
electronics

Article

Energy-Efficient Method for Wireless Sensor
Networks Low-Power Radio Operation in Internet
of Things

Mehdi Amirinasab Nasab 1 , Shahaboddin Shamshirband 2,3,* ,
Anthony Theodore Chronopoulos 4,5 , Amir Mosavi 6,7 and Narjes Nabipour 8

1 Internet of Things Laboratory, 6514867953 Hamedan, Iran; Mehdi.amiri.n@gmail.com
2 Department for Management of Science and Technology Development, Ton Duc Thang University,

Ho Chi Minh City, Vietnam
3 Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam
4 Department of Computer Science, University of Texas, San Antonio, TX 78249, USA; antony.tc@gmail.com
5 Department of Computer Engineering & Informatics, University of Patras, Patras, 26500 Rio, Greece
6 Institute of Structural Mechanics, Bauhaus-Universität Weimar, D-99423 Weimar, Germany;

amir.mosavi@uni-weimar.de
7 Faculty of Health, Queensland University of Technology, 130 Victoria Park Road,

Kelvin Grove QLD 4059, Australia
8 Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam;

narjesnabipour@duytan.edu.vn
* Correspondence: shahaboddin.shamshirband@tdtu.edu.vn

Received: 14 January 2020; Accepted: 3 February 2020; Published: 12 February 2020
����������
�������

Abstract: The radio operation in wireless sensor networks (WSN) in Internet of Things (IoT)
applications is the most common source for power consumption. Consequently, recognizing and
controlling the factors affecting radio operation can be valuable for managing the node power
consumption. Among essential factors affecting radio operation, the time spent for checking the
radio is of utmost importance for monitoring power consumption. It can lead to false WakeUp or
idle listening in radio duty cycles and ContikiMAC. ContikiMAC is a low-power radio duty-cycle
protocol in Contiki OS used in WakeUp mode, as a clear channel assessment (CCA) for checking
radio status periodically. This paper presents a detailed analysis of radio WakeUp time factors of
ContikiMAC. Furthermore, we propose a lightweight CCA (LW-CCA) as an extension to ContikiMAC
to reduce the Radio Duty-Cycles in false WakeUps and idle listening though using dynamic received
signal strength indicator (RSSI) status check time. The simulation results in the Cooja simulator show
that LW-CCA reduces about 8% energy consumption in nodes while maintaining up to 99% of the
packet delivery rate (PDR).

Keywords: Internet of Things; IoT; wireless sensor networks; ContikiMAC; energy efficiency;
duty-cycles; clear channel assessments; fog computing; smart sensors; signal processing; received
signal strength indicator (RSSI)

1. Introduction

The advancement of hardware systems for IoT is an essential research domain of large-scale
wireless sensor networks (WSN). In this realm, the development of low-power wireless communication
is of utmost importance. Since these types of devices are usually powered by low capacity batteries to
provide both sensing and actuation capabilities, managing power consumption is one of the major
challenges in designing their hardware and software. The radio is the greatest source of power

Electronics 2020, 9, 320; doi:10.3390/electronics9020320 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-1541-1489
https://orcid.org/0000-0002-6605-498X
https://orcid.org/0000-0002-0094-1017
https://orcid.org/0000-0003-4842-0613
https://orcid.org/0000-0003-3882-3179
http://dx.doi.org/10.3390/electronics9020320
http://www.mdpi.com/journal/electronics
http://www.mdpi.com/2079-9292/9/2/320?type=check_update&version=3


Electronics 2020, 9, 320 2 of 19

consumption in a sensor node. Although the sensor network improves and enhances the performance
of other technologies, it also presents challenges due to some of their inherent characteristics and
location in a variety of environments. The nodes comprising a wireless sensor network are expected to
be small, reliable, low cost, and low power. In some situations, the nodes are in hard-to-reach areas,
so their power supply is usually battery or harvest energy from the environment. In both models of
power supply the management of power consumption in the nodes is mandatory, in the former case to
avoid battery replacement and in latter case to reduce the cost of the energy harvesting system [1–3].

Contiki OS is a well-known lightweight operating system that can be used to manage low-power
wireless platforms based on wireless internet communication. In wireless networks, in many cases, it is
necessary to relay data between nodes to reach the destination. The radio duty cycle (RDC) protocols
available on Contiki OS allow end nodes and even relay nodes to sleep and save energy between each
message sending or relay, so the network lifetime is increased. ContikiMAC is a radio duty cycling
protocol available in Contiki OS based on the low power listening (LPL) mechanism [4]. It uses the
periodic WakeUps method to monitor the communication medium for ongoing transmissions from
neighbor nodes. ContikiMAC tries to reduce the amount of energy consumed by radio activities by
using pairs of clear channel assessments (CCA) in every sleep and wake up sequence and providing a
model of radio management. CCA identifies to recognize the difference interference by measuring the
received signal strength indicator (RSSI) thresholds [5,6].

The major power consumption in ContikiMAC is spent on the WakeUps of nodes. The WakeUp
is known as a single radio check with a chance to detect the activity of a radio. The WakeUps can
be considered in three categories, positive WakeUps, which results in the receipt of the packet, false
WakeUps, which results in noise or interferences, and idle listening [7]. Idle listening occurs when
the communication medium monitoring does not detect any activity on the radio. Implementing the
CCA model on WSN hardware to recognize the different interference is extremely challenging due
to the limitations of the low power radio, such as TI CC2420. The power consumption over radio
listening mode (Rx) is unavoidable. Nodes should periodically listen to the radio channel to reduce
the communication latency in-network, even if data traffic is slow [8]. In this paper, we carefully
investigate the time factors associated with a radio WakeUp on the ContikiMAC and to reduce the
radio power consumption by dynamic radio check time in WakeUps on the Rx mode. RSSI status
check is an essential timing parameter during radio check-in nodes. Consequently, in this research
particular attention has been paid to RSSI status check to enable an efficient manipulation of radio
check within the limits during the Rx. The maximum timing of radio check is used when RSSI is either
new or identified as a positive WakeUp. Otherwise, the false WakeUp or idle listening are associated
with minimum timing of radio check. In the proposed method the radio check is essentially based
on RSSI where the use of CCA is minimized. CCA is used only for the purpose of RSSI validation
and classification.

The rest of the paper is structured as follows. Section 2 provides an overview of related works.
Section 3 identifies the hardware and software tools, as well as the scenario used in this paper. Section 4
highlights the challenge of ContikiMAC in WakeUps as a problem statement. Section 5 proposes a
lightweight clear channel assessment (LW-CCA) method to reduce power consumption in WakeUp
mode. Section 6 contains simulations to compare the proposed method to the ContikiMAC base
method. Section 7 presents concluding remarks and future work.

2. Related Works

One of the most important challenges in implementing IoT applications is the power management
of hardware platforms. Nowadays, researchers are using many new technologies to minimize radio
power consumption so that they can pave the way for IoT. The communication to sending and receiving
data on the network is typically the most energy-consuming task in IoT applications [9]. Since the
communication of the nodes is in the radio WakeUp state, so a lot of effort has been devoted to designing
energy-efficient radio WakeUp models in the last decades. Different methods based on hardware and



Electronics 2020, 9, 320 3 of 19

software have been suggested to control the radio WakeUp mode. Magno et al. [10] have considered
the combination of energy harvesting WakeUp receiver and LoRa radio technology to design a new IoT
node for long and short-range networking. In another method in [11], BLE technology and WakeUp
radio are integrated with energy harvesting. The design of both proposed methods is hardware-based
so that a dual-radio mechanism using separate components is used in Node radio structure on a single
chip that is expensive for IoT devices. When implementing WSN on a large scale, small hardware size
and low cost are very important factors. CTP-WUR [12], Guo et al. [13], and WUR-MAC [14] have
introduced other methods that are more responsive to channel changes using protocol-based design.
Recently, cognitive radio has been used as a solution to the opportunistic spectrum access in WSN [15].
ZIPPY [16] reduces latency and power consumption as a synchronization method using WakeUp radio
and the MAC synchronization protocol.

Node mobility is one of the important challenges in designing a wake-up schedule (e.g., [17]).
Failure to consider node mobility, where node mobility is likely, leads to excessive overhead and as well
as this results in poor schedule performance. In addition, the design of WakeUP-based radio systems
should also address the challenges associated with WakeUp radio signal propagation in the forest,
industrial, or indoor body environments. One of the important issues in low-power radios under
WakeUp states is the coexistence with unrelated radio. For example, in-home automation systems
and medical technologies, 802.15.4 radios are commonly used but the interference of these types of
radios with waves of radio like Wi-Fi leads to a decrease in network performance. Another issue of
discussion among researchers is the coexistence between 802.15.4 radios and unrelated radios that lead
to the classification, detection, and reduction methods [7]. Airshark [18] and WiFiNet [19] get spectrum
information using powerful Wi-Fi hardware and detect nonWi-Fi interference. Another method based
on interference information is DOF [20] that provides the local wireless information plane. In the other
method in [21], 16 ZigBee channel is scanned to classify spectrum characteristics. The authors, in [22],
design a framework to scan the 2.4 GHz band. The beacons are periodically detected to be identified as
Wi-Fi signals in ZiFi [23] and ZiFind. This method is dependent on long-term sampling. SoNIC [24]
enables resource-limited sensor nodes to detect the type of interference they are exposed to and select
an appropriate mitigation strategy. The key insight underlying SoNIC is that different interferers
disrupt individual 802.15.4 packets in characteristic ways that can be detected by sensor nodes.

Tang et al. [25] proposed a CCA threshold adaptation method to reduce the impact of interference
on packet loss in WSN. Under Wi-Fi interference, the proposed method results showed that increasing
the CCA threshold has the effect of reducing the CCA collision and, consequently, improving the WSN
packet delivery rate. In the proposed method, the CCA threshold is adjusted adaptively based on the
transmit buffer overflows rate in the node. Since there is only one CCA check before transmitting in
Zigbee, this approach is only Zigbee-based and is not the case for MAC protocols that are based on
multiple CCA per transmission. AEDP [6] is an adaptive energy detection protocol for LPL, which
dynamically adjust a node’s CCA threshold to improve network reliability and duty cycle based on
application-specified bounds. AEDP can effectively mitigate the impact of noise on radio duty cycles
while maintaining satisfactory link reliability.

Tang et al. present interference aware adaptive clear channel assessment (IAACCA), which more
proactively contends for channel access by replacing the standard CCA [26]. In this method, unlike the
Zigbee that performs single CCA, the sequence of CCAs is performed until the channel is found to be
clear. Under Wi-Fi interference, IAACCA reduces packet loss compared to standard CSMA mechanism.
In IAACCA, a policy decision is adapted after collision with interference. In the other proposed
method, ZiSense [27] reduces false WakeUps by using an active scanning technique in duty cycling
MAC protocols. The authors in Zisense present one approach to realizing DCCA by RSSI sampling at
high frequency, listening for timing and spectral characteristics indicative of 802.15.4.P-DCCA [25]
proposed an optimized approach to differentiating clear channel assessment (DCCA) so that a variety
of output power is considered in the transmission mode. A P-DCCA check indicates two states, when



Electronics 2020, 9, 320 4 of 19

the transmission medium is occupied by another WSN node, and when the channel is occupied by
external interference. This method is based on ContikiMAC, the radio duty cycle protocol.

The above methods are either hardware-based or in some case, they are based on WiFi radio.
In some methods, they are based on a single CCA in every WakeUp as opposed to the ContikiMAC
protocol. Nevertheless, some of them have high complexity in terms of code and also dependent on the
sink coordination, routing control, and signal modulation. In the current paper, LW-CCA (light weight
clear channel assessment) is presented as an extension of ContikiMAC. It is designed to reduce energy
consumption caused by idle listenings and false WakeUps in the ContikiMAC concerning the high
packet delivery rate (PDR) [28]. LW-CCA mechanism is a non-complex method, and it is independent
to sink and to route mechanism by minimum complexity in programming. The LW-CCA, through
focusing on the time factors in radio wake-up, offers a method to reduce the percentage of radio duty
cycles in false WakeUps and idle listenings. Finally, LW-CCA is compared via simulation to the basic
ContikiMAC. The proposed method can be used on low power IOT platforms based on 802.15.4 radio
and Contiki OS, such as Z1, Tmote-SKY, and Micaz [29].

3. Software Platform and Simulation Tools

In the present study, we use the latest version of Contiki 3.0. As mentioned above, Contiki is
an open-source operating system for the Internet of Things that supports tiny low-cost, low-power
microcontrollers connected to the Internet. We focus on Contiki available features such as platforms,
network protocols, and radio duty cycles to provide an optimized way to reduce energy consumption
in IoT nodes [30]. In this research, we use the Cooja simulator available at Contiki Os to simulate
the network scenario and run the proposed method on the nodes. The collect-view data gathering
software is used to evaluate the status of network nodes in terms of different parameters. One of the
strengths of Cooja is the ability to simulate radio medium activity, that the researchers can graphically
analyze the radio states [31,32].

3.1. Platform

In the present study, we use the Tmote-Sky platform as the network nodes with MSP430
microcontroller for network simulation. Contiki OS considers the value of 32,768 Hz as tick per
the second parameter in the RTIMER_SECOND variable based on the MSP430F1611 basic clock
module [33]. The frequency of a real-time clock varies with the application. The frequency 32,768 Hz
(32.768 kHz) is used because it is a power of 2 (215) value. Also, one can get a precise 1 s period (1 Hz
frequency) by using a 15 stage binary counter. RTIMER_SECOND variable has a key role in calculating
radio activity times [34].

The radio used in the Tmote-Sky Platform is CC2420. The CC2420 is an IEEE 802.15.4 compliant RF
transceiver 2.4 GHz designed for low-power and low-voltage WSN applications. CC2420 is controlled
via SPI port, and a series of digital output and input, as well as interrupts by MSP430. The CC2420
driver in Contiki OS provides two types of radio check, CCA and RSSI. CCA is based on the measured
RSSI value and a programmable threshold [35]. The RSSI value is averaged over eight symbol periods
(128 µs), in accordance with [26]. MCU SPI pin takes strobe commands registers and sends them to
CSn Radio pin for calibration. There are types of registers, status bits, and pins for radio control in
CC2420 driver in Contiki OS. Table 1 lists the ones which are used in three ON (), RSSI (), and OFF ()
functions in the course of an idle listening channel check by RSSI according to CC2420.c file available
in Contiki OS.



Electronics 2020, 9, 320 5 of 19

Table 1. Participants in one idle listening based on CC2420 driver source code in Contiki OS.

Parameter Type ON() RSSI() OFF()

SRXON register
SRFOFF register X

RSSI register X
SNOP register X X

SFLUSHRX register X
RXFIFO register X

RSSI_VALID status bit *
TX_ACTIVE status bit *

CSN pin *
FIFOP pin *

3.2. Energest Module

In implementing the proposed method we use the Enegest module feature to configure the
application on nodes. Contiki uses the Energest software-based module to estimate the power
consumption of the nodes. With this module, time spent for every sensor node is measured in some
states such as CPU, LPM, Tx, and Rx in real-time. The energy estimation module is called when the
component is turned on to produce a time stamp. The power consumption of nodes is calculated as

P = P_CPU + P_LPM + P_Rx + P_Tx (1)

The average power consumption of each node (P) is sum of the average power consumption
in CPU state (P_CPU) that is activated whenever the node is active (the real-time the CPU is active
without using the radio transceiver is CPU −Tx –Rx), LPM state (P_LPM) that is activated when the
sensor node goes to low power mode, Rx state (P_Rx) that node is active in the radio receive mode
and Tx state (P_Tx) that radio is active in transmit mode. The battery voltage (Vcc) and current power
consumption in the indicated state are set based on platform datasheet. In fact, the energy consumption
in states is calculated based on the number of CPU ticks based on microcontroller, current power
consumption in indicated state, and battery voltage [36,37]. The Tmote-Sky power parameters are
considered according to Table 2 as follows.

Table 2. Power parameters in Tmote-Sky based on [38].

Variable Power Current Consumption State Value Unit

VCC Supply voltage 3 volt
PC_CPU MCU on, Radio off 1.8 mW
PC_LPM MCU idle, Radio off 0.0545 mW

PC_Tx MCU on, Radio Tx 17.7 mW
PC_Rx MCU on, Radio Rx 20 mW

3.3. Network Scenario

Since the purpose of this paper is not merely to provide a method for simple and one hop networks,
the basis of this research is based on a multi-hop random network in order to make the proposed
method as practical as possible. In the multi-hop random scenario, nodes are exposed to different
numbers of neighbors, so interference has a greater impact on nodes. Nodes also have different
amounts of RSSI. On the other hand, the network packets are more likely to be lost. In addition, each
node experiences a different number of retries in sending packets [39]. Therefore, in the random
scenario, the power consumption in the nodes is not monotonous. Figure 1 shows a scenario and
network graph based on RPL routing protocol such that 20 sender nodes and one sink node or border
router that they are scattered in the environment dimensions 100 square meters (100 × 100 m) randomly.
In the current study, nodes are considered to be fix. The transmitter range at all nodes is equal to 50 m.



Electronics 2020, 9, 320 6 of 19Electronics 2020, 20, x FOR PEER REVIEW 6 of 20 

 

 
 

Figure 1. Simulation scenario and network graph based on the RPL routing protocol. 

3.4. Network Protocols 

The Network layer protocol’s stack on the nodes list in Table 3 is among the most widely used 
in WSN. We use the feature of a collect-view application available in Contiki OS to allow data to be 
aggregated and categorized by a node in the network. It basically involves a sink node and one (or 
more) sender nodes. Data such as sensor, power, and network information is sent from the sender 
node to the sink node, and the collect-view (a java-based application available in Contiki OS Cooja) 
displays them in a graphical form [40]. In this work, the IPv6 Routing Protocol for LLNs (RPL) is set 
as a proactive routing protocol. RPL automatically forms a tree topology by exchanging ICMPv6 
control packets to find a path to the root. 6LowPAN (i.e., IPv6 over Low -Power Wireless Personal 
Area Networks) is an adaptation layer protocol that allows the transport of IPv6 packets over 802.15.4 
links. Carrier sense multiple access with collision avoidance (CSMA/CA) adopted for Mac layer as 
the IEEE 802.15.4 standard, and finally, ContikiMAC are used as the RDC layer for control 802.15.4 
radio based on Low Power Listening (LPL). The RDC layer in the sink is set to Null_RDC, so the sink 
does not sleep during network life. 

Table 3. Network layers structure used on the nodes [36] 

Layer  Protocol Standard 
Application Collect view - 
Transport UDP IETF RFC 768 
Network RPL/IPv6 IETF RFC 6550 

Adaptation 6lowpan IETF RFC 6282 
Data link IEEE 802.15.4 MAC (CSMA) IEEE 802.15.4 

Radio Duty Cycling ContikiMAC - 
Physical IEEE 802.15.4 PHY IEEE 802.15.4 

4. Problem Statement 

From the moment a ContikiMAC node is turned on, the radio check is repeatedly adapted to 
send and receive data types, such as routing packets, medium control packets, or packets containing 
environment sensor information. Each node performs a large number of WakeUp Rx modes 
depending on the environment. Two conditions can be considered: 1) the node is ideally positioned 
over minimum interference with other unrelated radio or noise signal; 2) the node is in a state of 
coexistence with unrelated radios, noise, or interference. In the state 1, between each data reception 
(positive WakeUp) the node will have a large number of idle listening that plays a significant role in 
the activity of a radio. In the state 2, in addition to idle listening, the node also has many false 
WakeUp. Figure 2 shows samples of positive, false, and idle listening WakeUp on the Radio Timeline 

Figure 1. Simulation scenario and network graph based on the RPL routing protocol.

3.4. Network Protocols

The Network layer protocol’s stack on the nodes list in Table 3 is among the most widely used
in WSN. We use the feature of a collect-view application available in Contiki OS to allow data to
be aggregated and categorized by a node in the network. It basically involves a sink node and one
(or more) sender nodes. Data such as sensor, power, and network information is sent from the sender
node to the sink node, and the collect-view (a java-based application available in Contiki OS Cooja)
displays them in a graphical form [40]. In this work, the IPv6 Routing Protocol for LLNs (RPL) is
set as a proactive routing protocol. RPL automatically forms a tree topology by exchanging ICMPv6
control packets to find a path to the root. 6LowPAN (i.e., IPv6 over Low -Power Wireless Personal
Area Networks) is an adaptation layer protocol that allows the transport of IPv6 packets over 802.15.4
links. Carrier sense multiple access with collision avoidance (CSMA/CA) adopted for Mac layer as the
IEEE 802.15.4 standard, and finally, ContikiMAC are used as the RDC layer for control 802.15.4 radio
based on Low Power Listening (LPL). The RDC layer in the sink is set to Null_RDC, so the sink does
not sleep during network life.

Table 3. Network layers structure used on the nodes [36].

Layer Protocol Standard

Application Collect view -
Transport UDP IETF RFC 768
Network RPL/IPv6 IETF RFC 6550

Adaptation 6lowpan IETF RFC 6282
Data link IEEE 802.15.4 MAC (CSMA) IEEE 802.15.4

Radio Duty Cycling ContikiMAC -
Physical IEEE 802.15.4 PHY IEEE 802.15.4

4. Problem Statement

From the moment a ContikiMAC node is turned on, the radio check is repeatedly adapted to
send and receive data types, such as routing packets, medium control packets, or packets containing
environment sensor information. Each node performs a large number of WakeUp Rx modes depending
on the environment. Two conditions can be considered: (1) the node is ideally positioned over
minimum interference with other unrelated radio or noise signal; (2) the node is in a state of coexistence
with unrelated radios, noise, or interference. In the state 1, between each data reception (positive
WakeUp) the node will have a large number of idle listening that plays a significant role in the activity
of a radio. In the state 2, in addition to idle listening, the node also has many false WakeUp. Figure 2
shows samples of positive, false, and idle listening WakeUp on the Radio Timeline in Cooja simulator.



Electronics 2020, 9, 320 7 of 19

The x- and y-axes represent to node numbers and their activity of radio, respectively. In this simulated
example, the power configuration and the network layers of the nodes are according to Tables 2 and 3,
respectively. The red, blue, and green colors in the activity of radio line show interference, sending
packet, and receiving packet respectively [41].

Electronics 2020, 20, x FOR PEER REVIEW 7 of 20 

 

in Cooja simulator. The x- and y-axes represent to node numbers and their activity of radio, 
respectively. In this simulated example, the power configuration and the network layers of the nodes 
are according to Tables 2 and 3, respectively. The red, blue, and green colors in the activity of radio 
line show interference, sending packet, and receiving packet respectively [41]. 

 
Figure 2. Positive, false, and idle listening WakeUp in Cooja timeline. 

The ContikiMAC considers CCA_CHECK_TIME that is the time it takes to perform a CCA 
check. In fact, CCA_CHECK_TIME is a balancing time for other timing parameters in ContikiMAC, 
and it has no direct effect on CCA duration. The time spent on each false WakeUp is depending on 
MAX_NONACTIVITY_PERIODS. It is the maximum number of periods we allow the radio to be 
turned on without any packet being received. Each period counts as a sum of CCA_CHECK_TIME 
and CCA_SLEEP_TIME. The CCA_SLEEP_TIME is the time between two successive CCA checks. 
The time variables in ContikiMAC that affect both idle listening and false WakeUp times are shown 
in Table 4. The fast-sleep mechanism is responsible for the diagnosis of false WakeUps in 
ContikiMAC. Therefore, if the node fails to receive data after 11 periods (21.1 ms), it quickly returns 
to sleep mode. 

Table 4. Amount of effect on idle listenings and false WakeUps according to ContikiMAC.c 

Variable CPU Ticks Unit (ms)  
CCA_CHECK_TIME 32768/8192 0.4 
CCA_SLEEP_TIME (32768/2000) + 1 1.7 

MAX_NONACTIVITY_PERIODS 10 × (CCA_CHECK_TIME + CCA_SLEEP_TIME) 21 

Table 5 shows the number of idle listenings and false WakeUps during the 10-min simulation in 
the 5, 7, 12 nodes according to Sections 3.3 and 3.4. For example, the time spent in idle listening and 
false WakeUp in Node7 is calculated as Equation (2). In fact, almost 1.6% of the network time is 
wasted in idle listening and false WakeUp in Node 7. This is, of course, a mere indication of the effect 
of the wake-up time loss on idle listenings and WakeUps, and it is not a definite value. Thus except 
for the positive WakeUps, the node tolerates inefficient energy consumption in idle listenings and 
false WakeUps. Because this value varies depending on the application and location of the nodes. 

Table 5. Number of idle listenings and false WakeUps in nodes 5, 7, and 12 

Node Number Idle Listenings False WakeUp  

5 11,357 115 

7 13,895 220 

12 12,082 50 
 

Figure 2. Positive, false, and idle listening WakeUp in Cooja timeline.

The ContikiMAC considers CCA_CHECK_TIME that is the time it takes to perform a CCA check.
In fact, CCA_CHECK_TIME is a balancing time for other timing parameters in ContikiMAC, and
it has no direct effect on CCA duration. The time spent on each false WakeUp is depending on
MAX_NONACTIVITY_PERIODS. It is the maximum number of periods we allow the radio to be
turned on without any packet being received. Each period counts as a sum of CCA_CHECK_TIME
and CCA_SLEEP_TIME. The CCA_SLEEP_TIME is the time between two successive CCA checks.
The time variables in ContikiMAC that affect both idle listening and false WakeUp times are shown in
Table 4. The fast-sleep mechanism is responsible for the diagnosis of false WakeUps in ContikiMAC.
Therefore, if the node fails to receive data after 11 periods (21.1 ms), it quickly returns to sleep mode.

Table 4. Amount of effect on idle listenings and false WakeUps according to ContikiMAC.c.

Variable CPU Ticks Unit (ms)

CCA_CHECK_TIME 32768/8192 0.4
CCA_SLEEP_TIME (32768/2000) + 1 1.7

MAX_NONACTIVITY_PERIODS 10 × (CCA_CHECK_TIME + CCA_SLEEP_TIME) 21

Table 5 shows the number of idle listenings and false WakeUps during the 10-min simulation
in the 5, 7, 12 nodes according to Sections 3.3 and 3.4. For example, the time spent in idle listening
and false WakeUp in Node7 is calculated as Equation (2). In fact, almost 1.6% of the network time is
wasted in idle listening and false WakeUp in Node 7. This is, of course, a mere indication of the effect
of the wake-up time loss on idle listenings and WakeUps, and it is not a definite value. Thus except for
the positive WakeUps, the node tolerates inefficient energy consumption in idle listenings and false
WakeUps. Because this value varies depending on the application and location of the nodes.

Tnode 7 = Tidle + T f alseTnode 7 = (13895× 0.4) + (220 × 21) = 5558 + 4620 = 10178 ms (2)

Table 5. Number of idle listenings and false WakeUps in nodes 5, 7, and 12.

Node Number Idle Listenings False WakeUp

5 11,357 115
7 13,895 220

12 12,082 50



Electronics 2020, 9, 320 8 of 19

5. Lightweight Clear Channel Assessment (LW-CCA)

In this paper, we propose the LW-CCA, a lightweight, low-complexity programming method
designed to minimize WakeUp power on ContikiMAC nodes. In this method, it attempts to reduce
the time spent in Rx mode by maintaining a PDR rate similar to base ContikiMAC. By focusing on
software and hardware RSSI status check time, LW-CCA reduces the percentage of duty cycles as much
as possible to reduce radio power consumption. The minimum WakeUp time for a medium check
would take at least one idle listening. In Section 5.1, a single idle listening is analyzed to identify the
essential time factors. Furthermore, the evaluation of the minimum and maximum RSSI status check
time on nodes is presented in Section 5.2. In Section 5.3, the LW-CCA node categories RSSI based on
the CCA verification, whether they are predicted as a false WakeUp, idle listening, or positive WakeUp.
Finally, in Section 5.4, the performance of LW-CCA for the classification and validation of RSSI and the
dynamic radio check time are described. Worth mentioning that LW-CCA runs exclusively on the relay
and sender node, not sink or server node. The proposed method is considered when the nodes are
fixed in the network. The following sections describe the details of the proposed method.

5.1. Time Factors in a Single RSSI Radio Check

The basis of LW-CCA is the momentary check of RSSI. In this study, we examine the time
parameters involved in an RSSI radio check. The relationship between ContikiMAC functions, the
CC2420 driver, and the Energest module is shown in Figure 3. In general, each RSSI radio check
consists of three phases:

• Phase 1: Checking permissions for radio driver access by RDC, registering radio hardware to Rx
mode by the radio driver, and recording start time of Rx by Energest.

• Phase 2: Validating the RSSI and returning RSSI value from related radio register.
• Phase 3: Set the radio registers to ‘off’ state, Preparing the radio queue for the next stage of radio

activity and also announce the end of Rx state to Energest module.

Since our goal is to manage WakeUp time based on radio potentials, so analysis and retrieval of
time factors affecting WakeUp are inevitable. Figure 3 shows a single WakeUp diagram based on the
RSSI check.

Every radio WakeUp lasts between strobe CC2420_SRXON and strobe CC2420_SRFOFF. The number
of CPU ticks in the radio check is saved in Energest. The wait_for_status (CC2420_RSSI_VALID) in phase
2 is known as an important time factor for a single RSSI check. It takes time equal with Equation (3).

T∆ =
RTIMER_SECOND

10
(3)

Table 6 shows time factors which are resulted from analyzing the relationship between RDC and
radio hardware in an RSSI check. The table is extracted from the radio Timeline in Cooja.

Table 6. Effective time factors per idle listening based on RSSI under Cooja simulator timeline.

t_wait_for_status (ms) t_RSSI (ms) total_time (ms)

0.32 0.128 0.448



Electronics 2020, 9, 320 9 of 19

Electronics 2020, 20, x FOR PEER REVIEW 9 of 20 

 

 
Figure 3. Diagram of the relationship between RDC, the radio driver, and the Energest module in 
performing a single RSSI. 

Every radio WakeUp lasts between strobe CC2420_SRXON and strobe CC2420_SRFOFF. The 
number of CPU ticks in the radio check is saved in Energest. The wait_for_status 
(CC2420_RSSI_VALID) in phase 2 is known as an important time factor for a single RSSI check. It 
takes time equal with Equation (3).  = RTIMER_SECOND 10  (3) 

Table 6 shows time factors which are resulted from analyzing the relationship between RDC and 
radio hardware in an RSSI check. The table is extracted from the radio Timeline in Cooja. 

Figure 3. Diagram of the relationship between RDC, the radio driver, and the Energest module in
performing a single RSSI.

Every RSSI check involves the different action timings: t_wait_for_status is time spent for RSSI
status check based on Equation (3). t_RSSI is time spent for the read of RSSI status check. Total_time
is the sum of the time spent in an RSSI radio check. Actually in an RSSI check, the t_wait_ f or_status
takes the longest time 0.32 milliseconds (20 symbols period according to [42]) to doing a reliable
RSSI status check-in ContikiMAC. Therefore, it indicates that ContikiMAC devotes more time to RSSI
status checking than the eight-symbol periods suggested in CC2420 datasheet. It should be noted that
20 Symbols has no role in RSSI reception. In fact, it is a BackOFF for reliable time to wake the radio.



Electronics 2020, 9, 320 10 of 19

5.2. RSSI Check Time Models in LW-CCA

This section examines the hardware and software RSSI status check time. Based on the phase 2
Section 5.1, LW-CCA divides the radio check time into T∆ and t_RSSI time periods. The following
function is responsible for doing the RSSI validation under a period of time t_RSSI = 0.128 ms
(8 symbols) and T∆ = 0.32 ms (20 symbols) in cc2420.c.

static void
wait_for_status(uint8_t status_bit)
{
rtimer_clock_t t0;
t0 = RTIMER_NOW();
while(!(get_status() & status_bit)
&& RTIMER_CLOCK_LT(RTIMER_NOW(), t0 +

RTIMER_SECOND / 10);
}

The LW-CCA, with respect to radio check time partition, considers two models for a dynamic
check in the Rx mode.

Model 1: This model considers RSSI check for measuring signal strength in Rx and uses default
CCA check-in Tx mode. The RSSI status check time is by default method in CC2420 driver based on
the sum of T∆ and t_RSSI.

Model 2: In this model, considering T∆ = 0, the RSSI check time is considered to be equal with
the eight-symbol period’s case. In fact, the RSSI status check is performed over the intended time
for the cc2420 radio chip. The rest of the conditions are the same as in Model 1. The following
function is responsible for doing the RSSI validation under a period of time t_RSSI = 0.128 ms.

static void
wait_for_status(uint8_t status_bit)
{
rtimer_clock_t t0;
t0 = RTIMER_NOW();
while(!(get_status() & status_bit)
&& RTIMER_CLOCK_LT(RTIMER_NOW(),
t0);
}

Table 7 shows a comparison between indicated models in terms of percentage of the listening duty
cycle according to the scenario in Sections 3.3 and 3.4 in a 40 min (High Rate). It shows that ignoring
T∆ in RSSI status check time for nodes based on model 2 results in about 11 percentage reduction in
average of the listening duty cycle. The results in Table 7 are extracted based on the Collect-View
output. The details of the average listen duty cycle calculation are available in Section 6.

Table 7. Comparison of models of 1 and 2 in terms of percentage of listen duty-cycle.

Method Rx| Tx Listen Duty-Cycle (%)

Model 1 RSSI | CCA 1.451
Model 2 RSSI | CCA 1.282

Therefore, each RSSI status check can be divided into two states: 8 internal symbols set for
CC2420 radio hardware and 20 symbols for performing a reliable radio WakeUp on Rtimer equal to
Equation (3). In fact, 8 and 20 symbols can be considered as the minimum and maximum periods
required to perform a minimum radio check time, respectively. Figure 4 illustrates the performance
of the RSSI status check. The file Msp802154Radio.java in Cooja is responsible for simulating eight
symbols for RSSI status check based on CC2420 radio datasheets.



Electronics 2020, 9, 320 11 of 19

Electronics 2020, 20, x FOR PEER REVIEW 11 of 20 

 

Table 7. Comparison of models of 1 and 2 in terms of percentage of listen duty-cycle 

Method Rx|  Listen Duty-Cycle (%) 
Model 1 RSSI | CCA 1.451 
Model 2 RSSI | CCA 1.282 

Therefore, each RSSI status check can be divided into two states: 8 internal symbols set for 
CC2420 radio hardware and 20 symbols for performing a reliable radio WakeUp on Rtimer equal to 
Equation (3). In fact, 8 and 20 symbols can be considered as the minimum and maximum periods 
required to perform a minimum radio check time, respectively. Figure 4 illustrates the performance 
of the RSSI status check. The file Msp802154Radio.java in Cooja is responsible for simulating eight 
symbols for RSSI status check based on CC2420 radio datasheets. 

 
Figure 4. Performance of RSSI status checks based on radio hardware and ContikiMAC. 

Figures 5 and 6 show changes in RSSI check time in nodes based on model 1 and 2 in Rx and Tx 
mode. In this simulated example, the power configuration and the network layers (except for the 
amount of RSSI check time in ContikiMAC) of the nodes are according to Tables 2 and 3, respectively. 
The difference between the radio checks is shown in Figure 6 with some zoom to make the difference 
clearer. In both models, the radio check is assumed to be based on default CCA in Tx mode. 

 
Figure 5. Model 1: RSSI check-in Rx (28 symbols) and Tx(28 symbols) in Cooja timeline. 

Figure 4. Performance of RSSI status checks based on radio hardware and ContikiMAC.

Figures 5 and 6 show changes in RSSI check time in nodes based on model 1 and 2 in Rx and Tx
mode. In this simulated example, the power configuration and the network layers (except for the
amount of RSSI check time in ContikiMAC) of the nodes are according to Tables 2 and 3, respectively.
The difference between the radio checks is shown in Figure 6 with some zoom to make the difference
clearer. In both models, the radio check is assumed to be based on default CCA in Tx mode.

Electronics 2020, 20, x FOR PEER REVIEW 11 of 20 

 

Table 7. Comparison of models of 1 and 2 in terms of percentage of listen duty-cycle 

Method Rx|  Listen Duty-Cycle (%) 
Model 1 RSSI | CCA 1.451 
Model 2 RSSI | CCA 1.282 

Therefore, each RSSI status check can be divided into two states: 8 internal symbols set for 
CC2420 radio hardware and 20 symbols for performing a reliable radio WakeUp on Rtimer equal to 
Equation (3). In fact, 8 and 20 symbols can be considered as the minimum and maximum periods 
required to perform a minimum radio check time, respectively. Figure 4 illustrates the performance 
of the RSSI status check. The file Msp802154Radio.java in Cooja is responsible for simulating eight 
symbols for RSSI status check based on CC2420 radio datasheets. 

 
Figure 4. Performance of RSSI status checks based on radio hardware and ContikiMAC. 

Figures 5 and 6 show changes in RSSI check time in nodes based on model 1 and 2 in Rx and Tx 
mode. In this simulated example, the power configuration and the network layers (except for the 
amount of RSSI check time in ContikiMAC) of the nodes are according to Tables 2 and 3, respectively. 
The difference between the radio checks is shown in Figure 6 with some zoom to make the difference 
clearer. In both models, the radio check is assumed to be based on default CCA in Tx mode. 

 
Figure 5. Model 1: RSSI check-in Rx (28 symbols) and Tx(28 symbols) in Cooja timeline. Figure 5. Model 1: RSSI check-in Rx (28 symbols) and Tx(28 symbols) in Cooja timeline.Electronics 2020, 20, x FOR PEER REVIEW 12 of 20 

 

 
Figure 6. Model 2: RSSI check-in Rx (8 symbols) and Tx (28 symbols) in Cooja Timeline. 

5.3. Categories of RSSIs in LW-CCA 

The CC2420 in our application returns [−100,0] as the normal range of RSSI, where −100 is the 
minimum level of the noise floor. In performing each RSSI check, the values obtained for RSSI can be 
divided into three categories. Firstly, the values that are valid and determine the radio activity and 
ultimately, it results in the receipt of the data frame (positive WakeUP); Secondly, the values that are 
valid and determine the radio activity and ultimately, it results in the noise or interference (false 
WakeUp); and third the values that are invalid and do not specify any activity on the radio (idle 
listening). In the LW-CCA categories, false WakeUp and idle listening RSSIs are located in rssi_null. 
Figure 7 shows the RSSIs classified. Identification of idle listening and false WakeUp conducted via 
CC2420 driver’s and ContikiMAC’s side and the false WakeUp is reported to CC2420 driver through 
NETSTACK_RADIO [43].  

 
Figure 7. RSSIs classified as null. 

It is important to note that the classification of RSSIs depends on the return value of CCA check, 
so that if CCA value is 0 so ContikiMAC checks false/positive WakeUp, otherwise it is an idle 
listening. The diagnosis of positive WakeUp and false WakeUp is based on a timing mechanism in 
ContikiMAC. It is worth mentioning that, each node when it receiving a new RSSI value, performs 
the validation through CCA. 
  

Figure 6. Model 2: RSSI check-in Rx (8 symbols) and Tx (28 symbols) in Cooja Timeline.

5.3. Categories of RSSIs in LW-CCA

The CC2420 in our application returns [−100,0] as the normal range of RSSI, where −100 is the
minimum level of the noise floor. In performing each RSSI check, the values obtained for RSSI can
be divided into three categories. Firstly, the values that are valid and determine the radio activity
and ultimately, it results in the receipt of the data frame (positive WakeUP); Secondly, the values
that are valid and determine the radio activity and ultimately, it results in the noise or interference
(false WakeUp); and third the values that are invalid and do not specify any activity on the radio



Electronics 2020, 9, 320 12 of 19

(idle listening). In the LW-CCA categories, false WakeUp and idle listening RSSIs are located in rssi_null.
Figure 7 shows the RSSIs classified. Identification of idle listening and false WakeUp conducted via
CC2420 driver’s and ContikiMAC’s side and the false WakeUp is reported to CC2420 driver through
NETSTACK_RADIO [43].

Electronics 2020, 20, x FOR PEER REVIEW 12 of 20 

 

 
Figure 6. Model 2: RSSI check-in Rx (8 symbols) and Tx (28 symbols) in Cooja Timeline. 

5.3. Categories of RSSIs in LW-CCA 

The CC2420 in our application returns [−100,0] as the normal range of RSSI, where −100 is the 
minimum level of the noise floor. In performing each RSSI check, the values obtained for RSSI can be 
divided into three categories. Firstly, the values that are valid and determine the radio activity and 
ultimately, it results in the receipt of the data frame (positive WakeUP); Secondly, the values that are 
valid and determine the radio activity and ultimately, it results in the noise or interference (false 
WakeUp); and third the values that are invalid and do not specify any activity on the radio (idle 
listening). In the LW-CCA categories, false WakeUp and idle listening RSSIs are located in rssi_null. 
Figure 7 shows the RSSIs classified. Identification of idle listening and false WakeUp conducted via 
CC2420 driver’s and ContikiMAC’s side and the false WakeUp is reported to CC2420 driver through 
NETSTACK_RADIO [43].  

 
Figure 7. RSSIs classified as null. 

It is important to note that the classification of RSSIs depends on the return value of CCA check, 
so that if CCA value is 0 so ContikiMAC checks false/positive WakeUp, otherwise it is an idle 
listening. The diagnosis of positive WakeUp and false WakeUp is based on a timing mechanism in 
ContikiMAC. It is worth mentioning that, each node when it receiving a new RSSI value, performs 
the validation through CCA. 
  

Figure 7. RSSIs classified as null.

It is important to note that the classification of RSSIs depends on the return value of CCA check,
so that if CCA value is 0 so ContikiMAC checks false/positive WakeUp, otherwise it is an idle listening.
The diagnosis of positive WakeUp and false WakeUp is based on a timing mechanism in ContikiMAC.
It is worth mentioning that, each node when it receiving a new RSSI value, performs the validation
through CCA.

5.4. Dynamic RSSI Check Time in LW-CCA

This section describes the performance of LW-CCA according to the description of the previous
sections. As mentioned, LW-CCA performance is based on RSSI measurements. In this method, for a
dynamic check, the radio check time works according to the models 1 and 2 (Section 5.2). Every node
has two tasks in receiving RSSIs: i.e., receiving RSSI based on model 1, and re-evaluating RSSI based
on the model 2 and its classification.

The proposed method is illustrated in Figure 8, where nodes perform radio checks in two modes:
listen and transmit mode. In the LW-CCA method, a reduction in Rx radio check time is considered.
Each ContikiMAC node periodically checks the radio with CCA pairs. In fact, each CCA recognizes
the validity and invalidity of radio activity by comparing the RSSI threshold. Based on Section 5.1,
in LW-CCA each radio check uses the RSSI directly. LW-CCA nodes first assign a value of eight
symbols (Model 2) to the status check RSSI. The value obtained is evaluated based on the classification
in Section 5.3. In this case, two states are considered:

1/ RSSI is a member of rssi_null list:

If the RSSI value is a member of the rssi_null list, the node returns 1 to ContikiMAC and quickly
go to sleep. In fact, the node does just eight-symbols RSSI status check.



Electronics 2020, 9, 320 13 of 19

2/ RSSI is a member of the rssi_active List or it is a new RSSI:

If the RSSI value is outside the rssi_null list, it is either a new value or a member of rssi_active.
In both cases, the node re-evaluates the radio based on Model 1. In this case, after the RSSI check,
the CCA check will be considered for validation and classification of RSSI. If CCA returns a value
of 1, the RSSI value is detected as an idle listening and stored as a worthless value in the rssi_null list.
Otherwise, ContikiMAC applies its timing based on Section 4 to check for false Wake Up or positive
WakeUp. If the radio activity in the node results in a false WakeUp the RSSI value is stored in the
rssi_null list and the node goes to sleep quickly based on the Fast-Sleep mechanism. If the RSSI results
in positive WakeUp the node stays on the receiving mode.

Electronics 2020, 20, x FOR PEER REVIEW 13 of 20 

 

5.4. Dynamic RSSI Check Time in LW-CCA 

This section describes the performance of LW-CCA according to the description of the previous 
sections. As mentioned, LW-CCA performance is based on RSSI measurements. In this method, for a 
dynamic check, the radio check time works according to the models 1 and 2 (Section 5.2). Every node 
has two tasks in receiving RSSIs: i.e., receiving RSSI based on model 1, and re-evaluating RSSI based 
on the model 2 and its classification. 

The proposed method is illustrated in Figure 8, where nodes perform radio checks in two modes: 
listen and transmit mode. In the LW-CCA method, a reduction in Rx radio check time is considered. 
Each ContikiMAC node periodically checks the radio with CCA pairs. In fact, each CCA recognizes 
the validity and invalidity of radio activity by comparing the RSSI threshold. Based on Section 5.1, in 
LW-CCA each radio check uses the RSSI directly. LW-CCA nodes first assign a value of eight symbols 
(Model 2) to the status check RSSI. The value obtained is evaluated based on the classification in 
Section 5.3. In this case, two states are considered: 

1/ RSSI is a member of rssi_null list: 

If the RSSI value is a member of the rssi_null list, the node returns 1 to ContikiMAC and quickly 
go to sleep. In fact, the node does just eight-symbols RSSI status check. 

2/ RSSI is a member of the rssi_active List or it is a new RSSI: 

If the RSSI value is outside the rssi_null list, it is either a new value or a member of rssi_active. 
In both cases, the node re-evaluates the radio based on Model 1. In this case, after the RSSI check, the 
CCA check will be considered for validation and classification of RSSI. If CCA returns a value of 1, 
the RSSI value is detected as an idle listening and stored as a worthless value in the rssi_null list. 
Otherwise, ContikiMAC applies its timing based on Section 4 to check for false Wake Up or positive 
WakeUp. If the radio activity in the node results in a false WakeUp the RSSI value is stored in the 
rssi_null list and the node goes to sleep quickly based on the Fast-Sleep mechanism. If the RSSI results 
in positive WakeUp the node stays on the receiving mode. 

 
Figure 8. Diagram of the LW-CCA method. 

The proposed method actually uses the maximum value of the RSSI status check time when the 
RSSI value is detected either new or active. Therefore, in other cases, at least eight symbols are 
considered. LW-CCA thus reduces the amount of radio check-in false WakeUps and idle listening as 
much as possible to reduces the inefficient power consumption caused by radio activity in Rx mode. 
Also, using RSSI validation based on the CCA value makes the node performance reliable in the real 
environment as well. 
  

Figure 8. Diagram of the LW-CCA method.

The proposed method actually uses the maximum value of the RSSI status check time when
the RSSI value is detected either new or active. Therefore, in other cases, at least eight symbols are
considered. LW-CCA thus reduces the amount of radio check-in false WakeUps and idle listening as
much as possible to reduces the inefficient power consumption caused by radio activity in Rx mode.
Also, using RSSI validation based on the CCA value makes the node performance reliable in the real
environment as well.

6. Comparison of LW-CCA with ContikiMAC

We evaluated the proposed method LW-CCA and compared it with ContikiMAC using the Cooja
simulator. Tmote-Sky is used as a hardware platform for nodes on the network. The network protocol
for all nodes is the same as in Table 3. Figure 1 illustrates the network scenario with respect to the RPL
routing protocol graph. It is a random scenario with a variety of hops and neighbors consists of:

• 1 emulated node that is programmed as a sink that plays the role of the root node for RPL in the
network graph. In fact, it is a UDP server that collects data from client nodes;

• 21 emulated duty cycle nodes as UDP clients in network graph that send data to sink;
• power consumption of the nodes being estimated by the Energest module available at Contiki.

The LW-CCA method is compared with the ContikiMAC in terms of the average CPU ticks in
CPU, LPM, Rx and Tx, CPU Power, LPM Power, Rx and Tx Duty-Cycle(%), Rx and Tx power, total
power consumption, and PDR. LW-CCA and ContikiMAC nodes are evaluated based on the two data
transmission rates, once every 60 s (low rate) and once every 30 s (high rate). Simulation time for each
of low rate and high rate scenario is 4 h. The node number “1” is considered as a sink and its radio is
turned on during the network time, so the network status analysis is done based on the sender nodes
from 2 to 21. All of the scenarios outputs are based on Collect-View in Cooja. The equations are based
on embedded equations for power consumption in the Collect-View source code [31]. The power
parameters for simulation are listed in Table 2.



Electronics 2020, 9, 320 14 of 19

6.1. Average of Ticks in CPU, LPM, Rx, and Tx States in the Network

Tick conversion simply refers to the ability to convert physical units to timer ticks [44]. On a
system with a 2 MHz timer, for example, 1 ms is mapped to 2000 ticks. The calculation of the power
consumption in different states for the nodes depends on how long the node stays in every state.
The Energest considers the time spent in different states with the number of ticks in that state. Table 8
shows the average of ticks in CPU, LPM, Rx and Tx states in both low rate and high rate scenarios
in LW-CCA and ContikiMAC nodes. Table 8 shows the average of ticks for CPU (numbers of ticks
for CPU in active mode) in CPU_time, LPM(numbers of ticks in low power mode) in LPM_time,
Rx (numbers of ticks in listening mode) in Rx_time and Tx(numbers of ticks in transition mode) in
Tx_time. The LPM_time shows that LW-CCA by reducing RSSI status check time in false WakeUps
and idle listenings, increase low power mode time in nodes. CPU_time simulation result shows that
there is a small amount of computing overhead in LW-CCA. Rx_time also shows a significant decrease
in listening time in LW-CCA, although there is little change in Tx_time. It should be noted that the
parameters are averaged from all of the sender nodes.

Table 8. Average of CPU ticks in SKY nodes.

RDC CPU_time LPM_time Rx_time Tx_time

ContikiMAC (Low Rate) 4498.73 46,354.15 511.15 145.71
ContikiMAC (High Rate) 4834.95 47,584.65 719.45 273.50

LW-CCA (Low Rate) 4537.25 47,478.90 425.40 147.52
LW-CCA (High Rate) 5066.35 48,036.60 601.05 281.30

6.2. Average of Percentage for Listen and Transmit Duty Cycle in the Network

This section analyzes the simulation results for a network (20 sender nodes) in terms of listen
and transmit duty cycle that refers to the percentage of the duty cycle used to listen and transmit
to the radio. Table 9 shows the percentage of listen and transmit duty cycles based on the low send
rate and high send rate for LW-CCA and ContikiMAC nodes. The simulation outputs show that
in both scenarios, percentage of listen duty cycle in LW-CCA nodes are significantly lower than
ContikiMAC nodes. LW-CCA decreases average of listen duty cycle about 0.2 in both of low high
send rate scenarios that it results in a reduction of approximately 18% in the average total listen duty
cycle. The average percentage of transmit duty cycle in LW-CCA does not make much difference to
ContikiMAC. The experiment results show that the proposed LW-CCA method can reduce the time of
listen duty cycle by considering a dynamic RSSI check time so that it tries to reduce listen time in false
WakeUps and idle listenings. How to calculate the average percentage of listen and transmit duty
cycle is according to Equations (4) and (5). Rx_time, Tx_time, CPU_time, and LPM_time are equal
with numbers of ticks available in Table 8.

Rx DutyCycle(%) = 100 ∗ (
Rx_time

CPU_time + LPM_time
) (4)

Tx DutyCycle(%) = 100 ∗ (
Tx_time

CPU_time + LPM_time
) (5)

Table 9. Average of Rx and Tx duty cycles (%).

RDC Rx Duty Cycle (%) Tx Duty Cycle (%)

ContikiMAC (low rate) 1.005 0.286
ContikiMAC (high rate) 1.372 0.521

LW-CCA (low rate) 0.817 0.283
LW-CCA (high rate) 1.131 0.529



Electronics 2020, 9, 320 15 of 19

6.3. Network Power Consumption

The total power consumption of each node comprises the power consumption of the node in
different states such as CPU, LPM, Rx, and Tx. In this section, the average power consumption on
indicated states in LW-CCA nodes is compared with the ContikiMAC nodes in both low and high rate
scenarios and evaluates the effect of the proposed method on the total power consumption and finally
the packet delivery rate (PDR). The power and time parameters in the power consumption calculation
are obtained from Tables 2 and 8. The average of power consumption in CPU, LPM, Rx, and Tx states
in network is calculated by Equations (6)–(9) respectively. The average of total power consumption (P)
is calculated according to Equation (1). For example, average of listen power for LW-CCA nodes in
high rate is calculated in Equation (10).

P_CPU(mW) =
CPU_time×VCC× PC_CPU

CPU_time + LPM_time
(6)

P_LPM(mW) =
LPM_time×VCC× PC_LPM

CPU_time + LPM_time
(7)

P_Rx(mW) =
Rx_time×VCC× PC_Rx
CPU_time + LPM_time

(8)

P_Tx(mW) =
Tx_time×VCC× PC_Tx
CPU_time + LPM_time

(9)

P_Rx(LW−CCA, High_Rate) = Rx_time×VCC×PC _Rx
CPU_Time+LPM _time = 601.5×3×20

5066.35+48036.60

= 0.679(mW)
(10)

Table 10 compares the network states in terms of average power consumption for LW-CCA and
ContikiMAC in CPU, LPM, Rx, Tx states, and finally considers the average total power consumption
and packet delivery rates. The outputs show that the average power consumption in the LPM mode
for both methods is relatively similar. The average power consumption in the high-rate scenario in
the LW-CCA represents a relatively higher value in CPU state, which may be due to the processing
overhead imposed on the CPU in the LW-CCA. However, the reduction in average power consumption
in the listening state and finally, the overall average energy consumption in LW-CCA nodes justify
this overhead. The LW-CCA is able to reduce average listening power by 0.113 and 0.144 mW in low
and high rates, respectively. The average power consumed in the transmit state in both methods
shows a relatively similar value. Finally, the overall average power consumption in LW-CCA nodes
has decreased by 0.121 and 0.124 mW in low and high rates, respectively compared to ContikiMAC.
Table 10 shows that LW-CCA is able to retain a 99% packet delivery rate similar to ContikiMAC by
decreasing overall power consumption by 7.1% and 8.7% for high and low rate scenarios, respectively.

As the outputs of the simulator show, the proposed method has acceptable performance at both
the 60 s and 30-s transmission rates. On the other hand, the results show that the performance of the
proposed method in saving power in high-throughput applications is reduced. Figure 9 compares
average power consumption improvement in the LW-CCA method compared to the basic ContikiMAC
method at 60, 50, 40, 30, 20, and 10-s transmission rates. As shown in Figure 9, as the sequence of data
transmission in the nodes is shorter, the average energy consumption improvement is also lower. It is
due to the higher rate of interaction between the nodes for data transfer. Because network interference
is higher and the CPU overhead of nodes is increased to compare the signal intensity. Therefore,
the proposed method is suitable for applications where the data transmission times of the nodes are
not short.



Electronics 2020, 9, 320 16 of 19

Table 10. Average of power consumption in CPU, LPM, Rx, Tx, total power consumption, and PDR.

RDC P_CPU (mW) P_LPM (mW) P_Rx (mW) P_Tx (mW) P (mW) PDR (%)

ContikiMAC (low rate) 0.477 0.149 0.603 0.152 1.381 99
ContikiMAC (high rate) 0.498 0.148 0.823 0.277 1.746 99

LW-CCA (low rate) 0.471 0.149 0.490 0.150 1.260 99
LW-CCA (high rate) 0.515 0.147 0.679 0.281 1.622 99

Electronics 2020, 20, x FOR PEER REVIEW 16 of 20 

 

the LW-CCA represents a relatively higher value in CPU state, which may be due to the processing 
overhead imposed on the CPU in the LW-CCA. However, the reduction in average power 
consumption in the listening state and finally, the overall average energy consumption in LW-CCA 
nodes justify this overhead. The LW-CCA is able to reduce average listening power by 0.113 and 
0.144 mW in low and high rates, respectively. The average power consumed in the transmit state in 
both methods shows a relatively similar value. Finally, the overall average power consumption in 
LW-CCA nodes has decreased by 0.121 and 0.124 mW in low and high rates, respectively compared 
to ContikiMAC. Table 10 shows that LW-CCA is able to retain a 99% packet delivery rate similar to 
ContikiMAC by decreasing overall power consumption by 7.1% and 8.7% for high and low rate 
scenarios, respectively.  

Table 10. Average of power consumption in CPU, LPM, Rx, Tx, total power consumption, and PDR 

RDC P_CPU (mW) P_LPM 
(mW) 

P_Rx 
(mW) 

P_Tx 
(mW) 

P 
(mW) 

PDR 
(%) 

ContikiMAC (low rate) 0.477 0.149 0.603 0.152 1.381 99 
ContikiMAC (high rate) 0.498 0.148 0.823 0.277 1.746 99 

LW-CCA (low rate) 0.471 0.149 0.490 0.150 1.260 99 
LW-CCA (high rate) 0.515 0.147 0.679 0.281 1.622 99 

As the outputs of the simulator show, the proposed method has acceptable performance at both 
the 60 s and 30-s transmission rates. On the other hand, the results show that the performance of the 
proposed method in saving power in high-throughput applications is reduced. Figure 9 compares 
average power consumption improvement in the LW-CCA method compared to the basic 
ContikiMAC method at 60, 50, 40, 30, 20, and 10-s transmission rates. As shown in Figure 9, as the 
sequence of data transmission in the nodes is shorter, the average energy consumption improvement 
is also lower. It is due to the higher rate of interaction between the nodes for data transfer. Because 
network interference is higher and the CPU overhead of nodes is increased to compare the signal 
intensity. Therefore, the proposed method is suitable for applications where the data transmission 
times of the nodes are not short. 

  

 
Figure 9. Average improvement of LW-CCA energy consumption at different data transmission rates. 

  

8.7
8.2

7.3 7.1

4.2

1.4

0

1

2

3

4

5

6

7

8

9

10

60 50 40 30 20 10

Av
er

ag
e 

en
er

gy
 co

ns
um

pt
io

n 
re

du
ct

io
n(

%
)

Data Transmission Rate(second)

Figure 9. Average improvement of LW-CCA energy consumption at different data transmission rates.

7. Conclusions

The 802.15.4 radios are low power radios that are used in many applications of the IoT and wireless
sensor networks on a variety of platforms. Some operating systems offer varieties of radio duty cycle
(RDC) mechanism for controlling 802.15.4 radios. One of the challenges in RDC protocols is WakeUps
in idle listening and falseWakeUps (Section 4). The proposed method LW-CCA aims to reduce the
wakeup time caused by false WakeUp and idle listening nodes. For this purpose, the performance of
ContikiMAC is evaluated according to the time factors affecting each WakeUp. RSSI status check time
is an important time factor to the radio. ContikiMAC considers a fixed time of 20 symbols (0.32 ms)
to perform an RSSI check time per WakeUp. The proposed LW-CCA method, unlike ContikiMAC,
considers two values of minimum and maximum 8 symbols (0.128 ms) and 28 symbols for the radio
check. (Section 5). The value of eight symbols is the minimum value based on the CC2420 Datasheet.
The LW-CCA nodes classify RSSI values based on CCA validation. LW-CCA considers eight-symbol
radio check time if RSSI is detected as idle listening or false WakeUp otherwise it considers a 28 symbol.
LW-CCA nodes, based on the simulations of Section 6 have reduced 18% of duty cycle compared to
ContikiMAC. The based on simulation outputs of Section 6, by considering the power parameters
and indicated scenario in Section 3, the LW-CCA is able to reduce approximately 0.12 mW in average
power consumed in Rx mode. Therefore, it is able to lower the overall power consumption level about
8% in the nodes is considered high and low data transmission rates.

Furthermore, the LW-CCA reduces energy consumption while it maintains packet delivery rate
99%, which is the same as ContikiMAC in sender nodes. The proposed method can be applied to all
IoT platforms based on 802.15.4 radios such as Z1, Tmote-SKY, and Micaz. Since RSSI validation is
based on CCA check, it can also be exploited in the real environment. The instantaneous categorization
mechanism in the LW-CCA method can make this method flexible against interference caused by
irrelevant radios or noise. According to Figure 9, the proposed method is not suitable for applications
with high transmission data rates. In fact, the efficiency of the proposed method decreases with



Electronics 2020, 9, 320 17 of 19

increasing interference in the network. The more balanced the node distribution, the better the
proposed method will perform in terms of network lifetime.

Author Contributions: Conceptualization, modeling, data curation, data analysis, and analysis of results, M.A.N.,
S.S., A.T.C., A.M., and N.N.; IoT, machine learning, and soft computing expertise, M.A.N., S.S., A.T.C., A.M., and
N.N.; Mathematics expertise, M.A.N., S.S., A.T.C., A.M., and N.N.; Management, database, writing, administration,
and methodology M.A.N., S.S., A.T.C., A.M., and N.N.; Visualization, M.A.N., S.S., A.T.C., A.M., and N.N.;
Supervision, resources, software, revision, and verification of the results, A.T.C., A.M., and S.S., funding, A.M.
All authors have read and agreed to the published version of the manuscript.

Funding: We acknowledge the financial support of this work by the European Union and the Hungarian State
under the EFOP-3.6.1-16-2016-00010 project and the 2017-1.3.1-VKE-2017-00025 project.

Acknowledgments: We acknowledge the support of the German Research Foundation (DFG) and the
Bauhaus-Universität Weimar within the Open-Access Publishing Programme.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Abbreviation Definition
CCA Clear Channel Assessments
CPU Central Processing Unit
CSMA Carrier Sense Multiple Access with Collision Avoidance
IoT Internet of Things
LPL Low Power Listening
LPM Low Power Mode
LW-CCA Light Weight CCA
MAC Medium Access Control
MCU Microcontroller Unit
PDR Packet Delivery Rate
RDC Radio Duty Cycle
RPL Routing Protocol for LLNs
RSSI Received Signal Strength Indicator
UDP User Datagram Protocol
VCC Voltage at the Common Collector
WSN Wireless Sensor Network

References

1. Avallone, S.; Guadagno, S.; Emma, D.; Pescapè, A.; Ventre, G. D-ITG distributed internet traffic generator.
In Proceedings of the 1st International Conference on Quantitative Evaluation of Systems (QEST 2004),
Enschede, The Netherlands, 27–30 September 2004; pp. 316–317.

2. Dutta, P.; Dunkels, A. Operating systems and network protocols for wireless sensor networks. Philos. Trans.
R. Soc. A Math. Phys. Eng. Sci. 1958, 370, 68–84. [CrossRef]

3. Homaei, M.H.; Salwana, E.; Shamshirband, S. An Enhanced Distributed Data Aggregation Method in the
Internet of Things. Sensors 2019, 19, 3173. [CrossRef]

4. Thang, V.C. A Comparative Study of Network Performance between ContikiMAC and XMAC Protocols in
Data Collection Application with ContikiRPL. Int. J. Comput. Netw. Inf. Secur. 2019, 11, 32.

5. Bhar, J. A Mac Protocol Implementation for Wireless Sensor Network. J. Comput. Netw. Commun. 2015,
2015, 1–12. [CrossRef]

6. Sha, M.; Hackmann, G.; Lu, C. Energy-efficient Low Power Listening for Wireless Sensor Networks in Noisy
Environments. Proc. 12th Int. Conf. Inf. Process. Sens. Netw. 2013, 61, 277–288.

7. Zheng, X.; Cao, Z.; Wang, J.; He, Y.; Liu, Y. Interference resilient duty cycling for sensor networks under
co-existing environments. IEEE Trans. Commun. 2017, 65, 2971–2984. [CrossRef]

8. Huang, Y.; XIANG, W.; WEN, S.; JIN, Y. The Study of Traffic-Aware ContikiMAC. DEStech Trans. Comput.
Sci. Eng. 2016. [CrossRef]

http://dx.doi.org/10.1098/rsta.2011.0330
http://dx.doi.org/10.3390/s19143173
http://dx.doi.org/10.1155/2015/697153
http://dx.doi.org/10.1109/TCOMM.2017.2692758
http://dx.doi.org/10.12783/dtcse/wcne2016/5114


Electronics 2020, 9, 320 18 of 19

9. Aoudia, F.A.; Magno, M.; Gautier, M.; Berder, O.; Benini, L. Wake-up receivers for energy efficient and low
latency communication. In Proceedings of the 15th International Conference on Information Processing in
Sensor Networks, California, CA, USA, 11–14 April 2016.

10. Magno, M.; Aoudia, F.A.; Gautier, M.; Berder, O.; Benini, L. WULoRa: An energy efficient IoT end-node
for energy harvesting and heterogeneous communication. Proc. 2017 Des. Autom. Test Eur. DATE 2017,
2017, 1528–1533.

11. Khomami, M.M.D.; Rezvanian, A.; Meybodi, M.R. A new cellular learning automata-based algorithm for
community detection in complex social networks. J. Comput. Sci. 2018, 24, 413–426. [CrossRef]

12. Basagni, S. CTP-WUR: The Collection Tree Protocol in Wake-up Radio WSNs for Critical Applications.
In Proceedings of the 2016 International Conference on Computing, Networking and Communications
(ICNC), Beijing, China, 4–6 June 2016.

13. Guo, C.; Zhong, L.C.; Rabaey, J.M. Low power distributed MAC for ad hoc sensor radio networks.
In Proceedings of the GLOBECOM’01. IEEE Global Telecommunications Conference (Cat. No. 01CH37270),
Oslo, Norway, 25–29 November 2001.

14. Mahlknecht, S.; Durante, M.S. WUR-MAC: Anergy efficient wakeup receiver based MAC protocol. IFAC Proc.
2009, 42, 79–83. [CrossRef]

15. Joshi, G.P.; Nam, S.Y.; Kim, S.W. Cognitive radio wireless sensor networks: Applications, challenges and
research trends. Sensors 2013, 13, 11196–11228. [CrossRef] [PubMed]

16. Sutton, F.; Buchli, B.; Beutel, J.; Thiele, L. Zippy: On-demand network flooding. In Proceedings of the 13th
ACM Conference on Embedded Networked Sensor Systems, Seoul, Korea, 1–4 November 2015; pp. 45–58.

17. Homaei, M.H.; Soleimani, F.; Shamshirband, S.; Mosavi, A.; Nabipour, N.; Varkonyi-Koczy, A.R. An Enhanced
Distributed Congestion Control Method for Classical 6LowPAN Protocols Using Fuzzy Decision System.
IEEE Access 2020, 8, 20628–20645. [CrossRef]

18. Rayanchu, S.; Patro, A.; Banerjee, S. Airshark: Detecting non-WiFi RF Devices Using Commodity WiFi
Hardware. In Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement conference,
Berlin, Germany, 2–4 November Novermber 2011.

19. Rayanchu, S.; Patro, A.; Banerjee, S. Catching Whales and Minnows using Wifinet: Deconstructing Non-wifi
Interference using Wifi Hardware. In Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation, San Jose, CA, USA, 25–27 April 2012.

20. Hong, S.; Katti, S. DOF: A Local Wireless Information Plane. In Proceedings of the ACM SIGCOMM 2011
conference, Toronto, ON, Canada, 15–19 August 2011.

21. Chowdhury, K.R.; Akyildiz, I.F. Interferer classification, channel selection and transmission adaptation for
wireless sensor networks. In Proceedings of the 2009 IEEE International Conference on Communications,
Dresden, Germany, 14–18 June 2009. [CrossRef]

22. Bloessl, B.; Joerer, S.; Mauroner, F.; Dressler, F.; Joerer, S. Low-cost interferer detection and classification using
TelosB sensor motes. In Proceedings of the 18th Annual International Conference on Mobile Computing and
Networking, Seattle, WA, USA, 22–26 August 2012; pp. 403–406.

23. Zhou, R.; Xiong, Y.; Xing, G.; Sun, L.; Ma, J. ZiFi: Wireless LAN discovery via ZigBee interference signatures.
In Proceedings of the 16th Annual International Conference on Mobile Computing and Networking, Chicago,
IL, USA, 20–24 Sepetember 2010.

24. Hermans, F.; Ngai, E. SoNIC: Classifying Interference in 802. 15. 4 Sensor Networks. In Proceedings of the
12th International Conference on Information Processing in Sensor Networks, Philadelphia, PA, USA, 8–11
April 2013.

25. King, A.; Roedig, U. Differentiating Clear Channel Assessment Using Transmit Power Variation. ACM Trans.
Sens. Netw. 2018, 14, 1–28. [CrossRef]

26. Uwase, M.P.; Bezunartea, M.; Tiberghien, J.; Dricot, J.M.; Steenhaut, K. Experimental Comparison of Radio
Duty Cycling Protocols for Wireless Sensor Networks. IEEE Sens. J. 2017, 17, 6474–6482. [CrossRef]

27. Zheng, X.; Cao, Z.; Wang, J.; He, Y.; Liu, Y. ZiSense: Towards Interference Resilient Duty Cycling in Wireless
Sensor Networks. In Sensys’14; ACM: New York, NY, USA, 2014; Volume 14, pp. 119–133.

28. Oller, J.; Demirkol, I.; Casademont, J.; Paradells, J.; Gamm, G.U.; Reindl, L. Has Time Come to Switch from
Duty-Cycled MAC Protocols to Wake-Up Radio for Wireless Sensor Networks? IEEE/ACM Trans. Netw. 2016,
24, 674–687. [CrossRef]

http://dx.doi.org/10.1016/j.jocs.2017.10.009
http://dx.doi.org/10.3182/20090520-3-KR-3006.00012
http://dx.doi.org/10.3390/s130911196
http://www.ncbi.nlm.nih.gov/pubmed/23974152
http://dx.doi.org/10.1109/ACCESS.2020.2968524
http://dx.doi.org/10.1109/ICC.2009.5199098
http://dx.doi.org/10.1145/3209044
http://dx.doi.org/10.1109/JSEN.2017.2738700
http://dx.doi.org/10.1109/TNET.2014.2387314


Electronics 2020, 9, 320 19 of 19

29. Ojo, M.O.; Member, S.; Giordano, S.; Member, S.; Procissi, G.; Seitanidis, I.N. A Review of Low-End,
Middle-End, and High-End Iot Devices. IEEE Access 2019, 6, 70528–70554. [CrossRef]

30. Joshi, M.; Kaur, B. Web Integrated Smart Home Infrastructure Using Internet of Things. Int. J. Eng. Res.
Gen. Sci. 2015, 3, 153–158.

31. Velinov, A.; Mileva, A. Running and Testing Applications for Contiki OS Using Cooja Simulator.
In Proceedings of the 7th International Conference on Information Technologies and Education Development
– ITRO 2016, Zrenjanin, Serbia, 10 June 2016; pp. 279–285.

32. Sadiki, S.; Ramadany, M.; Faccio, M.; Amegouz, D.; Boutahari, S. Running Smart Monitoring Maintenance
Application Using Cooja Simulator. Int. J. Eng. Res. Afr. 2019, 42, 149–159.

33. Instruments, T.; Slas, I. MSP430F15x, MSP430F16x, MSP430F161x Mixed Signal Microcontroller. Data Sheet.
Available online: https://www.ti.com/lit/ds/symlink/msp430f1611.pdf (accessed on 14 January 2020).

34. Nasseri, M.; Al-Olimat, H.; Alam, M.; Kim, J.; Green, R.; Cheng, W. Contiki Cooja Simulation for Time
Bounded Localization in Wireless Sensor Network. Proc. 18th Symp. Commun. Netw. 2015, 8, 1–7.

35. Mansoor, K.; Ghani, A.; Chaudhry, S.A. Securing IoT-Based RFID Systems: A Robust Authentication Protocol
Using Symmetric Cryptography. Sensors 2019, 19, 4752. [CrossRef]

36. Schandy, J.; Steinfeld, L.; Silveira, F. Average power consumption breakdown of Wireless Sensor Network
nodes using IPv6 over LLNs. In Proceedings of the 2015 International Conference on Distributed Computing
in Sensor Systems, Fortaleza, Brazil, 10–12 June 2015.

37. Son, N.M.; Thinh, T.N.; Thi, N.D.; Nhan, N.C. An Approach of Low Power Wifi Sensor Mote for Internet
of Things Applications Faculty of Computer Engineering, Faculty of Computer Science and Engineering.
J. Emerg. Trends Eng. Appl. Sci. 2016, 7, 161–166.

38. SNM. Tmote Sky Sensor Datasheet. Available online: http://www.crew-project.eu/sites/default/files/tmote-
sky-datasheet.pdf (accessed on 14 January 2020).

39. Michel, M.; Quoitin, B. Technical Report: ContikiMAC vs X-MAC performance analysis. Netw. Internet
Archit. 2015, 5, 1–28.

40. Sitanayah, L.; Sreenan, C.J.; Fedor, S. A Cooja-based tool for maintaining sensor network coverage
requirements in a building. In Proceedings of the 11th ACM Conference on Embedded Networked
Sensor Systems, Roma, Italy, 11–15 November 2013.

41. Österlind, F.; Eriksson, J.; Dunkels, A. Cooja TimeLine: A power visualizer for sensor network simulation.
In Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, Zürich, Switzerland,
3–5 November 2010.

42. T.C.O.S.O. for the Internet of Things. Dunkels, Adam, The Contiki Open Source OS for the Internet of
Things. Available online: https://github.com/contiki-os/contiki/blob/master/dev/cc2420/cc2420.c (accessed on
8 December 2019).

43. Quan, Y. Topology-Based Device Self-identification in Wireless Mesh Networks; School of Electrical Engineering
and Computer Science: Stockholm, Sweden, 2019.

44. Baccelli, E.; Gündoğan, C.; Hahm, O.; Kietzmann, P.; Lenders, M.S.; Petersen, H.; Schleiser, K.; Schmidt, T.C.;
Wählisch, M. RIOT: An open source operating system for low-end embedded devices in the IoT. IEEE Internet
Things J. 2018, 5, 4428–4440. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2018.2879615
https://www.ti.com/lit/ds/symlink/msp430f1611.pdf
http://dx.doi.org/10.3390/s19214752
http://www.crew-project.eu/sites/default/files/tmote-sky-datasheet.pdf
http://www.crew-project.eu/sites/default/files/tmote-sky-datasheet.pdf
https://github.com/contiki-os/contiki/blob/master/dev/cc2420/cc2420.c
http://dx.doi.org/10.1109/JIOT.2018.2815038
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	Software Platform and Simulation Tools 
	Platform 
	Energest Module 
	Network Scenario 
	Network Protocols 

	Problem Statement 
	Lightweight Clear Channel Assessment (LW-CCA) 
	Time Factors in a Single RSSI Radio Check 
	RSSI Check Time Models in LW-CCA 
	Categories of RSSIs in LW-CCA 
	Dynamic RSSI Check Time in LW-CCA 

	Comparison of LW-CCA with ContikiMAC 
	Average of Ticks in CPU, LPM, Rx, and Tx States in the Network 
	Average of Percentage for Listen and Transmit Duty Cycle in the Network 
	Network Power Consumption 

	Conclusions 
	References

