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Abstract: In recent years, machine learning techniques have been proven to be a promising tool for
early fault detection of rolling bearings. In many actual applications, however, bearing whole-life
data are not easy to be historically accumulated, while insufficient data may result in training a
detection model that is not good enough. If utilizing the available data under different working
conditions to facilitate model training, the data distribution of different bearings are usually quite
different, which does not meet the precondition of independent and identical distribution (i.i.d) and
tends to cause performance reduction. In addition, disturbed by the unstable noise under complex
conditions, most of the current detection methods are inclined to raise false alarms, so that the
reliability of detection results needs to be improved. To solve these problems, a robust detection
method for bearings early fault is proposed based on deep transfer learning. The method includes
offline stage and online stage. In the offline stage, by introducing a deep auto-encoder network with
domain adaptation, the distribution inconsistency of normal state data among different bearings
can be weakened, then the common feature representation of the normal state is obtained. With the
extracted common features, a new state assessment method based on the robust deep auto-encoder
network is proposed to evaluate the boundary between normal state and early fault state in the
low-rank feature space. By training a support vector machine classifier, the detection model is
established. In the online stage, along with the data batch arriving sequentially, the features of target
bearing are extracted using the common representation learnt in the offline stage, and online detection
is conducted by feeding them into the SVM model. Experimental results on IEEE PHM Challenge
2012 bearing dataset and XJTU-SY dataset show that the proposed approach outperforms several
state-of-the-art detection methods in terms of detection accuracy and false alarm rate.

Keywords: early fault detection; fault diagnosis; state assessment; transfer learning; deep learning

1. Introduction

As an important part of common machinery equipment, rolling bearings are prone to various
kinds of faults under complex working conditions like long-term heavy load and strong impact, etc.
Faulty bearings will cause the performance deterioration of whole machinery. Successful detection
of bearing fault at an initial stage will be helpful to make timely maintenance and avoid serious
accident occurrence. Therefore, accurate and reliable detection and diagnosis at the early stage of
fault occurrence is considered as a key step of fault prognostic and health management (PHM) [1].
To sum up, the work of fault detection for rolling bearings can be divided into two types: signal
analysis-based methods and machine learning-based methods. Please refer to Section 2 for more
details. In recent years, the detection methods based on machine learning techniques have obtained
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rapid development, as they can solve some shortcomings of traditional signal analysis-based methods,
for instance, generally with no need to know prior knowledge of bearing signal in advance. Thus,
data-driven intelligent fault detection and diagnosis has received wide attention in the fields of PHM
and mechanical manufacturing.

In this paper, we mainly consider this problem: how to improve the accuracy and robustness of
early fault detection for bearings on insufficient bearing data. In many applications, bearing whole-life
data are hard to be historically accumulated, while insufficient data may result in training a detection
model that is not good enough. An intuitive idea is getting help from the available data of the bearings
which are of the same manufacturing specifications, even under different working conditions. The ideal
goal is to borrow domain information in such data to improve the generalization performance of the
detection model on target bearing. However, direct modeling on the data under different working
conditions couldn’t reach this goal due to a certain deviation of data distribution between the target
bearing and training bearings. As most of the statistical machine learning methods work on the
precondition of independent and identical distribution (i.i.d), the deviation of data distribution will
certainly reduce the reliability of detection results. According to our observation, some unstable
vibration caused by environmental interference or instrumental noise may aggravate such distribution
deviation. Therefore, it is necessary to reduce such distribution deviation for improving the detection
accuracy and robustness.

We take the bearing dataset of IEEE PHM Challenge 2012 as an example. Figure 1 provides the
distribution of probabilistic density and features of normal state data from bearings 1–7 under the
first working condition. It is clear that, even these seven bearings have an identical model size and
run under the same working conditions, their data distribution of normal state still have an obvious
difference, not to mention the bearings under different working conditions. In this phenomenon,
the detection model built on the data of some bearings from these seven bearings could not directly
apply to the other bearings for detection.

(a) (b)

Figure 1. Distribution characteristics of normal state data of seven bearings from IEEE PHM 2012
Challenge dataset with (a) probabilistic density distribution and (b) feature distribution.

The deviation of data distribution in Figure 1 comes from several reasons. The irregular fluctuation
in normal state may be caused by random noise, measurement error, variable working conditions, and
other uncertain factors. Consequently, model bias as well as false alarm will be raised, which decreases
the robustness of fault detection model. In addition, as the signal of early fault is weak and easy to
be concealed by unstable vibration and noisy environment, traditional anomaly detection methods
generally have difficulty identifying the early fault state accurately, which also reduces the robustness
of the detection model. Therefore, the anti-interference ability of fault detection model needs to be
considered more.
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Furthermore, we also give another example. Figure 2 shows the root mean square (RMS) curves of
vibration signals of the first 300 sample points of bearings 1, 2 and 7 under the first working condition.
These 300 sample points can be viewed to be collected in normal state. From Figure 2, the RMS
curves of bearings 1, 2, and 7 all fluctuate significantly in the starting normal state. Meanwhile,
the RMS curve of bearing 2 has several peaks, which indicates that the signal is frequently disturbed.
These interfered signals are not caused by bearing fault itself, but reflect the irregular vibration raised
by the impact of external forces on the bearing and interference of the surrounding environment. In this
scenario, the state change of bearing data is incapable of being recognized accurately and robustly,
and, accordingly, such state assessment results can not support a reasonable early fault detection
model. Again, the detection accuracy cannot be guaranteed and the robustness of detection model will
be reduced as well.

Figure 2. RMS curves of the first 300 sample points of bearings 1, 2 and 7 under the first working
condition from IEEE PHM Challenge 2012 dataset.

Based on the analysis mentioned above, we introduce transfer learning to build a fault detection
model on the bearing data collected under different working conditions. Transfer learning is machine
learning under the shift between training and test distributions. Transfer learning has been successfully
applied to bearing fault diagnosis (please see Section 2 for detailed analysis), but, for the problem of
early fault detection, there still are some challenges to be solved:

(1) In order to improve detection accuracy for bearing early fault, we need to reduce the data
distribution deviation, especially in a normal state. As a result, the detection model built on the
bearings data under some working conditions (also called source domain) can be dynamically
applied to the bearing data under another working condition (called target domain).

(2) In order to build an effective online detection model in complex environment and noise
interference, it is necessary to find a state assessment method with strong anti-interference
ability. Meanwhile, this method should be able to achieve accurate recognition of early fault state
on different bearing data. As a result, the robustness of detection model can be improved.

To solve such challenges, this paper presents a new robust detection method for bearing early
fault. Two key ideas are adopted: (1) deep transfer learning technique is used to find out the common
feature representation of bearings data in source and target domains so as to reduce the impact of data
fluctuation and distribution difference; (2) On the basis of (1), outliers in the common feature space
need to be further removed in order to realize an accurate state assessment, as the abnormal fluctuation
part may still interfere with the common feature. The total technical flowchart is shown in Figure 3.
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Specifically, in the stage of feature transfer, a deep auto-encoder (DAE) model with domain adaption
is applied to extract the common feature representation in bearing normal state. Then, the robust
deep auto-encoder (RDA) algorithm is introduced to conduct state assessment in a low-rank space.
After that, the detection model is constructed by training a SVM classifier on the state assessment
results. In an online stage, the features of target bearing can be directly extracted by means of the
common feature representation. By feeding them into the offline detection model, the occurrence of
early fault can then be recognized.

Figure 3. Total flowchart of the proposed robust detection method for bearing early fault.

The main contributions of this paper are as follows:

(1) This paper proposes a robust method of state assessment for rolling bearings. Running with deep
transfer learning, this method can accurately identify early fault state on the bearing data under
different working conditions. In addition, this method has good anti-interference ability against
irregular fluctuation in normal state data. According to our literature survey, the current research
about state assessment is seldom concerned about the robustness of assessment results.

(2) This paper proposes a new online detection method for bearing early fault. On the basis of the
common feature representation obtained from source and target domains, this method can directly
extract representative features for target bearing and identify the occurrence of early faults in real
time with a much lower false alarm rate. To our best knowledge, very little research whose focus
is robust early fault detection has been found, and there are no other research found about the
application of transfer learning on early fault detection of bearings.
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The structure of this paper is as follows. Section 2 provides a detailed literature survey of bearing
early fault detection methods. Section 3 mainly describes the steps of the proposed method. Section 4
validates the effectiveness of the proposed method on IEEE PHM Challenge 2012 dataset and XJTU-SY
dataset, followed by conclusions in the last section.

2. Preliminary Works

Generally speaking, fault detection can be viewed as a pre-step of fault diagnosis. Fault detection
is mainly dedicated to detecting the change of system state, while fault diagnosis pays more attention
to identifying different fault states such as fault type, crack size, etc. As incipient fault information
is easily interrupted by noise, it is hard to determine a specific boundary between normal state and
incipient fault state. Generally speaking, there are two kinds of early fault detection methods for
rolling bearings: signal analysis-based methods and machine learning-based methods. For signal
analysis-based methods, noise cancellation or noise utilization are usually utilized to deal with weak
signal, and then time-frequency analysis is performed to extract and compare fault characteristic
frequency [1–3]. Although such methods can extract early fault signals from original signals with noise,
they still have some drawbacks: (1) If working conditions are varying or unknown, fault characteristic
frequency which is used for detection could not be precisely calculated, and, consequently, the reliability
and robustness of detection results would be reduced; (2) Improper denoising techniques may weaken
the features of early fault, as the signals containing early fault are just of a low signal-noise ratio.
As a result, these kinds of methods are perhaps insensitive to early fault and would result in delayed
detection results.

In recent years, with quick development of artificial intelligence, machine learning-based methods
have received more and more attention. The basic idea of these kinds of methods is utilizing machine
learning algorithms to determine the boundary on the varying trend of one or more representative
features. These kinds of methods overcome some shortcomings of traditional signal analysis methods
such as heavy dependence on prior knowledge, etc. To achieve intelligent detection or diagnosis,
these kinds of methods usually include two main steps: (1) feature extraction, and (2) constructing
a detection model using machine learning algorithms. For example, Tabrizi et al. [4] used wavelet
packet decomposition (WPD) and ensemble empirical mode decomposition (EEMD) to extract feature
vectors of vibration signals, and run a support vector machine (SVM) algorithm to assess the state of
bearing. Li et al. [5] used supervised local Fisher discriminant analysis to reduce feature dimension,
and then used a K-nearest neighbor algorithm to recognize the early fault state. Ocak et al. [6] proposed
a bearing fault detection and diagnosis scheme based on a hidden Markov model (HMM). This scheme
detects early fault of bearings in an online mode by monitoring the change of probability of HMM
model, which is pre-trained under normal state.

It is worth noting that, since the state of incipient fault cannot be recognized in advance, incipient fault
detection is essentially an anomaly detection problem in which only one class is available and the anomaly
boundary needs to be built in a learning process. Some commonly-used anomaly detection algorithms like
support vector data description (SVDD) [7], One-class SVM [8], local outlier factor (LOF) [9], iFOREST [10],
etc. have also been applied to early fault detection of bearings. These methods usually use the starting
part of normal state data to establish a one-class classification model or build a criterion for determining
anomalies. However, as stated in the Introduction section, these methods are generally incapable of
tackling the irregular fluctuations in normal state, and consequently, it is easy to arouse false alarm.

In the most recent years, the development of deep learning techniques provides another effective
solution for fault feature extraction. As one of the pioneer works, Lei et al. [11] proposed a new
local connected deep neural network for fault diagnosis of bearings. This network is stacked by
multiple normalized sparse auto-encoder (SAE). Shao et al. [12] proposed an optimized deep belief
network (DBN) for fault diagnosis of rolling bearings. This method used a raw time-domain signal
to extract directly the representative fault features via DBN. By putting the raw vibration signals
into a convolutional neural network, Mao et al. [13] extract deep features of bearing fault with good
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representation ability. These works demonstrate the promising performance of deep neural network
on fault diagnosis problems in terms of adaptive and automatic feature extraction.

Moreover, fault diagnosis research using deep transfer learning methods have received extensive
attention in the past two years. Transfer learning aims to improve prediction performance in a target
domain by getting help from the data from source domain. Please note that transfer learning is
an algorithm framework rather than a single algorithm. In many realization forms of transfer learning,
deep neural network provides a convenient way. As a typical work, Yang et al. [14] proposed
a feature-based transfer neural network that uses laboratory bearings diagnostic knowledge to identify
the health of real-case bearings. Zhang et al. [15] proposed a deep transfer learning method for
fault diagnosis. This method first learns features from a large amount of source data and adjusts the
parameters of neural networks accordingly. Second, some parameters are transferred from source
task to target task to assist model training on a small amount of target data. Lu et al. [16] used
a three-layer SAE network with maximum mean discrepancy (MMD) regularizer to extract features
from a raw vibration signal. Here, the MMD regularizer is used to punish the feature difference
between training data and test data. By extending the marginal distribution adaptive (MDA) to the
joint distribution adaptive (JDA), Han et al. [17] proposed a new fault diagnosis method that can
adapt the conditional distribution of unmarked target data by using the discriminant structure in
source domain. Through a more accurate distribution matching, this method can get better diagnosis
performance.

However, different from the wide application in the field of fault diagnosis, there is no research
found about early fault detection based on transfer learning yet. There may be two reasons as follows:
(1) For the detection methods based on a binary classifier like SVM, the label information about early
fault is much harder to precisely acquire than mature fault. Then, transfer learning could cause model
bias unless a robust state assessment method with good anti-inference ability is introduced; (2) For the
detection methods based on one-class classifier like SVDD and One-class SVM, only normal state
data are available to build a detection model. In this scenario, the classification boundary is rather
close to the normal state data (think of the hyper-sphere of SVDD as example), which lacks enough
discriminant information about early fault and becomes more sensitive to the irregular fluctuation in
normal state. As a result, it is sort of hard for transfer learning to reach good detection performance
for early faults. We also notice that deep transfer learning (DTL) has been applied to the problem
of remaining useful life (RUL) prediction. For instance, Mao et al. [18] proposed a RUL prediction
method based on deep feature representation and transfer learning. By integrating weight transfer
and hidden feature learning from historical failure data, this method realizes the prediction of new
objects which do not have any supervision information for training. Although early fault detection can
be regarded as a preparation process of RUL prediction, this method still can not solve the problems
stated above.

Moreover, according to our literature survey, the research of deep learning techniques on early
fault detection is still in its infancy. We only find very few works about this topic. As a representative
work, Lu et al. [19] proposed an early fault detection method that estimates the occurrence of early fault
from a distribution estimator based on a long short-term memory (LSTM) network. It is interesting that,
in this paper, an efficient fault alarm strategy is also proposed. However, this work doesn’t consider the
false alarm rate in a normal state more. Zhao et al. [20] proposed a new bidirectional gated recurrent
unit (GRU) network based on local features. The GRU decision model is established to identify early
fault with different fault types. Working on deep feature representation, both of the methods can
obtain better results than several traditional methods. However, these two methods estimate the fault
occurrence merely using the data of target bearing, but they don’t focus on extracting accurate early
fault features, especially from massive data of auxiliary bearings. Mao et al. [21] noticed the distribution
difference between auxiliary bearings and target bearing, and proposed an online fault detection
method. Although this method can effectively use auxiliary bearings data to establish detection model,
it improves the detection performance mainly by proposing a strategy named self-adaptive deep
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feature matching (SDFM), not reducing such distribution difference. Moreover, no matter whether it
is these three deep learning-based methods or most traditional anomaly detection algorithms, they are
all unable to adapt to the irregular fluctuations of target bearing data which arrive sequentially. As a
result, it is prone to reduce the model’s robustness and arouse false alarm. According to our literature
research, very few articles give an exact solution to improve the robustness of early fault detection
model for rolling bearings.

3. Robust Detection Method Based on Deep Transfer Learning

In this section, we propose a robust detection method for incipient fault. As the boundary
between normal state and early fault state is generally not obvious, the proposed method firstly
conducts robust state assessment on multiple training bearings by applying deep transfer learning.
Using the obtained normal state data and early fault state data of training bearings, an offline detection
model is established on an SVM classifier. In the online stage, by feeding each data batch of target
bearing into the offline SVM classifier sequentially, we can determine whether this data batch contains
an early fault or not. Here, the effect of deep transfer learning is to get a common feature representation
of training bearings data in a normal state, while the robust state assessment is dedicated to obtaining
as accurate a label as possible for training the SVM classifier.

3.1. Preprocessing

As a lot of noise generally exists in original vibration signals, it is necessary to preprocess such
a signal in advance. In addition, since the auto-encoder network utilizes an unsupervised learning
mode, it is better to preprocess the raw signal to be the data with strong regularity before feature
extraction. According to [22], Hilbert–Huang transformation (HHT) has been verified as an effective
technique of signal analysis for feature extraction. Therefore, in this paper, we choose HHT to extract a
marginal spectrum of the bearing signal as an input of the auto-encoder network. For sake of complete
presentation, here we provide a brief explanation [23], as follows:

(1) Decompose the original vibration signal: x(t) =
k
∑

i=1
ci(t) + rk(t), where x(t) denotes the original

signal, ci(t) denotes the i-th intrinsic mode function (IMF) component, and rk(t) denotes the
residual term.

(2) Run Hilbert transform for each IMF component:

H[x(t)] =
1
π

+∞∫
−∞

x(τ)
t− τ

dτ

.

Construct the analytical signal: CA
i (t) = ci(t) + jcH

i (t) = ai(t)ejθi(t), where cH
i (t) = 1

π

+∞∫
−∞

ci(s)
t−s ds,

ai(t) =
√

ci
2 + (cH

i )
2, θi(t) = arctan(cH

j /ci). The instantaneous frequency is: ω = dθ(t)
dt .

(3) Construct Hilbert spectrum: H(ω, t) =
n
∑

i=1
ai(t)ejθi(t). The final marginal spectrum can be obtained

through an integral of Hilbert spectrum: H(ω) =
∫

H(ω, t)dt.

3.2. Common Feature Representation Based on Transfer Learning

As a research hotspot in recent years, transfer learning aims to use existing knowledge to solve the
problems in the different but related domains. Compared with traditional machine learning methods,
transfer learning techniques can solve the problem of inconsistent distribution between training data
and test data, while improving the generalization performance on an insufficient amount of training
data. In several implementation forms of transfer learning, domain adaptation can map the data
from different domains to a same feature space, so that the data from a source domain can be used to
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enhance the training performance of a target domain. In model construction of domain adaptation,
the maximum mean discrepancy (MMD) distance is often used to construct a new regularizer in
loss function in order to make the feature distribution of two domains as identical as possible [24].
The MMD distance between two distributions is defined as [24]:

MMD(X, Y) =

∥∥∥∥∥ 1
nx

nx

∑
i=1

φ(xi)−
1

ny

ny

∑
j=1

φ(yj)

∥∥∥∥∥
2

H

(1)

where xi and yj respectively represent the samples in the source and target domains, and H indicates
that the distance is measured in a reproducing kernel Hilbert space (RKHS). By calculating the
difference between the mean values of the function on the original samples, the average difference
between two distributions is achieved. If this value is small enough, the two distributions are thought
to be the same, otherwise, they are considered to be different. By finding a φ to maximize the average
difference, the common feature space between two domains can be obtained.

Based on the above analysis, we modify the loss function of auto-encoder by introducing the
strategy of transfer learning. Thus, the auto-encoder network is capable of mapping normal state
data of different bearings with an identical model size and under the same working condition to
an approximately identical feature space. Specifically, this paper applies the DAE with domain
adaptation proposed by [25] to train the loss function of DAE, including the following three terms.

(1) The first one is the reconstruction term of traditional DAE:

LossDAE =
1

2n
‖R− X‖2

F

where X denotes the input sample matrix and R indicates the reconstruction feature of DAE,
F indicates the Frobenius norm of matrix, and n is the number of samples.

(2) The second one is an MMD regularizer which constrains the distribution discrepancy between
normal data of different bearings. We define the symbol C as the combination of multiple auxiliary
bearings. The MMD regularizer is defined as:

LossMMD =
C

∑
c=1

∥∥∥∥∥ 1
nc

nc

∑
p=1

ϕ
(

xc,p
)
− 1

n′c

n′ c
∑
q=1

ϕ
(

x′c,q
)∥∥∥∥∥

2

H

(2)

where xc and x′c represent the bearing samples in the source and target domains,
respectively. In addition, nc and n′c denote the number of samples in the source and target domains.

(3) The third one is the weight regularization term that enhances the representative ability of features
extracted from raw data, as follows:

Lossweight =
K

∑
k=1

exp
(
−‖Wk‖2

F

/
σ
)

(3)

where σ is the width parameter, K is the total number of hidden layers, and Wk is the weight
matrix of the k-th layer.

By integrating these three terms together, the final loss function of DAE with domain adaptation is:

Loss = LossDAE + λLossMMD +
µ

2
Lossweight (4)

where λ > 0 and µ > 0 control the trade-off among three terms. Minimizing this loss function
can be achieved using a gradient descent algorithm. It is worth noting that, different from [25]
which adapts the data of different fault states under different working conditions, here we merely
constrain the normal state data of training bearings to have a consistent data distribution for the
building detection model. Please refer to the article [25] for the specific network structure.
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3.3. Robust State Assessment Method

Based on the common feature representation obtained in the Section 3.2, a detection model needs
to be established. Although we can directly train a binary classifier by means of normal state data and
mature fault data, the classification model would be not suitable for early fault detection. To improve
the discriminant ability of the detection model, it is important to find a method to precisely assess the
state of early fault so as to obtain accurate label information. Since the common features cannot remove
the irregular fluctuation in original data thoroughly, we need to further consider the robustness of
the state assessment method. To get a more robust detection result, it is necessary to eliminate the
abnormal points in the common feature space. Traditional state assessment methods are mostly based
on singular value decomposition [26], or work directly on RMS value [27]. However, these methods do
not consider the negative influence of fluctuations in normal state, so it is easy to generate false alarms.

In this section, we introduce the robust deep auto-encoder network (RDA) to conduct robust state
assessment. The RDA is inspired by robust principal component analysis (Robust PCA) [28]. For input
sample set X, the RDA decomposes X into two parts X = LD + S, where LD represents a low-rank
common representation part (some linear correlations between rows or columns exist as the training
data generally have some structural information inside), S is a sparse matrix (caused by noise and
anomalies which are usually sparse). When the RDA is used for anomaly detection, the loss function
for X can be considered as the reconstruction error of LD plus the L2,1 norm of S, as follows:

min
θ,S
‖LD − Dθ(Eθ(LD))‖2 + λ‖S‖2,1

s.t. X− LD − S = 0
(5)

where Eθ and Dθ respectively represent the encoder and decoder of RDA, θ is the weights of the
encoder and decoder, λ is used to control the degree of sparsity in S. The larger the value of λ is,
the less the sparsity of solution is, and vice versa. This optimization problem is solved by using the
alternating direction method of multipliers (ADMM) algorithm. For the detailed derivation process,
please refer to [29].

To sum up, the proposed state assessment method includes two steps:

(1) For the common feature set X of auxiliary bearings extracted by DAE with domain adaptation,
we feed them into RDA and calculate LD, which is the low-rank public representation of auxiliary
bearing data. The specific steps to calculate LD are as follows [29]:

A. Initialize LD, S to be zero matrices. Initialize an auto-encoder network with
random parameters.

B. Remove S from X and use the remainder LD = X− S to train the auto-encoder.
C. Minimize the reconstruction error by using back-propagation algorithm.
D. Set LD to be the reconstruction from the trained autoencoder: LD = Dθ(Eθ(LD)).
E. Set S to be the difference between X and LD: S = X− LD.
F. Optimize S using a proximal operator: S = proxλ,l2,1(S).

G. If the value of S changes less than a pre-defined threshold in two consecutive iterations,
return LD and S, otherwise go to Step B.

(2) For LD, we train a SVDD model by using the starting part of training data of each auxiliary
bearing, and then use the obtained SVDD model to identify the state of each sample in LD.
The SVDD model is a one-class classification algorithm which can detect abnormal samples only
using positive samples [30]. SVDD constructs a hyper-sphere which covers as much as target
data, and recognizes the sample outside the sphere’s boundary as anomaly. The optimization
target of SVDD is:

min
R,a,ξ

R2 + C
n
∑

i=1
ξi

s.t. ‖xi − a‖2 ≤ R2 + ξi
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where a and R are the center and radius of hyper-sphere, respectively, ‖xi − a‖ indicates the
distance from the sample xi to the center a, ξi ≥ 0 is slack variable, C is regularization parameter
which makes a trade-off between the hyper-sphere volume and misclassification level. The SVDD
model can be optimized by Lagrange multiplier method [30]. For auxiliary bearings, the starting
part of offline data can be viewed as positive class data, and the position where anomalies occur
can be judged by SVDD. Since a sample in LD corresponds to an original sample of auxiliary
bearings, the state assessment for the auxiliary bearings is conducted.

Different from the current state assessment methods [26,27], the proposed method conduct
assessment in a low-rank space which is optimized by RDA. Therefore, the proposed method has good
anti-interference ability against irregular fluctuation in normal state data. It is worth noting that RDA
is merely used to find the low-rank space and SVDD is used to conduct anomaly detection in this
space. The flowchart of the RDA algorithm is also shown in Figure 4.

Figure 4. Flowchart of the RDA algorithm.
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3.4. Online Detection of Early Fault

Based on the state assessment results on offline auxiliary bearings, we choose the samples
with common features in normal state and early fault state to construct a SVM classification model.
This classifier model is used to conduct online detection.

In the stage of online detection, the vibration signal of target bearing is collected sequentially.
Each time a certain length of signal is taken to extract HHT marginal spectrum. Then, the obtained
marginal spectrum data are put into the common feature representation which is established by DAE
with domain adaption. Finally, the obtained deep features are fed into the above SVM classifier to
detect whether early fault occurs. The flow chart for online detection is shown in Figure 5.

Figure 5. Flow chart of online detection for early fault.

3.5. Process of the Proposed Method

From the perspective of algorithm execution, the proposed method can be divided as an offline
stage and an online stage. Note that the DAE with domain adaptation and the RDA both run in the
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offline stage, and the online stage only covers the detection process for target bearing which certainly
belongs to the target domain. The implementation flow of the proposed method is shown in Figure 6.
For sake of better understanding, we also list each step as follows.

Figure 6. Flow chart of the proposed method.

3.5.1. Offline Stage

The offline stage mainly covers extracting common feature representation, running robust state
assessment and building an SVM classifier:

Step 1. Extract marginal spectrum by HHT from raw vibration signals in source and target domains.
Step 2. Feed the marginal spectrum data into the DAE with domain adaptation to obtain common

features of training bearings.
Step 3. On the basis of the obtained common features, the robust state assessment method

is applied to to specify the location of early fault occurrence in a low-rank space found by RDA.
The results are used to add label for the training samples of auxiliary bearings, i.e., setting the samples
before the location as positive while the samples after this location as anomalous.

Step 4. Train a SVM classification model using the labeled samples in Step 3. This classifier serves
as the final detection model.

3.5.2. Online Stage

In an online stage, there are three steps to conduct online detection:

(1) Extract marginal spectrum by HHT from online data batch of test bearing .
(2) Feed the marginal spectrum data into the DAE with domain adaptation trained in offline stage to

extract the common features.
(3) Put the common features to the SVM classifier trained in the offline stage and then obtain

detection results.

4. Experimental Results

In order to verify the effect of the method proposed in this paper, simulation experiments
are carried out on IEEE PHM Challenge 2012 dataset and XJTU-SY bearing dataset, respectively.
The programming environment used in this paper is Python 3.6, and the computer used in the
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experiment is configured as i5-7300HQ processor with 8 GB of memory. All data are linearly normalized
to [−1,+1] before processing.

4.1. Dataset Description

4.1.1. IEEE PHM Challenge 2012 Dataset

The dataset of IEEE PHM Challenge 2012 was collected from the test platform named PRONOSTIA,
which is shown in Figure 7. This experimental platform can provide the experimental data of the whole
life cycle of rolling bearings from normal to fault. The dataset contains bearing data under three different
working conditions. In the first condition, the engine speed is 1800 rpm and the load is 4000 N. In the
second condition, the engine speed is 1650 rpm and the load is 4200 N. In the third working condition,
the speed is 1500 rpm and the load is 5000 N.

Figure 7. PRONOSTIA test platform [31].

4.1.2. XJTU-SY Bearing Dataset

The bearing accelerated degradation test platform used in the experiment was designed by
the joint laboratory and manufactured by shengyang technology. The bearing testbed is shown in
Figure 8. This platform can carry out accelerated degradation experiments of various kinds of rolling
bearings or sliding bearings, and obtain the monitoring data of the whole life cycle of bearings.
The experimental object of the data set was LDK UER204 rolling bearing. Three kinds of experimental
working conditions were designed, and five bearings were tested in each working condition. In the
first condition, the engine speed is 2100 rpm and the load is 12 kN. In the second condition, the engine
speed is 2250 rpm and the load is 11 kN. In the third working condition, the speed is 2400 rpm and the
load is 11 kN.
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Figure 8. XJTU-SY bearing accelerated degradation testbed [32].

4.2. Experimental Setup

4.2.1. Experiment 1

For the IEEE PHM Challenge 2012 dataset, the bearings 1, 2, 3, 4, 5, 6, and 7 under the first
condition are selected as source domain, and the bearings 1, 2, and 6 under the second condition are
as target domain. The experimental settings are shown in Table 1. In this experiment, we randomly
choose one bearing in the target domain as test bearing, and the other bearings in the source domain
and target domain are selected as training bearings.

Table 1. Setting of experiment 1.

Bearing in the Experiment 1 Actual Bearing

Source 1 Bearing1-1
Source 2 Bearing1-2
Source 3 Bearing1-3
Source 4 Bearing1-4
Source 5 Bearing1-5
Source 6 Bearing1-6
Source 7 Bearing1-7
Target 1 Bearing2-1
Target 2 Bearing2-2
Target 3 Bearing2-6

4.2.2. Experiment 2

For the XJTU-SY dataset, the bearings 1, 2, 3, and 4 under the first condition are selected as source
domain, and the bearings 1, 2, and 3 under the second condition are as target domain. The experimental
settings are shown in Table 2. The same as Experiment 1, we randomly choose one bearing in the target
domain as test bearing, and the other bearings in the source domain and target domain are selected as
training bearings.
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Table 2. Setting of experiment 2.

Bearing in the Experiment 2 Actual Bearing

Source 1 Bearing 1-1
Source 2 Bearing 1-2
Source 3 Bearing 1-3
Source 4 Bearing 1-4
Target 1 Bearing 2-1
Target 2 Bearing 2-2
Target 3 Bearing 2-3

4.3. Experiment 1

4.3.1. Preprocessing

In this section, the HHT method is used to preprocess the raw vibration signal. Taking the Target 1
as test bearing, we plot the raw time signal and the corresponding HHT marginal spectrum in three
health conditions, as shown in Figure 9. It is obvious that the HHT marginal spectrum changes largely
from normal state to severe fault state, which indicates that HHT marginal spectrum is sensitive to the
change trend of time signal and beneficial to further deep feature extraction.

Figure 9. The (a) raw time signal and (b) HHT marginal spectrum of the bearing 1 from IEEE PHM
Challenge 2012 dataset.

4.3.2. Extraction of Common Feature Representation by Transfer Learning

In this section, we adapt the normal state data of training bearings to a common distribution.
We also choose the Target 1 as the test bearing. The first 500 samples of seven source domain
bearings are taken as normal state samples, and the first 100 samples of two target domain bearings
(i.e., Target 2 and Target 3) are also taken to train the DAE with domain adaptation. The determination
of network structure and parameters gets reference from [25]. The parameter λ and µ in Equation (4)
are set 0.001 and 0.0001, respectively. The structure of encoder is set [2558, 1200, 600], which means
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the input dimension is 2558 (from HHT marginal spectrum) and two hidden layers are with 1200
and 600 neurons. The probability density distribution of these nine training bearings in three feature
spaces is shown in Figure 10. To visualize such distribution, we first reduce each feature representation
to one dimension by using principal component analysis (PCA).

(a) (b) (c)

Figure 10. Probability density distribution of nine training bearings with (a) raw time signal, (b) HHT
marginal spectrum feature, and (c) deep feature extracted by DAE with domain adaption.

From Figure 10, the probability density distribution of nine training bearings is obviously different
in raw time domain, but after the common feature mapping, the probability density distribution of
all bearings tends to be consistent, approximately in accordance with the same distribution. These
comparative results show that the DAE with domain adaptation is able to map the data of different
bearings to a common feature subspace, which eliminates the phenomenon of inconsistent distribution
in normal state.

In addition, to further verify the effect of transfer learning on feature extraction, we plot the
feature distribution before and after domain adaptation, as shown in Figure 11. In addition, for the
sake of illustration, we use PCA to visualize the distribution.

(a) (b) (c)

Figure 11. Feature distribution of nine training bearings with (a) raw time signal, (b) HHT marginal
spectrum, and (c) the common features extracted by domain adaptation DAE.

It can be seen from Figure 11a that features of different bearings are gathered into rings with
different sizes, which indicates that the spatial data distribution in a normal state of nine training
bearings are obviously different in time domain. After HHT, the features are gathered towards the
center, but some exceptional clusters still exist. After domain adaptation as shown in Figure 11c,
the samples of different bearings interweave together in the obtained feature space. In this scenario,
the features by domain adaptation DAE have an approximately identical distribution and are suitable
for further state assessment.

It is worth noting that Figures 10 and 11 only provide the feature distribution of offline training
bearings. In order to verify the effect of transfer learning on target bearing, we choose Target 1 and
Target 2 as the test bearing, respectively, and obtain the corresponding features by putting their data
directly into the DAE model established in the offline stage. The probability density distribution of
Target 1 and Target 2 in three feature spaces are shown in Figures 12 and 13, respectively. To make
an intuitive comparison, we also plot the distribution of nine auxiliary bearings (blue line).
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From Figures 12 and 13, we find that transfer learning can provide a feature distribution between
target domain bearings and source domain bearings which is more identical than the distribution of
raw signal and HHT marginal spectrum. As a result, the detection for target domain bearings can get
prior information directly from source domain bearings, with no model bias which is generally caused
by the inconsistent data distribution between training and test data.

(a) (b) (c)

(d) (e) (f)

Figure 12. Comparative distribution of Target 1 and nine training bearings, with (a–c) the probability
density distribution of raw time signal, HHT marginal spectrum, the common deep features by domain
adaptation DAE, and (d–f) the feature distribution corresponding to (a–c), respectively. Please note
that the legend “Online” denotes the distribution of the target bearing (Target 1) and “Offline” denotes
the distribution of nine training bearings (similar to Figures 10 and 11).

4.3.3. State Assessment Using RDA

In this section, we use the common features obtained in the Section 3.2 to establish a state
assessment model. To reduce the negative effect of irregular fluctuation in normal state data, the RDA
algorithm is used to get a low-rank feature sub-space. Based on this sub-space, the SVDD algorithm is
adopted to identify the state of each sample. Then, the normal state and early fault state on training
bearings can be determined.

Here, we take Experiment 1 as an example. After obtaining a set of common features X via
transfer learning, we put X into RDA to calculate the low-rank representation LD and sparse residual
S. The hidden layer units of RDA are set [600, 300, 150] and the parameter λ is set 0.2. Figure 14 shows
the decomposition results of RDA on Sources 1 and 3. For sake of illustration, we choose the first
feature from the results of RDA.
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(a) (b) (c)

(d) (e) (f)

Figure 13. Comparative distribution of Target 2 and nine training bearings, with (a–c) the probability
density distribution of raw time signal, HHT marginal spectrum, the common deep features by domain
adaptation DAE, and (d–f) the feature distribution corresponding to (a)–(c), respectively. Please note
that the legend “Online” denotes the distribution of the target bearing (Target 2) and “Offline” denotes
the distribution of nine training bearings. (similar to Figures 10 and 11).

(a) (b)

Figure 14. Decomposition results of the first feature extracted by RDA on (a) Source 1 and (b) Source 3.

From Figure 14, there are many fluctuations in raw input data X. After the decomposition of RDA,
it is clear that many sparse and sharp components are separated to S, while the essential representation
part LD of X becomes more stable in normal state and change drastically at some points (considered as
early fault occurrence). The results in Figure 14 indicates that RDA can find the essential representation
part LD of X by means of the sparse L2,1 norm penalty. Compared to X, LD is more stable because
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outliers in the common feature space have been removed. Then, a more reliable state assessment result
of bearing data can be achieved based on LD.

For LD, we take the first 500 samples of each training bearing (considered as normal state data) to
construct a SVDD model. The output of SVDD model is then used to assess the state for the remaining
samples of LD. In this experiment, the toolbox of SVDD [33] is adopted. Gaussian kernel is used where
the kernel parameter is set 0.001. In addition, the regularization parameter is set 1. We provide the
results of state assessment for each training bearing in Table 3. Here, Target 1 is chosen as test bearing.

Table 3. Results of state assessment on training bearings with Target 1 chosen as test bearing.

Training Bearing Normal State Period Fault State Period

Source 1 [1–1405] [1405–2803]
Source 2 [1–826] [827–871]
Source 3 [1–1174] [1175–2375]
Source 4 [1–1087] [1088–1428]
Source 5 [1–2443] [2444–2463]
Source 6 [1–1590] [1591–2448]
Source 7 [1–2212] [2213–2559]
Target 2 [1–255] [255–797]
Target 3 [1–688] [688–701]

4.3.4. Comparative Results of Online Detection

In this section, we construct a SVM classifier based on the results of state assessment listed in
Table 3. When training the SVM model, all the normal state data in Table 3 are used as positive
samples, and all the fault state data are used as negative samples. RBF Gaussian kernel is used, and the
regularization and kernel parameters are set to 1 and 0.002, respectively. Please note that Table 3 is
only for the detection on Target 1 which is chosen as test bearing. Besides Target 1, we also choose
bearings 2 and 3 as test bearing respectively. Due to space limitation, we would not provide the results
of state assessment on training bearings just like Table 3. The results of anomaly detection on the test
bearings are shown in Figure 15. For comprehensive comparison, we also provide the results of SVDD
based on HHT marginal spectrum in which we take the first 500 samples of each training bearing to
construct the SVDD model. In addition, the regularized parameter is set to 1 and the kernel parameter
is set to 0.001.

In this experiment, we choose the following alarm strategy: only five successive anomalies can
trigger alarm. The point where such anomalies appear is defined the occurrence location of early fault.
Moreover, false alarm is defined as the anomalies which appear before this location.

From Figure 15b, it is clear that the proposed method doesn’t raise any false alarm in the initial
part of normal state on three bearings. However, from Figure 15a, SVDD tends to get many more
anomalies that are considered as false alarms. Especially on Target 1, SVDD has a few of anomalies in
the starting part. This phenomenon is obviously caused by the run-in period of the bearing in which
the collected vibration signal is non-stationary. If the detection model is not robust enough, it is easy to
generate false alarm. Moreover, even after the occurrence location around the point 160 on Target 1,
SVDD still identifies several anomalies in normal states. This comparison indicates that the robustness
of the proposed method has been significantly improved.
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(a)

(b)

Figure 15. Detection results on Targets 1, 2, and 3 of Experiment 1 by using (a) SVDD and (b) the
proposed method, where the label 1 and −1 represent normal state and anomaly state, respectively.

4.4. Experiment 2

For the XJTU-SY dataset, the experimental steps are the same as the ones in Experiment 1. Due to
space limitation, here we briefly provide some important results, with no detailed description of
experimental process. The settings of network structure and hyper-parameters are almost identical
to Experiment 1. First, we choose Target 1 in Table 2 as a test bearing while the other six bearings in
source domain and target domain are as training bearings. The probability density distribution of
these six training bearings in three feature spaces is shown in Figure 16.
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(a) (b) (c)

Figure 16. Probability density distribution of six training bearings with (a) raw time signal, (b) HHT
marginal spectrum feature, and (c) deep feature extracted by domain adaptation DAE.

Obviously, Figure 16 provides a similar phenomenon about common feature mapping with
Figure 10, which indicates again that transfer learning is beneficial to extract common features for the
bearings data under different working conditions. We also plot the feature distribution before and
after transfer learning, as shown in Figure 17. It is clear that the domain adaptation DAE is capable of
extracting a set of deep features with consistent distribution on different bearings.

(a) (b) (c)

Figure 17. Feature distribution of six training bearings with (a) raw time signal, (b) HHT marginal
spectrum, and (c) the common features extracted by domain adaptation DAE.

We further check the effect of transfer learning on test bearing, we choose Target 1 and Target 2
in Table 2 as the test bearing, and plot their probability density distribution in three feature spaces in
Figures 18 and 19, respectively. The blue line is the distribution of six training bearings for comparison,
and the meaning of the legend “Online” and “Offline” are same as Figures 12 and 13. Similar to
Experiment 1, transfer learning can extract a more identical feature representation between two
domains than the other two methods, which is definitely helpful to improve the detection performance
for the bearings under different working conditions.

Figure 20 provide the decomposition results of RDA on Source 1. Obviously, through low-rand
decomposition, some outliers can be recognized and eliminated, which is regarded as beneficial for
getting reliable state assessment results. Due to space limitation, here we won’t provide the detailed
numerical results about state assessment.
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(a) (b) (c)

(d) (e) (f)

Figure 18. Comparative distribution of Target 1 and six training bearings, with (a–c) the probability
density distribution of raw time signal, HHT marginal spectrum, the common deep features by domain
adaptation DAE, and (d–f) the feature distribution corresponding to (a–c), respectively.

(a) (b) (c)

(d) (e) (f)

Figure 19. Comparative distribution of Target 2 and six training bearings, with (a–c) the probability
density distribution of raw time signal, HHT marginal spectrum, the common deep features by domain
adaptation DAE, and (d–f) the feature distribution corresponding to (a–c), respectively.
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Figure 20. Decomposition results of the first feature extracted by RDA from Source 1 of Experiment 2.

Taking Target 1, Target 2, and Target 3 as test bearing respectively, we provide the results of
anomaly detection on these bearings are shown in Figure 21. The alarm strategy is also the same as
Experiment 1, i.e., five successive anomalies indicate incipient fault occurrence, and the anomalies
before the occurrence locations are regarded as false alarm. From Figure 21b, the proposed method
gets very similar comparative results like Figure 15b. Specifically, the most interesting phenomenon
is also the very low number of false alarms. Even if few anomalies appear in the normal state on
Target 2, they are still much less than the number of false alarms by SVDD (as shown in Figure 21a).
According to our observation, the degradation process of Target 2 has many irregular fluctuations
in the normal state that is why SVDD has so many false alarms. Obversely, the proposed method
presents a much more robust effect in early fault detection, which demonstrates the effectiveness of
deep transfer learning and robust state assessment.

(a) (b)

Figure 21. Detection results on Targets 1, 2, and 3 of Experiment 2 by using (a) SVDD and (b) the
proposed method, where the label 1 and −1 represent normal state and anomaly state, respectively.

5. Comparative Experiment

In order to further verify the effectiveness of the proposed method, we compare four anomaly
detection methods that are widely used in the field of early fault diagnosis and detection.
These methods include LOF [9], One-class SVM [8], SVDD [7], and iFOREST [10]. Besides HHT
marginal spectrum (HHT-MS), there are two typical features used in the comparative experiment,
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i.e., RMS and Kurtosis value of a raw time signal. By combining the three features and the four
methods, we have 12 methods of combination for comparison.

In addition, we also compare two state-of-the-art methods, BEMD+AMMA [34] and SDFM [21].
BEMD+AMMA which utilizes bandwidth EMD is viewed as the state-of-the-art incipient fault
diagnosis method based on signal analysis. SDFM is viewed as the newest work about incipient fault
detection with deep learning. Considering that our method is the application of transfer learning, we
also compared two typical transfer learning algorithms, namely, transfer componet analysis (TCA) [35]
and geodesic flow kernel (GFK) [36]. These two algorithms both achieve good performance of the
problem of domain adaptation just like ours. For these two algorithms, the input is HHT marginal
spectrum and the detection model is SVDD. Then, we call these two methods as TCA+SVDD and
GFK-SVDD.

All 16 methods for comparison are listed as follows:

1. HHT-MS + One-class SVM
2. RMS + One-class SVM
3. Kurtosis + One-class SVM
4. HHT-MS + SVDD
5. RMS + SVDD
6. Kurtosis + SVDD
7. HHT-MS + LOF
8. RMS + LOF
9. Kurtosis + LOF

10. HHT-MS + iFOREST
11. RMS + iFOREST
12. Kurtosis + iFOREST
13. BEMD + AMMA [34]
14. SDFM [21]
15. TCA [35] + SVDD
16. GFK [36] + SVDD

In this paper, two estimate metrics are used to evaluate the detection methods: detection location
and false alarm number. Here, the detection location is the occurrence location of early fault determined
by a certain threshold or criteria. We will give the specific threshold and criteria setting for each method
in the following part.

For SVDD and One-class SVM, we use cross-validation strategy to determine the optimal
hyper-parameters. For LOF, the value of K is set 10. For iFOREST, the number of trees is set 100,
and each tree has 256 samples. Moreover, for SVDD, One-class SVM, and LOF, we take the first
500 samples of bearings as normal data to train a detection model. For iFOREST, the maximum
number of segmentation times for the first 500 samples is taken as the threshold. An abnormal sample
will be determined if the maximum number of the segmentation times in successive ten samples is less
than the threshold.

For all methods, early fault is considered as occurring if five anomalies appear successively in the
detection results. In particular, considering LOF is not sensitive to the early fault as it has almost no
anomalies in normal state, we reduce the threshold from five successive samples to two successive
samples. For BEMD + AMMA, it does not involve the issue of false alarm because this method directly
matches the fault characteristic frequency.

Due to space limitation, we choose one bearing from the datasets of IEEE PHM Challenge 2012
and XJTU-SY, respectively, and provide the comparative results in Table 4. Specifically, for PHM
Bearing1-1, the methods 1, 14 and our method all get earlier detection location than others. However,
our method has only 14 false alarms while the false alarm numbers of the methods 1 and 14 are 138 and
42, respectively. As far as the false alarm number is concerned, method 7 is the least, but its detection
location is too lagging, which indicates that this method is insensitive to early fault. The reason may be
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that the fault threshold determined by LOF is relatively high, leading to a seriously delayed detection
result and a small number of false alarms. Similar results can be found on the XJTU-SY dataset.
HHT + LOF and RMS + LOS also get small numbers of false alarms, but their detection results are
much delayed. This phenomenon indicates that the detection performance of LOF heavily relies on
its threshold. For the XJTU-SY dataset, the method 7, 14 and our method have more earlier detection
location than others, while the false alarm number of the method 7 is the least. Although the detection
result of the method proposed in this paper is not as early as that of method 14, the false alarm number
of the method proposed in this paper is 21 less than that of method 14, and the detection result is not
delayed too much. Consequently, our method can be considered to be more sensitive to bearing early
fault and with better robustness as well. To sum up, our method can determine early fault in earlier
time than other methods with less number of false alarms. Therefore, our method is more suitable for
online detection of rolling bearings.

Table 4. Comparison of early fault detection results on the datasets of IEEE PHM Challenge 2012
and XJTU-SY.

Method
PHM Bearing1-1 XJTU-SY Bearing1-1

Detection False Detection False
Result Alarm Result Alarm

1. HHT + One-class SVM 1410 138 967 52
2. RMS + One-class SVM 1640 27 945 19
3. Kurtosis + One-class SVM 2152 117 1023 117
4. HHT + SVDD 1525 116 958 93
5. RMS + SVDD 1735 20 959 20
6. Kurtosis + SVDD 1642 58 1163 134
7. HHT + LOF 2050 4 944 5
8. RMS + LOF 2023 52 1275 8
9. Kurtosis + LOF 2381 65 1372 33
10. HHT + iFOREST 1556 82 1041 25
11. RMS + iFOREST 2336 69 961 31
12. Kurtosis + iFOREST 2057 159 1257 93
13. BEMD + AMMA 1900 – 1130 –
14. SDFM 1374 42 930 27
15. TCA + SVDD 1427 33 986 28
16. GFK + SVDD 1573 20 1146 17
17. Our method 1401 14 937 6

6. Conclusions

In this paper, a new detection method for bearing early fault is proposed based on deep transfer
learning. This work can be viewed as a combination of two methods: domain adaptation DAE
and RDA. Aiming at robustness of early fault detection, this method can get a low false alarm rate,
especially in the scenario of online detection. From the experimental results, the following conclusions
can be drawn:

(1) Deep transfer learning works well to extract a common feature representation for different
auxiliary bearings, which is vital in online detection.

(2) State assessment can be achieved in a low-rank subspace by RDA, which will eliminate the
negative effect of signal fluctuation and bring the robustness of detection model.

(3) The proposed method is suitable for online detection with earlier detection location and less
number of false alarms, as it can reduce the inconsistent data distribution between auxiliary
bearings and target bearing.

In our next work, we plan to study theoretically the structure of deep neural network with better
robustness and generalization ability. Ideally speaking, we can add a regularizer into RDA to constrain
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the data distribution of common features. Moreover, an incremental learning strategy and network
structure for online detection will be considered more.
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