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Abstract: High-power switching applications, such as thyristor valves in a high-voltage direct current
converter, can use 4H-SiC. The numerical simulation of the 4H-SiC devices requires specialized
models and parameters. Here, we present a numerical simulation of the 4H-SiC thyristor on an
N+ substrate gate current during the turn-on process. The base-emitter current of the PNP bipolar
junction transistor (BJT) flow by adjusting the gate potential. This current eventually activated a
regenerative action of the thyristor. The increase of the gate current from P+ anode to N+ gate also
decreased the snapback voltage and forward voltage drop (Vf). When the doping concentration
of the P-drift region increased, Vf decreased due to the reduced resistance of a low P-drift doping.
An increase in the P buffer doping concentration increased Vf owing to enhanced recombination at the
base of the NPN BJT. There is a tradeoff between the breakdown voltage and forward characteristics.
The breakdown voltage is increased with a decrease in concentration, and an increase in drift layer
thickness occurs due to the extended depletion region and reduced peak electric field.
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1. Introduction

Power devices can be used to deliver power with varying voltage, current, and frequency [1,2].
The on-resistance and leakage current of an ideal power device is zero, and the resistance of power
semiconductor devices should be low when on and high when off. Such devices must survive high
voltages and inductive energy. The on-state resistance and off-state leakage currents mean that power
devices consume electricity as heat and other forms of energy. A thyristor [3] is a power device that
passes high currents with a lower on-resistance than metal-oxide-semiconductor field-effect transistors,
bipolar junction transistors (BJTs), and insulated gate bipolar transistors. Thyristors comprise four
PNPN layers and three electrodes, namely the anode, gate, and cathode, where NPN and PNP BJTs are
connected. The sum of the current gains of two BJTs increases to one with the application of a gate
current pulse, which causes the regenerative action of the thyristor to onset and an on-current flow that
is larger than that of other transistor devices. The abrupt increase in the on-current induces a snapback
phenomenon, or negative differential resistance in the forward current–voltage.

Conventional Si-based power devices are restricted by power loss and cell density due to material
limitations. To address this problem, wide band gap materials such as GaN, diamond, and 4H-SiC
have been introduced. Of these wide band gap materials, 4H-SiC is the only one that forms a natural
SiO2 oxide, or can support the growth of an SiO2 dielectric layer through conventional thermal
oxidation [4–6]. The strong chemical bond between Si and C results in a wide band gap and high
breakdown field [7]. The energy band gap of 4H-SiC is 3.26 eV, which is three times greater than that
of Si (1.12 eV). The wide band gap results in a low intrinsic carrier concentration, even at elevated
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temperatures. This is a critical advantage for high-temperature power devices. The breakdown field
of 4H-SiC with a doping concentration of 1016 cm−3 is 2.8 MV cm−1, which is greater than that of Si
(0.3 MV cm−1). The high breakdown field significantly reduces channel on-resistance, as the same
breakdown voltage can be achieved for a significantly thinner low-doped drift layer. The thermal
conductivity of 4H-SiC is 3.3–4.9 W cm−1 K−1, which is also greater than that of Si, which is 1.4–1.5 W
cm−1 K−1. Therefore, 4H-SiC is well-suited for use in power switches [8–14]. Recently, various research
results related to the SiC power devices have been published. The 10 kV SiC pin diode [11], 11 kV
SiC merged pin-Schottky diode [12], SiC-based solid state circuit breaker [13], and intelligent control
using SiC metal-oxide-semiconductor field-effect transistor or reduced electromagnetic interference
generation [14] were reported.

The high on-current of the thyristor is complemented by the excellent material properties
of 4H-SiC, which can further improve device performance. 4H-SiC thyristors demonstrate higher
power-conversion efficiency for power switches in high-voltage direct current (DC) transmission [15–17].
The turn-off characteristics of 4H-SiC thyristors with gate electrodes on the P- or N- base have been
simulated [18]. Additionally, the DC and switching-power loss [19] and high-temperature electrical
characteristics [20] have been reported. Hybrid metal-oxide-semiconductor and thyristor devices,
emitter turn-off thyristors have improved electrical characteristics [21–24]. A 12.7 kV ultrahigh-voltage
4H-SiC thyristor has been introduced [25]. A 1 × 1 cm2 4H-SiC thyristor chip was demonstrated for
the first time with a breakdown voltage of 1770 V, and a forward voltage drop (Vf) of 4 V at 100 A [26].
Junction termination extension technology for high-voltage 4H-SiC thyristors has been reported [27–29].
For the numerical design of the 4H-SiC thyristors, specialized models and parameters should be taken
into account. Long simulation times and convergence errors also should be improved. The gate current
of the 4H-SiC thyristor is still important to reduce power loss and to avoid undesirable current flow
into the driver circuit.

In this study, we investigated the gate current and snapback of the 4H-SiC thyristor on an N+

substrate. The base-emitter current of the PNP BJT was important to turn on the thyristor which
was closely related to the gate potential. The decrease of the gate current from P+ anode to N+ gate
also prevented turning on the thyristor by increasing snapback voltage. This also increased the Vf.
We used a two-dimensional numerical simulation to extract the electrical characteristics of the 4H-SiC
thyristor [30].

2. Numerical Methods

The 4H-SiC thyristor comprises PNP and NPN BJTs. Figure 1 presents a cross-section of a 4H-SiC
thyristor design that has been studied extensively. The device features three electrodes, namely the
anode, gate, and cathode. The anode and gate were located on the top of the device, and the cathode
was fabricated on the bottom. The PNP BJT comprised a P+ anode (emitter), N base, and P-drift
(collector). The NPN BJT comprised an N+ gate (collector), P-drift (base), and N+ cathode (emitter).
If the two BJTs were turned on with a pulsing gate current, the sum of the current gains was one, and
the regenerative action of the 4H-SiC thyristor commenced.

The 4H-SiC thyristor was designed on the N+ substrate because it is difficult to dope a P+ substrate
highly with current technology. The epitaxy can be used to grow a P+ anode/N base/low-doped P-drift
region/P buffer on N+ substrate. The drift layer sustained the breakdown. The doping concentration of
P buffer was generally higher than that of the P-drift so that it determined the electric field distribution
of the reverse-biased P-drift/P buffer/N+ cathode junction. The P buffer also increased recombination
at the NPN BJT base. The N+ gate can be fabricated using ion implantation and activation after mesa
etching. It is noted that our device was asymmetric. Figure 2 shows simulated depth profiles of the
ion implantation for N+ and P+ junctions with various energies and doses. We used the Monte Carlo
method of the Silvaco Athena tool [30]. For each N+ and P+ profiles, nitrogen and aluminum were
used with 4◦ tilt. The both profiles were designed for target concentration of 1019 cm−3 and depth of
1 µm, respectively.
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Figure 1. Cross-section of the 4H-SiC thyristor.

Electronics 2020, 9, x FOR PEER REVIEW 3 of 11 

 

The distance between the P+ anode and N+ gate, lspace, was optimized at 10 μm, as a built-in 
potential cannot be established between the P+ anode (emitter) and N base of a PNP BJT if lspace is 
short. The parameters tdrift and Ndrift represent the thickness and doping concentration of the P-drift 
region, respectively. The P+ anode and N+ gate were both 1-μm-long. The thickness and junction 
depth of the P+ anode and N+ gate were 2.5 and 1.0 μm, respectively. An ohmic contact was formed 
by doping the P+ anode, N+ gate, and N+ cathode to a concentration of 1019 cm–3. The N base of the 
P-drift region was fabricated with a doping concentration of 7 × 1016 cm–3 to a depth of 2.5 μm. The 
doping concentration of the P buffer below the P-drift region was 3 × 1016 cm–3 to a thickness of 2.5 
μm. Finally, the pulsing gate current was used to turn on the PNP BJT, and to trigger the regenerative 
action of the thyristor. 

 
Figure 1. Cross-section of the 4H-SiC thyristor 

 
(a) 

 
(b) 

Figure 2. Simulated depth profiles of (a) nitrogen for N+ junction and (b) aluminum for P+ junction 

Atlas TCAD software (Silvaco) was used for the numerical simulation [30]. The numerical 
simulation environment is critical for the generation of accurate results with reasonable calculation 
times. Several physical models of analytic concentration-dependent mobility (ANALYTIC) [31,32], 
field-dependent mobility (FLDMOB) [33], Shockley–Read–Hall recombination (SRH) [34,35], Auger 
recombination (AUGER) [36], and band gap narrowing (BGN) [37] were used in this work. These 
models can be used to calculate the field, doping concentration, and temperature-dependent mobility 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
1015

1016

1017

1018

1019

1020

N
 C

on
ce

nt
ra

tio
n 

(c
m

-3
)

Depth (μm)

 15keV, 3X1013 cm-2

 50keV, 6X1013 cm-2

 100keV, 8X1013 cm-2

 170keV, 9X1013 cm-2

 250keV, 1X1014 cm-2

 350keV, 1.2X1014 cm-2

 500keV, 1.3X1014 cm-2

 700keV, 1.6X1014 cm-2

 950keV, 1.8X1014 cm-2

 Total

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
1015

1016

1017

1018

1019

1020

A
l C

on
ce

nt
ra

tio
n 

(c
m

-3
)

Depth (μm)

 15keV, 1X1013 cm-2

 40keV, 5X1013 cm-2

 120keV, 1X1014 cm-2

 250keV, 1.6X1014 cm-2

 450keV, 2X1014 cm-2

 700keV, 2.8X1014 cm-2

 1040keV, 3.5X1014 cm-2

 Total

Gate current 

N base 4H-SiC 

Figure 2. Simulated depth profiles of (a) nitrogen for N+ junction and (b) aluminum for P+ junction

The distance between the P+ anode and N+ gate, lspace, was optimized at 10 µm, as a built-in
potential cannot be established between the P+ anode (emitter) and N base of a PNP BJT if lspace is short.
The parameters tdrift and Ndrift represent the thickness and doping concentration of the P-drift region,
respectively. The P+ anode and N+ gate were both 1-µm-long. The thickness and junction depth of the
P+ anode and N+ gate were 2.5 and 1.0 µm, respectively. An ohmic contact was formed by doping
the P+ anode, N+ gate, and N+ cathode to a concentration of 1019 cm−3. The N base of the P-drift
region was fabricated with a doping concentration of 7 × 1016 cm−3 to a depth of 2.5 µm. The doping
concentration of the P buffer below the P-drift region was 3 × 1016 cm−3 to a thickness of 2.5 µm.
Finally, the pulsing gate current was used to turn on the PNP BJT, and to trigger the regenerative action
of the thyristor.

Atlas TCAD software (Silvaco) was used for the numerical simulation [30]. The numerical
simulation environment is critical for the generation of accurate results with reasonable calculation
times. Several physical models of analytic concentration-dependent mobility (ANALYTIC) [31,32],
field-dependent mobility (FLDMOB) [33], Shockley–Read–Hall recombination (SRH) [34,35], Auger
recombination (AUGER) [36], and band gap narrowing (BGN) [37] were used in this work. These
models can be used to calculate the field, doping concentration, and temperature-dependent mobility
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and current. The lifetime of electrons and holes in the P-drift region was 10−7 s, respectively, and
a resolution of 128-bit was selected for precise simulation. The numerical models did not converge
easily owing to the negative resistance region of the thyristor. Therefore, an automatic curve tracing
algorithm (CURVETRACE) was used to ensure convergence and determine the snapback mechanism
of the 4H-SiC thyristor [38]; the algorithm was based on a dynamic load-line technique, in which the
boundary conditions were adapted as the process progressed. The algorithm switched automatically
from voltage to current boundary conditions, and vice versa. The snapback effect was only observed
with the assistance of this algorithm.

3. Results

The electrical characteristics of the 4H-SiC thyristor were investigated. The anode voltage was
swept in the positive direction after the gate voltage was incremented to a target value. The cathode
voltage was zero. The snapback of the thyristor was defined as the anode voltage at which the
resistance of the I–V characteristics changed from a positive value to a negative one. Figure 3 shows
the simulated anode current of the 4H-SiC thyristor as the gate voltage was varied from 0 to −3 V.
The concentration, Ndrift, was 5 × 1014 cm−3 and the thickness, tdrift, was 10 µm. The current-voltage
characteristics of the 4H-SiC pin diode formed at the P+ anode/P-drift/P buffer/N+ cathode junctions
were also included. The doping concentration and geometry of the pin diode and thyristor were the
same when the N base, N+ gate, and gate were not considered in the pin diode. Lower gate voltage
resulted in a forward-biased P+ anode/N+ gate junction at lower anode voltage. Therefore, as the
gate voltages decreased from 0 to −3 V, the anode current-anode voltage characteristics shifted in
the negative direction. The thyristor Vf at 100 A cm−2 were 2.99, 2.05, 1.05, and 0.06 V at the gate
voltages of 0, −1, −2, and −3 V, respectively. We also increased the gate voltage from 0 to 5 V as shown
in Figure 4. The snapback was clearly seen in the anode current-voltage characteristics under the
high current-density scale. When the gate voltage increased from 0 to 5 V, the anode current-voltage
characteristics shifted in the positive direction. The thyristor snapback voltage for gate voltages of 0, 1,
2, 3, 4, and 5 V was 2.9, 3.9, 4.9, 5.9, 6.9, and 7.9 V, respectively. The gate voltage determined the PNP
BJT base voltage, and the BJT could be turned on with the low gate voltage. The high gate current
from P+ anode to N+ gate enhanced the regenerative action of the thyristor. This also decreased the
thyristor Vf. We also considered the built-in potential of the PN junction. The Si and 4H-SiC PN
junction potential was approximately 0.7 and 3 V, respectively, because the band gap of Si and 4H-SiC
is 1.12 and 3.26 eV, respectively.

The carrier lifetime was crucial to the thyristors for conductivity modulation during on-state.
The forward anode current of the 4H-SiC thyristor with the carrier lifetime from 10−9 to 10−6 s is
shown in Figure 5. The increase of the carrier lifetime increased the on current due to the enhanced
conductivity modulation. We also compared the forward I–V characteristics with or without incomplete
ionization [39]. As expected, the incomplete ionization model (INCOMPLETE) lowered the doping
concentration and increased the Vf at 200 A cm−2 from 3.92 to 3.99 V at 300 K.
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4. Discussion

The gate current-anode voltage characteristics include the on-state current flow when a pulsed
gate current is used to turn on the device. Figure 6 shows the simulated gate current of the 4H-SiC
thyristor as the gate voltage was varied from 0 to 5 V. For zero gate voltage, the gate current was
negative as the anode voltage was increased, which indicates a significant current from the P+ anode to
the N+ gate to bring the thyristor into conduction mode. In contrast, a positive gate current represents
carrier injection from the N+ gate to the P-drift region of the NPN BJT. This current indicates that
the positive gate voltage prevents triggering the regenerative action of the thyristor. The decrease
in the gate current from the P+ anode to the N+ gate increased both the snapback voltage and Vf.
The current flow was verified, as shown in Figure 7. The scale colors indicate the total current density
in logarithmic scale. The two operating points of Figure 7 are also included in the gate current-anode
voltage characteristics shown in Figure 6. A 1 V bias was applied to the device gate, and a vertical
current flow was observed from gate to cathode for an anode bias of 4.08 V, as shown in Figure 7a.
The lateral current flow from anode to gate for a 4.94 V anode bias is shown in Figure 7b.
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Figure 7. Simulated current flow in logarithmic scale (a) from the gate to cathode for a 4.08 V anode bias,
and (b) from anode to gate for a 4.94 V anode potential. The doping concentration (Ndrift), thickness
(tdrift), gate-cathode voltage, and high-level injection carrier lifetime (tau_HL) were 5 × 1014 cm−3, 10 µm,
1 V, and 10−7 s respectively.
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We also simulated the cathode current-cathode voltage characteristics as shown in Figure 8.
The cathode voltage was swept in the negative direction after the gate voltage was changed to a target
value. The anode voltage was zero. The gate voltage of −3 V caused the forward biased P+ anode/N+

gate which induced the current drive of the PNP BJT and thyristor, respectively. When the gate voltage
was −2, −1, or 0 V, the 4H-SiC thyristor cannot be triggered.
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Figure 8. Simulated cathode current-cathode voltage characteristics of the 4H-SiC thyristor for various
gate-anode voltages from 0 to –3 V. The anode voltage was zero. The doping concentration (Ndrift), and
high-level injection carrier lifetime (tau_HL) were 5 × 1014 cm−3, and 10−7 s, respectively.

Figure 9 shows the simulated anode and gate current of the 4H-SiC thyristor for several doping
concentrations with a 1 V gate bias. The Vf at 100 A cm−2 appeared similar as Ndrift was varied from
1014 to 1016 cm−3. The Vf at 200 A cm−2 as Ndrift was varied, from 1014 to 1015 and 1016 cm−3, was
3.93, 3.90, and 3.79 V, respectively. The increase in Ndrift resulted in an increased forward current
and snapback magnitude. In addition, the increase of Ndrift increased recombination at the base, and
decreased the NPN BJT current gain. This also decreased the resistance of the P-drift, Rdrift. These two
parameters eventually increased the forward current or decreased Vf. The Rdrift had a more significant
impact on Vf than current gain of the NPN BJT. The increase in Ndrift decreased the current flow from
anode to gate as the decrease in Rdrift enhanced the current flow from anode to cathode.
Electronics 2020, 9, x FOR PEER REVIEW 8 of 11 

 

0 1 2 3 4 5
0

100

200

300

400

500
Gate-cathode voltage = 1 V
Cathode voltage = 0 V
tdrift = 10 μm, tau_HL = 100 ns

Ndrift

 1014 cm-3

 2 x 1014 cm-3

 5 x 1014 cm-3

 1015 cm-3

 2 x 1015 cm-3

 5 x 1015 cm-3

 1016 cm-3

 

 

A
no

de
 c

ur
re

nt
 (A

/c
m

2 )

Anode-cathode voltage (V)  
(a) 

0 1 2 3 4 5 6 7 8
-2000

-1000

0

1000

2000

Current from anode
to gate

Current from gate
to cathode Ndrift

 1014 cm-3

 2 x 1014 cm-3

 5 x 1014 cm-3

 1015 cm-3

 2 x 1015 cm-3

 5 x 1015 cm-3

 1016 cm-3

 

 

G
at

e 
cu

rr
en

t (
A

/c
m

2 )

Anode-cathode voltage (V)

Gate-cathode voltage = 1 V
Cathode voltage = 0 V
               tdrift = 10 μm
               tau_HL = 100 ns
        

 
(b) 

Figure 9. Simulated (a) anode current and (b) gate current of the 4H-SiC thyristor for various P-drift 
(Ndrift) doping concentrations. The thickness of the P-drift region (tdrift), gate-cathode voltage, and high-
level injection carrier lifetime (tau_HL) were 10 μm, 1 V, and 10−7 s, respectively. 

0 1 2 3 4 5
0

100

200

300

400

500

tdrift
 10 μm
 20 μm
 30 μm

Gate-cathode voltage = 1 V
Cathode voltage = 0 V
Ndrift = 5 x 1014 cm-3

tau_HL = 100 ns

 

 

A
no

de
 c

ur
re

nt
 (A

/c
m

2 )

Anode-cathode voltage (V)  

Figure 10. Simulated anode current of the 4H-SiC thyristor for various thickness of P-drift region 
(tdrift). The doping concentration (Ndrift), gate-cathode voltage, and high-level injection carrier lifetime 
(tau_HL) were 5 × 1014 cm–3, 1 V, and 10−7 s, respectively. 

0 1 2 3 4 5
0

100

200

300

400

500
Gate-cathode voltage = 1 V
Cathode voltage = 0 V
Ndrift = 5 x 1014 cm-3

tdrift = 10 μm
tau_HL = 100 ns

 

 

A
no

de
 c

ur
re

nt
 (A

/c
m

2 )

Anode-cathode voltage (V)

Doping concentration of P buffer
 1015 cm-3

 2 x 1015 cm-3

 5 x 1015 cm-3

 1016 cm-3

 2 x 1016 cm-3

 5 x 1016 cm-3

 1017 cm-3

 

Figure 11. Simulated anode current of the 4H-SiC thyristor for various P buffer doping concentrations. 
The doping concentration (Ndrift), thickness (tdrift), gate-cathode voltage, and high-level injection carrier 
lifetime (tau_HL) were 5 × 1015 cm–3, 10 μm, 1 V, and 10−7 s, respectively. 

Figure 9. Simulated (a) anode current and (b) gate current of the 4H-SiC thyristor for various P-drift
(Ndrift) doping concentrations. The thickness of the P-drift region (tdrift), gate-cathode voltage, and
high-level injection carrier lifetime (tau_HL) were 10 µm, 1 V, and 10−7 s, respectively.

Furthermore, we investigated the anode current of the 4H-SiC thyristor for several tdrift, as shown
in Figure 10. Ndrift and gate voltage were fixed at 5 × 1014 cm−3 and 1 V, respectively. The Vf at
200 A cm−2 for tdrift of 10, 20, and 30 µm was 3.92, 4.01, and 4.03 V, respectively. An increase in tdrift can
improve the breakdown voltage of the 4H-SiC thyristor, but also results in an increase in Vf. Figure 11
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shows the simulated anode current of the 4H-SiC thyristor for various P buffer doping concentrations.
When the P buffer doping concentration was 1015, 1016, and 1017 cm−3, the Vf at 100 A cm−2 was 3.65,
3.71, and 3.99 V, respectively. The increase in P buffer doping concentration enhanced recombination at
the NPN BJT base and increased Vf. This also affects the electric field distribution under reverse bias,
as well as the breakdown voltage and switching speed.
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Figure 11. Simulated anode current of the 4H-SiC thyristor for various P buffer doping concentrations.
The doping concentration (Ndrift), thickness (tdrift), gate-cathode voltage, and high-level injection carrier
lifetime (tau_HL) were 5 × 1015 cm−3, 10 µm, 1 V, and 10−7 s, respectively.

The 4H-SiC thyristor should sustain the breakdown voltage through depletion of the P-drift region.
When the anode voltage was greater than the cathode bias, the depletion region at N base/P-drift/P
buffer withstood the breakdown voltage. However, when the anode voltage was less than the cathode
bias, the depletion region at P-drift/P buffer/N+ cathode withstood the breakdown voltage. For low
doping concentrations, the P-drift region was important for breakdown-resistance. The P buffer
prevented the punch-through breakdown during forward blocking, but reduced the reverse breakdown
voltage. We investigated the P-drift region breakdown voltage using a 4H-SiC pin diode with the
P+ anode/P-drift/P buffer/N+ cathode. The anisotropic impact ionization (IMPACT ANISO) 4Hof
(0001) 4H-SiC used for calculating breakdown voltage [40]. Due to the long simulation time and the
convergence error, we approximated the reverse breakdown voltage of the thyristor to the breakdown
voltage of the pin diode.
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Figure 12 shows the simulated parallel-plane breakdown voltage of the P-drift/P buffer/N+ cathode
for several values of Ndrift and tdrift. When the value of tdrift was fixed at 10 µm, the breakdown voltage
of the P-drift/P buffer/N+ cathode when Ndrift was 1014, 1015, 1016, and 1017 cm−3 was 2038, 1970, 1143,
and 606 V, respectively. If the Ndrift was fixed at 5 × 1014 cm−3, the breakdown voltage for tdrift of 5, 10,
15, 20, and 25 µm was 1289, 2000, 2700, 3320, and 3990 V, respectively. The breakdown voltage increased
with decreasing Ndrift and increasing tdrift due to the extended depletion region and the reduced peak
value of the electric field. It should be noted that we have determined the one-dimensional breakdown
voltage. The two-dimensional (cylindrical) or three-dimensional (spherical) breakdown voltage of
the thyristor should be less than the one-dimensional value due to the curvature effect or electric
field distribution.
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5. Conclusions

Numerical simulation was used to design a P+ anode/N base/P-drift/P buffer/N+ cathode 4H-SiC
thyristor on the N+ substrate. The 4H-SiC thyristor gate current was analyzed when a gate current
pulse was applied during the turn-on process. The base-emitter current of the PNP BJT was important to
activate the regenerative action of the thyristor which was adjusted by the gate potential. The decrease
of the gate current from P+ anode to N+ gate prevented turning on the thyristor by increasing snapback
voltage. The increase in Ndrift decreased Rdrift and Vf. An increase in the P buffer doping concentration
increased Vf due to the increase in recombination at the NPN BJT base. The breakdown voltage of the
P-drift/P buffer/N+ cathode when Ndrift was 1014, 1015, 1016, and 1017 cm−3 was 2038, 1970, 1143, and
606 V, respectively. 4H-SiC thyristors with high on-current are suitable for power applications such as
high-voltage DC transmission, traction, and megawatt drive systems.
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