),

Bn+1 = BnExp
(

h
6 TB

1,n +
h
3 TB

2,n

)
.

(23)

Even this version of the numerical learning scheme does not require using the computationally
intensive parallel transport. The highlighted update equations were drawn from the survey [51].

2.5. Preliminary Pyramidal Numerical Tests on the HM Learning Methods

This subsection illustrates the results of a pyramidal comparison of the above learning
algorithms in order to find out which algorithm is more convenient from a computational viewpoint,
for comparable learning performances. The numerical experiments concerned the computation of the
SVD of random matrices Z. The numerical experiments discussed in this subsection were performed
on an Intelr i5-6400T 4-Core CPU, 2.2 GHz clock, 8 GB RAM machine and were coded in a MATLABr

R2017b environment (we used non-parallel programming in the experiments). In the following
experiments, the learning stepsizes hA and hB were set to a common value denoted by h. Moreover,
we adopted the following criterion to stop the iteration based on the objective function (1):

φW(An+1, Bn+1)− φW(An, Bn) 6 τ, (24)

where τ denotes a threshold. The size of the unknown-matrix B was set to p := 3 in all experiments,
and the sub-matrix W1 explained in the Section 2.1 was set to diag(3, 2, 1). The size m of the matrix B
took values in {9, 25, 225} (these specific values would arise in the computation of the optical-flow of
720× 720 pixels frames, as will be shown in Section 4.2). In all experiments, the initial matrices were
chosen as A0 := Im and B0 := I3. For comparison purposes, the SVD of a matrix Z was also computed
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by MATLAB’s SVD engine, whose output triple is denoted by (U, ·, V). As objective measures of the
quality of the learned SVD factors, we used the following figures of demerit:

ωA(An) := ‖A>n An − Im‖F, (Non-orthogonality)

ωB(Bn) := ‖B>n Bn − I3‖F,

εA(An) := ‖|A>n U| − Im‖F, (Discrepancy)

εB(Bn) := ‖|B>n V| − I3‖F,

(25)

where | · | denotes an entry-wise absolute value of a matrix. Both numerical orthogonality and
discrepancy between the learned SVD and the MATLAB-computed reference SVD were expected to
result in being as close as possible to zero.

The results of the first experiment, which was meant to compare the performances of the Heun
method in its Versions 1 and 4, are summarized in Table 1. The random matrix Z was generated
entry-wise as a set of random numbers uniformly distributed in the interval [0, 1]. This choice
corresponded to a normalized pixel luminance, and the uniform distribution was motivated by the
fact that a single pixel location may in principle take any luminance value. In the low-dimensional
cases, h := 0.05, while in the higher dimensional case, h := 0.005. In all cases, τ := 10−5. The acquired
runtimes showed that Version 4 was much lighter than Version 1, a phenomenon that became more
apparent as the size of the matrix A increased.

Table 1. Results of a comparison between the runtimes (in seconds) of the Heun method in its Versions
1 and 4.

Method
Size of A m := 9 m := 25 m := 225

Heun, Version 1 0.3836 0.3468 34.5559
Heun, Version 4 0.2264 0.1148 9.1531

A graphical comparison of the values taken by the discrepancies defined in (25) and of the learning
criterion (1) during learning is displayed in Figure 1. In this case, m := 9. The discrepancy and learning
curves showed that, as concerns the learning performances, no meaningful differences between the
two versions of the HM-type learning algorithms could be appreciated.

Figure 1. Results of a comparison of the values taken by the performance indexes during learning by
the Heun method in its Versions 1 and 4.
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The results of this experiment entailed that the Heun method, Version 4 was the preferable version
in the Heun class.

The results of the second experiment, which was meant to compare the performances of the Runge
method in its Versions 1 and 3, are summarized in Table 2. In the low-dimensional cases, h := 0.05,
while in the higher dimensional case, h := 0.005. In all cases, τ := 10−5. The acquired runtimes
showed that Version 3 was lighter than Version 1.

Table 2. Results of a comparison between the runtimes (in seconds) of the Runge method in its Versions
1 and 3.

Method
Size of A m := 9 m := 25 m := 225

Runge, Version 1 0.4536 0.8816 65.1238
Runge, Version 3 0.3645 0.5274 21.7729

A graphical comparison of the values taken by the discrepancies and of the learning criterion
during learning is displayed in the Figure 2. In this case, m := 9. The discrepancy and learning curves
showed that, as concerns the learning performances, Version 1 converged only slightly more rapidly to
the expected solutions.

Figure 2. Results of a comparison of the values taken by the performance indexes during learning by
the Runge method in its Versions 1 and 3.

The results of this experiment entailed that the Runge method, Version 3 was the preferable
version in the Runge class.

The results of the last experiment of this subsection, which was meant to compare the
performances of the best Runge method and of the best Heun method to the performances of the
Euler method, are summarized in Table 3. In the low-dimensional cases, h := 0.05, while in the higher
dimensional case, h := 0.005. In all cases, τ := 10−5. The acquired runtimes revealed that the Euler
method was the lightest in terms of computational complexity.

A graphical comparison of the values taken by the discrepancies and of the learning criterion
during learning is displayed in Figure 3. In this case, m := 225. The discrepancy and learning curves
showed that, as concerns the learning performances, the Euler method-based HM learning algorithm
and the Heun method-based learning algorithm converged more rapidly to the expected solutions.
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Table 3. Results of a comparison between the runtimes (in seconds) of the Heun method, Version 4, the
Runge method, Version 3, and the Euler method.

Method
Size of A m := 9 m := 25 m := 225

Heun, Version 4 0.2033 0.3219 20.0415
Runge, Version 3 0.2060 0.3601 26.3659

Forward Euler 0.0740 0.1096 8.5624

Figure 3. Results of a comparison of the values taken by the discrepancies and the learning criterion
during learning by the Heun method, Version 4, the Runge method, Version 3, and the Euler method.

A graphical comparison of the values taken by the non-orthogonality figures defined in (25)
during learning is displayed in Figure 4. In this case, m := 225. The orthogonality curves showed that
the Euler method-based HM was unable to keep the same numerical precision of the Heun-based and
of the Runge-based HM learning algorithms, the former being a first-order method and the latter two
second-order methods. However, all these algorithms kept the non-orthogonality figures at very low
values and stabilized after learning completion.

Figure 4. Results of a comparison of the values taken by the discrepancies and the learning criterion
during learning by the Heun method, Version 4, the Runge method, Version 3, and the Euler method.
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The results of these three experiments revealed that the Euler method to implement a
Helmke–Moore learning paradigm guaranteed an excellent trade-off between computational
complexity and numerical precision.

3. Reduced Euler Method

In some applications, such as optical-flow estimation recalled in the next Section 4, only the matrix
B is relevant. In view of the optical-flow application discussed in the next section, assume that B is
a 3× 3 factor of the singular value decomposition of a data matrix Z. Notice that, in general, the matrix
A has a much bigger size than the matrix B; therefore, it would be certainly convenient to express
the matrix A as a function of the matrix B and to express the learning system (2) only in terms of the
variable matrix B. The following arguments may be extended easily to the general case that B has
different sizes.

3.1. Derivation of a Reduced Euler Method

The HM-type learning system (2) in the form (13) admits, as stable configurations, all pairs
(A, B) ∈ SO(m)× SO(3) such that: {

σ(A>ZBW) = 0,

σ(WA>ZB) = 0.
(26)

Therefore, one of these conditions may be used to express the matrix variable A in terms of the
matrix variable B. In particular, the first condition, in plain form, reads:

W>(A>ZB)> − A>ZBW = 0. (27)

The above equation is equivalent to (W>B>Z>)A − A>(ZBW) = 0. Defining K :=
W>B>Z>, Equation (27) takes the form:

KA− A>K> = 0, (28)

which is to be solved in A. Let us observe that the matrix K has size 9× 9 and that its last six rows are
zero, while the matrix A has size 9× 9 and that its last six columns do not influence the result. Let us
partition the matrices K and A as follows:

K =

[
K1

0

]
, A =

[
A1 A2

]
, (29)

with K1 is 3× 9, A1 is 9× 3, and A2 is 9× 6. The matrix product KA exhibits the structure:

KA =

[
K1

0

] [
A1 A2

]
=

[
K1 A1 K1 A2

0 0

]
. (30)

According to the condition (28), the product KA needs to result in a symmetric matrix; hence,
the product K1 A1 needs to be symmetric, while the product K1 A2 needs to be zero. Since the matrix
A2 plays no role in the product KA, it is computationally convenient to turn down the orthogonality of
the matrix A and to set A2 = 0m×n, while the columns of the sub-matrix A1 still need to be mutually
orthogonal and unit-norm. Since K1 A1 is symmetric, let us set K1 A1 =: S, where S is a 3× 3 symmetric
matrix to be determined. To determine the unknown matrix S, let us rewrite the last equation by the
ansatz K>1 = A1S, from which it follows that:

K1K1> = SA>1 A1S = S2 ⇒ S =
√

K1K>1 , (31)
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therefore:
K>1 = A1

√
K1K>1 ⇒ A1 = K>1

(
K1K>1

)−1/2
. (32)

The matrix K1 is defined as a sub-matrix of K, which, in turn, is a function of the matrix B (and
depends on the weight matrix W and on the data matrix Z). Hence, the function:

F(B) :=
[
K>1 (B)

(
K1(B)K>1 (B)

)−1/2
0
]

, (33)

may be used to reduce the two update rules in the Euler method (15) to the single update rule:{
f̃ (B) := Bσ(WF>(B)ZBW),

Bn+1 = expBn
(h f̃ (Bn)),

(34)

with h > 0 and with the only initial condition B0. Notice that the inverse matrix square root may
be expressed in terms of the matrix exponential Exp and the matrix logarithm Log as X−1/2 =

Exp
(
− 1

2 Log(X)
)

. The algorithm (34) will be referred to as the reduced Euler method.

3.2. Numerical Comparison of the Euler Method and Its Reduced Version

The results of a comparison of the performances of the forward Euler method (15) and of the
reduced Euler method (34) to implement an HM learning paradigm are summarized in Table 4. In the
low-dimensional cases, h := 0.05, while in the higher dimensional case, h := 0.005. In all cases,
τ := 10−5. The acquired runtimes showed that the reduced Euler method was way lighter than the
original Euler method, a phenomenon that became more apparent as the size m of the m× 3 matrix
Z increased.

A graphical comparison of the values taken by the figures of demerit defined in (25) and of the
learning criterion (1) during learning is displayed in Figure 5. In this case, m := 9. The discrepancy
and learning curves showed that, as concerns the learning performances, no meaningful differences
between the two versions of the HM-type learning algorithms can be appreciated.

The results of this experiment confirmed that the reduced Euler method was both effective and
efficient to implement the HM learning paradigm.

Figure 5. Results of a comparison of the figures of demerit and of the learning criterion for the forward
Euler method and for the reduced Euler method.
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Table 4. Results of a comparison between the runtimes (in seconds) for the forward Euler method and
for the reduced Euler method.

Method
Size m m := 9 m := 25 m := 225

Forward Euler 0.2003 0.1190 7.7378
Reduced Euler 0.0833 0.0441 0.4350

4. Experiments on Optical Flow Estimation by a Helmke–Moore Neural Learning Algorithm

In this section, we recall the notion of optical-flow estimation by a total least squares method
from [42] and illustrate the behavior of the devised learning algorithm by means of numerical
experiments performed on a recorded video sequence.

4.1. Optical Flow Estimation by Total Least Squares

Let us consider a gray-scale video sequence {I (x, y, q)}q, where I denotes the scalar image
intensity, the pair (x, y) denotes the coordinate pair of any pixel, and q denotes the frame index.

During motion, any pixel moves from frame q and position (x, y) to frame q + ∆q at position
(x + ∆x, y + ∆y). The fact that the pixel intensity has moved over the image support may be formally
expressed by the optical-flow conservation equation, namely:

I (x− ∆x, y− ∆y, q) = I (x, y, q + ∆q). (35)

On the basis of the above conservation law, it is possible to estimate the motion of any pixel
within the sequence {I (x, y, q)}q. In fact, let us define ∆I (x, y, q) := I (x, y, q + ∆q)−I (x, y, q).
An application of the Taylor series expansion gives:

∆I (x, y, q) = I (x− ∆x, y− ∆y, q)−I (x, y, q) = −Ix(x, y, q)∆x−Iy(x, y, q)∆y + residual, (36)

where Ix and Iy denote the partial derivatives of the image function along the vertical and the
horizontal direction, respectively, and the term “residual” denotes the sum of higher order terms in
the Taylor expansion of the image function and the sum of random disturbances occurring in the
recording of a video sequence, while the vertical and horizontal displacements (∆x, ∆y) were supposed
small enough for the above truncated Taylor series to represent accurately the optical-flow change.
The latter hypothesis was equivalent to assuming slow motion or, equivalently, sufficiently high-rate
image sampling.

As mentioned, we made the solid-block motion assumption, namely the above equation was
supposed to hold true, with the same values of displacements, for a set of pixels located within the
rectangular patch described by x ∈ [x1, xNx ] and y ∈ [y1, yNy ], where integers Nx and Ny denote the
block-size. On the basis of these considerations, it was possible to write the resolving system for any
block between frames q and q + ∆q, that is:

I (x1, y1, q + ∆q)−I (x1, y1, q) = −Ix(x1, y1, q)∆x−Iy(x1, y1, q)∆y ,

I (x2, y1, q + ∆t)−I (x2, y1, q) = −Ix(x2, y1, q)∆x−Iy(x2, y1, q)∆y ,

I (x3, y1, q + ∆q)−I (x3, y1, q) = −Ix(x3, y1, q)∆x−Iy(x3, y1, q)∆y ,
...

I (x1, y2, t + ∆q)−I (x1, y2, q) = −Ix(x1, y2, q)∆x−Iy(x1, y2, q)∆y ,
...

I (xNx , yNy , q + ∆q)−I (xNx , yNy , q) = −Ix(xNx , yNy , q)∆x−Iy(xNx , yNy , q)∆y ,

where high-order terms were neglected.
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By defining a displacement vector v := [∆x ∆y]> and upon defining a matrix L ∈ RNx Ny×2 and
a vector c ∈ RNx Ny , the above system casts into Lv = c. This is an over-determined linear system
of Nx · Ny equations in two unknowns, which may be solved by the help of a total least squares
technique [52].

The TLS approach to solving an over-determined system of linear equations is based on the
singular value decomposition (SVD) technique [53,54]. The resulting procedure is stated in Algorithm 1.

Algorithm 1 Total least squares based algorithm to estimate a displacement vector.

Define the Nx Ny × 3 matrix Z = [L c];

Compute the SVD (U, D, V) of Z, with V ∈ SO(3);

Define the block-partition V =

 · · · V12

· · · V22

 with V12 ∈ R2×1;

Estimate a displacement vector v as −V12V−1
22 .

It is interesting to underline that, depending on the size of each block, the data matrix Z whose
SVD is to be calculated may be large sized. Moreover, for later considerations, it is important to
underline that the only factor of an SVD decomposition that plays an effective role in motion estimation
is V.

4.2. Numerical Experiments on Optical-Flow Learning

In order to test the capability of the HM learning paradigm in optical-flow estimation, a video
was realized and saved in MP4 format. The pre-processing of the images consisted of applying
a filter after the subdivision of the frames in sub-windows: every gradient matrix was examined and
then the windows, which presented the null gradient, were excluded from further processing in the
successive steps as they corresponded to block of pixels that were not subjected to any movement.
In the post-processing, after the velocities along the x- and y-axes were calculated by using an HM
learning algorithm, their norms were compared to a threshold, and all the windows that presented
a velocity norm larger than the threshold were ignored in the optical-flow estimation as they were
considered to correspond to noisy pixels. These filters were built to clean the image from noise created
by the environment and by the camera, but they also caused a small loss of information, which
could be neglected. In the experiments summarized in the present subsection, the following setting
was adopted:

• The optical-flow was estimated between Frame 130 and Frame 135.
• The original colored still images drawn from the two considered frames were converted from

RGB to gray scale using the luminance formula 0.2989R + 0.5870G + 0.1140B as prescribed by the
recommendation ITU-R BT.601-7 [55].

• The threshold to stop iteration was set to τ := 0.001.
• The learning stepsizes were set as hA = hB = h := 0.0005.
• Given the frame size of 720× 720, each frame was subdivided into windows of size 3× 3, 5× 5, or

15× 15 pixels (corresponding to 57,600 matrices of size 9× 3 to compute the SVD, 20,736 matrices
of size 25× 3 to compute the SVD, and to 2304 matrices of size 225× 3 to compute the SVD,
respectively).

• Computing platform: Intelr i7-8550U 4-Core CPU, 1.8 GHz clock, 16 GB RAM. Coding platform:
MATLABr R2018b.

The computational complexity related to the estimation of the optical-flow between two frames
depended on the number of sub-windows and on their size; therefore, it was interesting to test the HM
learning algorithms in different instances.
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With reference to the HM learning paradigm, in the present application, it holds that m := Nx · Ny

(which depends on the size of a image’s window) while p := 3 (fixed). Considering the block

decomposition H =

[
H1

· · ·

]
, with H1 of size 3× 3, the product WH may be simplified as W1H1, while

the product HW may be computed as the composite matrix [HW1 0NxNy,NxNy−3]. Table 5 shows the
results of a comparison of runtimes taken to estimate the optical-flow between two frames by the
forward Euler method-based HM learning paradigm and the reduced Euler method-based algorithm.

Table 5. Comparison of runtimes (in seconds) to compute the optical-flow between two frames by the
forward Euler method and the reduced Euler method.

Window Size
Method Forward Euler Method Reduced Euler Method Time Saving (%)

3× 3 1833 907 50.52%
5× 5 1177 606 48.51%

15× 15 15,243 241 98.42%

It is very interesting to observe how the computational complexity of the forward Euler method
increased with the size of the sub-windows, while the complexity of the reduced Euler method showed
an opposite trend. The time saving afforded by the reduced Euler method ranged from about 50% for
low-dimensional windows to about 98% for high-dimensional windows.

Figure 6 illustrates the results of optical-flow estimation when the windows size was set to 3× 3.
Figure 7 illustrates the results of optical-flow estimation when the windows size was set to 5× 5.
Figure 8 illustrates the results of optical-flow estimation when the windows size was taken as

15× 15.
The estimation obtained through the reduced Euler method seemed cleaner and free of artifacts,

which may denote a stronger robustness against noise.

Figure 6. Results of optical-flow estimation when the windows size was set to 3× 3.

Figure 7. Results of optical-flow estimation when the windows size was set to 5× 5.
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Figure 8. Results of optical-flow estimation when the windows size was set to 15× 15.

5. Conclusions

The aim of this paper was to present two first-order (forward Euler and reduced Euler)
and two second-order (Heun and Runge) numerical learning methods to learn the SVD of large
rectangular matrices.

We recalled the Helmke–Moore learning paradigm to estimate the SVD of a given rectangular
matrix, which was expressed by two coupled differential equations on the special orthogonal group.
Taking the move from classical numerical calculus methods to solve ordinary differential equations,
we suggested several numerical schemes to extend these classical methods to the manifold of special
orthogonal matrices.

The resulting methods were tested numerically against each other in a pyramidal comparison in
order to determine their merits and demerits in terms of computational complexity and effectiveness
in computing the SVD. Observing that, for total least-squares-based optical-flow estimation, only one
among the three SVD factors was necessary, a further reduced method was developed and tested
against its non-reduced counterpart.

The conclusion of the experimental tests was that the estimation obtained through the reduced
Euler method looked clean and free of artifacts, which may suggest robustness against noise and that
the time saving of the reduced Euler method with respect to the forward Euler method increased
noticeably when the size of the sub-windows increased.
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