
electronics

Article

A Performance Review of Collision-Free Path
Planning Algorithms

Hyunwoo Shin and Junjae Chae *

School of Air Transport, Transportation and Logistics, Korea Aerospace University, 76 Hanggongdaehak-ro,
Deogyang-gu, Goyang-si, Gyeonggi-do 10540, Korea; hyunwoo4171@kau.kr
* Correspondence: jchae@kau.ac.kr

Received: 12 January 2020; Accepted: 8 February 2020; Published: 12 February 2020
����������
�������

Abstract: Path planning for mobile agents is one of the areas that has drawn the attention of
researchers’, as evidenced in the large number of papers related to the collision-free path planning
(CFPP) algorithm. The purpose of this paper is to review the findings of those CFPP papers and the
methodologies used to generate possible solutions for CFPP for mobile agents. This survey shows
that the previous CFPP papers can be divided based on four characteristics. The performance of
each method primarily used to solve CFPP in previous research is evaluated and compared. Several
methods are implemented and tested in same computing environment to compare the performance
of generating solution in specified spatial environment with different obstacles or size. The strengths
and weakness of each methodology for CFPP are shown through this survey. Ideally, this paper will
provide reference for new future research.

Keywords: collision-free; path planning; robot motion planning; mover’s problem; heuristic
based algorithms

1. Introduction

The usage of mobile agents (MAs) including unmanned aerial vehicles (UAVs), autonomous robots
and automated guided vehicles (AGVs), in areas, such as container terminals, delivery to customers or
manufacturing processes only continues to increase [1]. The design problem of Collision-free path
planning (CFPP) is to determine a collision-free path of MAs within the target space of a specific
environment [2]. Research also refers to this design problem as motion planning or piano mover’s
problem [3]. The researchers have studied CFPP problem while using several kinematic constraints,
including point robots or using robots with specific degree of freedom (DOF) [4–6]. Autonomous
robots are also required to decide their motion using the logic. Researches have conducted extensive
research in response to the increasing importance of MAs.

In this paper, we have arranged the survey papers of the CFPP based problem according to the
paper’s original research purpose. Schwartz & Sharir [7] focused on classical geometry, topology,
algebraic geometry, algebra, and combinatorics. Additionally, they briefly discuss the characteristic
and complexity of geometric algorithms that are relevant to the CFPP problem. Hwang & Ahuja [8]
researched the different methodologies, obstacles, and algorithms, and discussed the characteristics
of the problem known as the gross motion plan. Sariff & Buniyamin [9] reviewed the algorithms for
solving CFPP problem in different environments. The study further briefly presented the advantages
and disadvantages of the algorithms. Masehian and Sedighizadeh [10] conducted a 35 years period
chronological survey regarding the classic and meta-heuristic algorithms for the CFPP problem. Goerzen
et al. [11] found that UAVs have significant differing issues than that of other robots, because it operates
in a three-dimensional (3D) environment. Roberge et al. [12] reviewed the performance of algorithms,
parallel genetic algorithm, and particle swarm optimization pertaining to the non-deterministic CFPP
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problem. In addition, the researchers examined the dynamic properties of a UAV’s path in a complex
three-dimensional environment. A survey of heuristic based algorithm for solving CFPP was recently
presented [13]. The research summarized chronological changes and sorted studies by algorithms,
which were nature-inspired methods, fuzzy logic, neural networks, and the potential field method.
The frequency of the problem attributes is also reviewed in the paper. Schwarting et al. [14] reviewed
and provided emerging trends in autonomous problems. The paper summarized problems, such as
integration of automation and safety guarantees when applied to robots.

Researchers in different fields have conducted similar studies; hence, there are problems with
regards to the definitions and terms. For example, some of the papers use the name of problems
as mover’s problem [15], motion planning problem [16] or path planning problem [2]. Numerous
methodologies are provided in the research while using different key words [5,13,17,18]. However,
a comparison of methodologies is rarely studied. Previous research has focused on the different
characteristics of the CFPP problem, such as sampling-based algorithm [19], or has used a very small
number of searching algorithms [12]. On the other hand, researches have not focused on the differences
in terminology and meanings. In the writers’ opinion, this lack of uniformity and conformity in
terminology makes it difficult to select and decide on an appropriate algorithm. Therefore, the
objectives of this study are as follows. First, the purpose of this research is to unify the name and
attributes. Secondly, to provide a method to classify algorithms for solving the problem. Third, the
performance of the algorithms for solving CFPP is measured within a fundamental environment.
These contributions will enable researchers, who study the CFPP problem to grasp the key point
in a problem. Finally, researchers will be better able to choose searching algorithms, through the
comparison of the different algorithms.

The rest of this paper is divided for four sections. The CFPP problem is defined in Section 2
and four different categories of CFPP problem are proposed. In Section 3, a plan of experiment for
searching algorithms performance review is briefly introduced. Flowcharts of the algorithms are shown
and environments for testing are suggested. Additionally, a method for tuning parameters, which
are components of metaheuristic algorithms, is concisely shown. The results of the experiments are
organized and analyzed in Section 4. In the final section, a conclusion and a summary are presented.

2. CFPP

The goal of collision-free path planning (CFPP) problem is helping MAs or robots to find a safe
path from the starting point to ending (goal) point [2]. The path from a result of the CFPP problem is
considered to be an effective bypass for MAs. The effectiveness is discussed from this perspective,
which is the shortest distance for MAs. Additionally, this can be researched with multi-objective
model, such as reducing resource consumption with shorter distances or finding a good solution in
shorter time. Four different attributes are required to define the problem type; environment type
(Env.T.; Section 2.1), environmental representation (Env.R.; Section 2.2), searching algorithm (S.Alg.;
Section 2.3), and experimental type (Exp.T.; Section 2.4). Additionally, related works that emphasize
and improve at least one point of any one of these characteristics are necessary to define the problem
type. Details of the categories are shown in Figure 1.
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2.1. Environment Type 

Environment types in CFPP problem are divided specifically, as follows: obstacle type (O.T.) 
and point type (P.T.). Each type has specific characteristics and detail descriptions of the 
characteristics are proposed as follows. 

Firstly, the obstacle type is classified as static or dynamic [6,20]. Figure 2a describes static 
obstacle type and Figure 2b is an example of dynamic obstacle type. The static obstacle environment, 
which is also called the stationary obstacle environment, is a basic form of the CFPP problem. In this 
case, the obstacles do not change their shape or position. The CFPP problem in a static environment 
is the most basic model of the CFPP. This is one of the reasons why many papers use a static 
environment assumption [13]. The dynamic obstacle environment, which is also called the moving 
obstacle, can change the obstacle’s shape time dependently. This case considers the velocity and 
acceleration of MAs. 

Figure 1. Characteristics of the collision-free path planning (CFPP).

In order to deliver information efficiently, this paper uses shorthand notation. The notation is
organized in Table 1.

Table 1. Shorthand notation for the tables.

Word Notation Word Notation

Environment type Env.T. Network N.
Environment representation Env.R. Coordinate system Co.S.

Searching algorithm S.Alg. Boundary representation B.R.
Experimental Type Exp.T. Cell tree C.T.

Obstacle type O.T. Polygonal approximation Po.A.
Point type P.T. Evolutionary programming E.P.

Workspace representation W.R. K nearest neighbor K near.
Obstacle representation Ob.R. Simulation S.

Experiment Exp. Probabilistic roadmap PRM
Workspace representation algorithm W.R.Alg. Rapidly-exploring Random Tree RRT

Certain C. Voronoi Diagram V.D.
Uncertain Uc. Visibility Graph Vgraph

Static S. Normal distribution transform NDT
Dynamic D. Circle approximation Ci.A

2.1. Environment Type

Environment types in CFPP problem are divided specifically, as follows: obstacle type (O.T.) and
point type (P.T.). Each type has specific characteristics and detail descriptions of the characteristics are
proposed as follows.

Firstly, the obstacle type is classified as static or dynamic [6,20]. Figure 2a describes static obstacle
type and Figure 2b is an example of dynamic obstacle type. The static obstacle environment, which
is also called the stationary obstacle environment, is a basic form of the CFPP problem. In this case,
the obstacles do not change their shape or position. The CFPP problem in a static environment is the
most basic model of the CFPP. This is one of the reasons why many papers use a static environment
assumption [13]. The dynamic obstacle environment, which is also called the moving obstacle, can
change the obstacle’s shape time dependently. This case considers the velocity and acceleration of MAs.
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Figure 2. Illustrations of the obstacle having different obstacle type: (a) Static obstacle; and, (b) 
Dynamic obstacle. 

Second, point type is classified as certain or uncertain [21]. As there is inherent uncertainty in 
the MA’s sensing, point type should be assumed as certain or uncertain. Certain point type is 
assumed when the MAs position and goal point is an exact location. The assumption is often used in 
testing novel approaches while using simulation, because uncertain problem makes it difficult to 
solve the problem. Uncertain point type is set when the MA’s point and goal point is not known 
exactly. MAs use several sensors to recognize space. The sensors may include some errors, which 
MAs must recognize in an uncertain space. The type makes the problem more challenging than with 
a certain point type. This is one of the reasons why it is difficult to solve a CFPP problem with real 
MAs. The problem is solved while using the stochastic technique, such as the Monte-Carlo method 
[22–24]. 

2.2. Environmental Representation 

Environmental representations in a CFPP problem have two different types: workspace 
representation (W.R.) and obstacle representation (Ob.R.). Diverse studies about these have been 
previously researched. The details of these studies are characterized below. 

First, workspace representation has two representations: the coordinate system model and the 
network model. The coordinate system model uses Algebra for describing the environment and the 
MAs’ motion. This problem is called the Findspace problem, which is one aspect of spatial planning 
[25]. The Findspace problem has three different workspaces; the polygonal workspace; the 
polyhedral workspace; and, the semi-Algebraic workspace [21]. In addition, convexity and 
non-convexity are also important aspects of the Findspace problem. Simply, the greater the number 
of edges and vertices in a workspace representation, the greater the complexity of the problem. 
Therefore, a polyhedral workspace would be more difficult to solve for than a polygonal workspace 
[6]. Network model, which is also known as the Roadmap approach, uses links and nodes for 
describing the environment. In this model, researchers have modelled the routes of the MA’s as links 
and nodes using algorithms, such as the Voronoi diagram, the Visibility Graph, the 
Rapidly-exploring random tree, and the Probabilistic roadmap. Additionally, the algorithms are 
mainly differentiated from each other mainly by style generated. These include: the sampling-based 
algorithm and the geometric modeling algorithm [17]. LaValle et al. [26] conducted extensive 
researched of the sampling-based algorithm while using the Monte Carlo sampling method.  

Their conclusions suggest that the basic grid network algorithm provides better performance in 
certain cases than does a sampling-based algorithm. Thrun et al. [23] proposed a model wherein the 
Monte Carlo localization is combined with the sampling-based algorithm. Janson et al. [24] posit that 
the Monte Carlo Motion Planning (MCMP) is effective in solving the CFPP problem. Englot and 

Figure 2. Illustrations of the obstacle having different obstacle type: (a) Static obstacle; and,
(b) Dynamic obstacle.

Second, point type is classified as certain or uncertain [21]. As there is inherent uncertainty in the
MA’s sensing, point type should be assumed as certain or uncertain. Certain point type is assumed
when the MAs position and goal point is an exact location. The assumption is often used in testing
novel approaches while using simulation, because uncertain problem makes it difficult to solve the
problem. Uncertain point type is set when the MA’s point and goal point is not known exactly. MAs use
several sensors to recognize space. The sensors may include some errors, which MAs must recognize
in an uncertain space. The type makes the problem more challenging than with a certain point type.
This is one of the reasons why it is difficult to solve a CFPP problem with real MAs. The problem is
solved while using the stochastic technique, such as the Monte-Carlo method [22–24].

2.2. Environmental Representation

Environmental representations in a CFPP problem have two different types: workspace representation
(W.R.) and obstacle representation (Ob.R.). Diverse studies about these have been previously researched.
The details of these studies are characterized below.

First, workspace representation has two representations: the coordinate system model and the
network model. The coordinate system model uses Algebra for describing the environment and the
MAs’ motion. This problem is called the Findspace problem, which is one aspect of spatial planning [25].
The Findspace problem has three different workspaces; the polygonal workspace; the polyhedral
workspace; and, the semi-Algebraic workspace [21]. In addition, convexity and non-convexity are also
important aspects of the Findspace problem. Simply, the greater the number of edges and vertices
in a workspace representation, the greater the complexity of the problem. Therefore, a polyhedral
workspace would be more difficult to solve for than a polygonal workspace [6]. Network model, which
is also known as the Roadmap approach, uses links and nodes for describing the environment. In this
model, researchers have modelled the routes of the MA’s as links and nodes using algorithms, such as
the Voronoi diagram, the Visibility Graph, the Rapidly-exploring random tree, and the Probabilistic
roadmap. Additionally, the algorithms are mainly differentiated from each other mainly by style
generated. These include: the sampling-based algorithm and the geometric modeling algorithm [17].
LaValle et al. [26] conducted extensive researched of the sampling-based algorithm while using the
Monte Carlo sampling method.

Their conclusions suggest that the basic grid network algorithm provides better performance
in certain cases than does a sampling-based algorithm. Thrun et al. [23] proposed a model wherein
the Monte Carlo localization is combined with the sampling-based algorithm. Janson et al. [24] posit
that the Monte Carlo Motion Planning (MCMP) is effective in solving the CFPP problem. Englot
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and Hover [27] suggested the sampling-based algorithm under ACO framework to solve multi-goal
CFPP problems. This technique allows for a solution that can take into account multi-objects, such as
computational complexity and optimality. Ichter et al. [28] studied the sampling-based algorithm in a
learning-based framework where non-uniform sampling strategies are used for the CFPP problem in
“huge” spaces.

The sampling-based algorithm includes two common algorithms: the Probabilistic roadmap and
the Rapidly-exploring random tree. Kavraki et al. [29] solve the CFPP problem for articulated robots
while using two phases: the Probabilistic roadmap and the heuristic for searching within the roadmap.
The proposed method can be applied to any holonomic robot. The theoretical performance of the
Probabilistic roadmap was rarely studied before Kavraki et al. [19]. The paper studies the failure
probability of connecting two points. Also, the relationship among the number of nodes, failure
probability, and length of paths are studied. The Probabilistic roadmap and the Rapidly-exploring
random tree are also studied in practical way with various robots [30,31]. Several simulated and real
experiments using specific robots are performed. Complex and large environments, such as dynamic
obstacles or urban areas, are considered in the experiments. Kim et al. [32] propose the Tangent Bundle
Rapidly exploring random tree (TB-RRT) in order to improve the efficiency of the algorithm in a large
space. Also, related works under complex environment are studied in succession [33,34]. A centralized
case, such as spot-welding station with two to six robot manipulators in automobile manufacturing
field, is researched and an application is made for the case [35,36]. These papers purport that centralized
planning is more efficient than decentralized planning. Additionally, the sampling-based algorithms
are applied to a geometrically complex problem and a multi-robot problem [37,38]. Wilmarth et al. [39]
argue that the basic Probabilistic roadmap is an ineffective method for solving the CFPP problem in
a narrow space. Thus, a novel algorithm, named MAPRM, is suggested for solving specific narrow
space. Saha et al. [40] concluded the small-step retraction method can be applied to the CFPP problem.
Meanwhile, the CFPP problem can be expanded to the tour problem, as can the traveling-salesman
problem or task-planning problem [41,42]. The algorithms are mainly divided into two divisions: path
finding and tour (sequence) finding in order to solve the problem,

Meanwhile, several papers have evaluated the performance of the sampling-based algorithm.
The sampling configuration and probability measure are affected by the performance of the Probabilistic
roadmap [43]. Further, Karaman and Frazzoli [44] studied the performance of the Probabilistic roadmaps
and Rapidly-exploring random trees sampling-based algorithms. Recently, Marble and Bekris [45]
discuss and introduce a method providing robust solution qualities. More details about related to
sampling-based algorithm research are organized in Table 2.

Whatever path that is generated in a network model, should be smoothed before applying to
MAs [17]. Smoothing affects the performance of the algorithm [46], and it has been studied by some
papers [47,48].

Secondly, Hwang and Ahuja [8] propose six basic obstacle representations that are chosen in
consideration of workspace representation and an approximation of the obstacles. These six obstacle
representations are: original objects, gird, cell tree, polygonal approximation, constructive solid
geometry, and boundary representation. The representation styles are shown in Figure 3. These obstacle
representations are chosen by workspace representation and approximation of the obstacles.
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Table 2. Classification of the papers while using the sampling-based algorithm.

Ref. Author & Year
Env.T. Env.R

S.Alg.
Exp.T.

W.R.Alg.
P.T. O.T W.R. Ob.R Exp. Robot

[29] Kavraki et al., 1996 C. S. N. Grid Heuristic S. Articulated
robots PRM

[19] Kavraki et al., 1998 C. - - B.R. - S. 6 DOF PRM
[49] Hsu et al., 1997 C. S. N. - Heuristic S. 6 DOF PRM
[39] Wilmarth et al., 1999 C. S. N. B.R. - S. - MAPRM
[31] Kuffner & LaValle, 2000 C. S. N. - Heuristic S. 7 DOF RRT

[23] Thrun et al., 2001 Uc. S. N. B.R.,
C.T.

MCL
algorithm S. RWI B18

robot Sampling based

[35] Sánchez & Latombe, 2002 C. D. N. Po.A. Heuristic S. Multi
robot PRM

[36] Sanchez & Latombe, 2002 Uc. D. N. Po.A. Heuristic S. - PRM
[37] Sánchez & Latombe, 2003 C. D. N. - Heuristic S. 6 robots PRM

[26] LaValle et al., 2004 - - N. - - S. - Sampling
based review

[40] Saha et al., 2005 C. S. N. - F* S. - PRM
[43] Hsu et al., 2006 Uc. S. N. - Heuristic S. - PRM
[41] Saha et al., 2006 - S. N. - Heuristic S. - PRM
[50] Alterovitz et al., 2007 Uc. S. N. B.R. Heuristic S. - Sampling based
[30] Hsu et al., 2002 Uc. D. N. B.R. Heuristic Real - PRM

[34] Kuwata et al., 2009 Uc. D. N.,
Co.S. Grid Heuristic S. Vehicle RRT

[27] Englot & Hover, 2011 C. S. N. - ACO S. - Sampling based
[44] Karaman & Frazzoli, 2011 C. S. N. B.R. Heuristic S. - Sampling based
[33] Malone et al., 2014 - D. N. Grid Dijkstra S. - PRM
[24] Janson et al., 2018 Uc. S. N. B.R. MCMP S. - Sampling based

[51] Contreras-Cruz et al.,
2015 Uc. S. N. - EP,

Dijkstra Real Xidoo-Bot PRM

[42] Dantam et al., 2016 - S. N. - Heuristic Real - RRT

[38] Solovey et al., 2016 - S. N. - K Near.,
M* S.

High DOF
Multi
robot

RRT

[32] Kim et al., 2016 - S. N. - K Near. S. - RRT
[45] Marble & Bekris, 2017 C. S. N. - K Near. S. - PRM

[28] Ichter et al., 2018 - D. N. - Heuristic S. Multi
robots Sampling based
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2.3. Searching Algorithms

Searching algorithms or query process in probabilistic roadmaps are chosen by workspace
representation. Some searching algorithms are applied to specific representations. For example, A*
and Dijkstra algorithms are only applicable under network conditions. For instance, to solve problem
with network, A*, Dijkstra algorithm or heuristic-based algorithms are often used. On the other hand,
optimal approaches are used for problem under a coordinate system. There is extensive research
that provides searching algorithms for several conditions in reasonable time. The algorithms can be
classified as classic algorithms or heuristic-based algorithms [10,13,18].

2.3.1. Classical Algorithm

Dijkstra Algorithm is a common used algorithm for solving the network problem [52]. This algorithm
offers an optimal path in a network, when all of the network link distances are positive. The A* algorithm
is also frequently used in order to solve the shortest path problem on network [53]. Some methodologies,
which are a combination of a Voronoi diagram and the Dijkstra algorithm, are provided by several
researches [54,55]. Additionally, the Dijkstra algorithm was studied as query process of probabilistic
roadmaps [33,56]. An application was suggested for solving the CFPP problem while using the Dijkstra
algorithm [57]. A* algorithm is broadly used to solve the CFPP problem under network conditions. Several
research papers related to a visibility graph were applied to A* algorithm to solve CFPP problem [2,20,58].
On the other hand, some papers provide methods applied under a sampling-based environment [59,60].
Many papers suggested novel algorithms, which were developed using Dijkstra’s algorithm or A*
algorithm [61–63]. Papers about A* and Dijkstra algorithms are shown in Table 3.

Table 3. Classification of the papers using the exact algorithm.

Ref. Author & Year
Env.T. Env.R

S.Alg.
Exp.T.

W.R.Alg.
P.T. O.T. W.R. Ob.R Exp Robot

[54] Bhattacharya & Gavrilova,
2007 - D. N. B.R. Dijkstra S. - V.D.

[55] Ho & Liu, 2009 - S. N. B.R. Dijkstra S. Car-like
robot V.D.

[56] Janson et al., 2018 - - N. B.R. Dijkstra S. - PRM
[57] Wang et al., 2011 C. S. N. B.R. Dijkstra S. - Grid

[20] Alexopoulos & Griffin, 1992 C. S. N. B.R. A* S. A mobile
robot Vgraph

[64] Fu & Liu, 1990 C. S. N. Po.A. A* S. - Vgraph
[58] Herman, 1986 C. S. N. C.T. A* S. - C.T.
[2] Lozano-Pérez & Wesley, 1979 C. S. N. B.R. A* S. - Vgraph

[60] Berg et al., 2006 Uc. D. N. B.R. D* S. - Roadmap

[59] Bohlin & Kavraki, 2000 C. S. N. B.R. A* S. 6 DOF
robot PRM

[62] Deng et al., 2012 Uc. D. N. - Dijkstra S. - -
[63] Duchoň et al., 2014 - - N. Grid A* S. - SLAM based grid
[61] Noto & Sato, 2002 - - N. - Dijkstra S. - Grid

2.3.2. Heuristic Based Algorithm

There are many heuristic-based methods for the CFPP problem. Wavefront algorithm is one of
the heuristics that adopts the idea of a potential field and it was applied with various characteristics.
For instance, the Wavefront algorithm is used for solving a problem with three-dimensional normal
distributions transformations [65]. Several kinds of the metaheuristic are applied to the CFPP problem
that have a network or coordinate system.

Evolutionary algorithms, such as the Genetic algorithm (GA), are usually studied under network
environments [66–69] that are related to CFPP. Additionally, several algorithms are developed for
under coordinate system conditions [70–73]. Some novel algorithms that are based on GA are provided
from related works [74–78]. GA is one of the most applicable algorithms to solve the CFPP problem
with multi-robot [79]. Table 4 briefly shows those papers which use Wavefront or GA.
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Table 4. Classification of the paper using the heuristic-based algorithm (Wavefront and Genetic algorithm
(GA)).

Ref. Author & Year
Env.T. Env.R S.Alg. Exp.T. W.R.Alg.

P.T. O.T. W.R. Ob.R. Exp. Robot

[65] Stoyanov et al., 2010 C. - N. - Wavefront S. - NDT
[66] AL-Taharwa et al., 2008 C. S. N. Grid GA S. - Grid
[67] Cai & Peng, 2002 C. S. N. B.R. GA S. Two robots Obstacle edge
[68] Yang & Yoo, 2018 - D. N. Grid GA, ACO S. UAV Grid Layer
[69] Hu & Yang, 2004 C. D. N. Grid GA S. - Grid

[73] MahmoudZadeh et al.,
2018 Uc. D. Co.S. B.R. EA S. AUV -

[71] Elshamli et al., 2004 - D. N. B.R. GA S. - -

[70] Jiang et al., 2018 C. S. Co.S. B.R. GA S. - Mechanical
arm

[72] Zhao et al., 1994 C. S. Co.S. B.R. GA S. Mobile
Manipulator -

[78] Tu & Yang, 2004 C. D. N. Grid GA S. - Grid
[75] Lamini et al., 2018 C. S. N. Grid GA S. - Grid
[74] Lee et al., 2018 C. S. N. Grid GA S. - Grid
[77] Sedighi et al., 2004 C. S. N. Grid GA S. - Grid
[76] Tuncer & Yildirim, 2012 C. D. N. Grid GA S. - Grid

[79] Nazarahari et al., 2019 C. S. Co.S. B.R. GA,
Wavefront S. Multi-robot Potential field

Simulated Annealing (SA) is typically combined with the potential field method [80–84]. The other
searching algorithms, such as general heuristic algorithm, population-based metaheuristic algorithm
and fuzzy logic, and environmental representations, are also researched with SA [85–90]. SA based
algorithms have also been applied in CFPP problems to solve vehicle congestion in smart cities. [91].
Papers that are based on SA, which are cited above, are organized in Table 5.

Table 5. Classification of the paper using the heuristic-based algorithm (Simulated Annealing (SA)).

Ref. Author & Year
Env.T. Env.R S.Alg. Exp.T. W.R.Alg.

P.T. O.T. W.R. Ob.R. Exp. Robot

[80] Janabi-Sharifi & Vinke,
1993 C. S. Co.S. B.R. SA S. Disk robot Potential field

[82] Park et al., 2001 - S. Co.S. B.R. SA Both Mobile
robot Potential field

[84] Park & Lee, 2002 - S. Co.S. B.R. SA Both Mobile
robot Potential field

[81] Zhu et al., 2006 C. S. Co.S. B.R. SA S. - Potential field

[90] Carriker et al., 1990 C. S. Co.S. B.R. SA S. Mobile
Manipulator -

[89] Kroumov & Yu, 2009 C. S. Co.S. B.R. SA, NN S. - Potential field

[86] Martínez-Alfaro &
Gómez-García, 1998 C. S. Co.S. B.R. SA, Fuzzy S. - -

[85] Miao & Tian, 2008 C. D. N. B.R. SA S. - Obstacle edge
[88] Miao & Tian, 2013 C. D. N. B.R. SA S. - Obstacle edge
[87] Tavares et al., 2011 C. S. Co.S. B.R. SA S. - -
[91] Amer et al., 2019 C. D. N. - SA S. Vehicles Road

Particle swarm optimization (PSO) was originally defined in a continuous environment, so much
CFPP research is studied under a coordinate system [46,92–100]. Chen and Li [99] use a distinguishable
method for obstacle representation, which is circle approximation (Ci.A.). They assume the obstacles as
being a circle. On the other hand, some research provide methods, which are PSO-based algorithms in
a network condition [101–104]. Some research has focused on solving the multi-robots CFPP problem
while using PSO [105,106]. In Table 6, additional information from previous research related to PSO
is shown.
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Table 6. Classification of the paper using the heuristic-based algorithm (PSO).

Ref. Author & Year
Env.T. Env.R Exp.T. W.R.Alg.

P.T. O.T. W.R. Ob.R. Exp. Robot

[99] Chen & Li, 2006 C. S. Co.S. Ci.A. S. Car-like
robot -

[93] Foo et al., 2007 - S. Co.S. B.R. S. UAV -
[95] Fu et al., 2011 - S. Co.S. B.R. S. UAV -
[96] Gong et al., 2011 C. S. Co.S. B.R. S. - -

[97] Saska et al., 2006 C. S. Co.S. B.R. S. Robotic
soccer -

[92] Song et al., 2019 C. S. Co.S. Grid S. - Grid
[46] Tharwat et al., 2019 C. S. Co.S. B.R. S. - -
[94] Zhang et al., 2013 Uc. S. Co.S. B.R. S. - -
[98] Zhang et al., 2013 C. S. Co.S. B.R. S. UAV -

[104] Kang et al., 2008 C. S. N. B.R. S. - Obstacle edge

[100] Masehian &
Sedighizadeh, 2010 C. S. Co.S. B.R. S. - -

[102] Phung et al., 2017 C. S. N. - S. UAV Vision-based
inspection

[103] Shiltagh & Jalal, 2013 C. S. N. Grid S. - Grid
[101] Wang et al., 2015 C. D. N. Grid S. - Grid
[105] Alejo et al., 2013 - - Co.S. - S. Multi-UAV -
[106] Thabit & Mohades, 2019 C. S. N. Grid S. Multi-UAV Grid

Ant colony optimization (ACO) is usually studied under varying network environments, such
as grid network and Voronoi diagram [107–119]. Few papers, likewise, researched GA with ACO
and coordinate system [120]. A paper, which solves the CFPP problem with automated underwater
vehicles (AUV), is studied [121]. This paper suggests an ACO based algorithm to solve large-scale
CFPP problems. Table 7 organizes details regarding papers based on ACO.

Table 7. Classification of the paper using the heuristic-based algorithm (ant colony optimization (ACO)).

Ref. Author & Year
Env.T. Env.R Exp.T. W.R.Alg.

P.T. O.T. W.R. Ob.R. Exp. Robot

[112] Akka & Khaber, 2018 C. S. N. Gird S. - Grid
[115] Brand et al., 2010 C. S. N. Grid S. - Grid
[114] Chia et al., 2010 C. S. N. Grid S. - Grid
[109] Garcia et al., 2009 C. D. N. Grid S. - Grid
[108] Jiao et al., 2018 C. S. N. Grid S. Wheelchairs Grid
[107] Xing et al., 2011 C. D. N. Grid S. - Grid
[118] Xiong et al., 2019 C. S. N. Grid Both AMV V.D.

[117] Cong & Ponnambalam,
2009 C. S. N. Grid S. - Grid

[110] Yen & Cheng, 2018 C. S. N. Grid S. (Multi-task) Grid

[111] Hsiao et al., 2004 - - N. - S. - Random
Generated

[113] Yu et al., 2019 C. S. N. B.R. S. AUV
(Multi-task) Cube, Dense

[116] Zhang et al., 2010 C. S. N. Grid S. UAV Point
[120] Fan et al., 2003 C. S. Co.S. B.R. S. - -

[119] Wang et al., 2019 C. S. N. Grid S. Ground
robot Cube

[121] Ma et al., 2019 C. S. N. Grid S. AUV Cube

2.4. Experimental Type

In experimental type, two characteristics, which are the robot type and experimental method,
should be decided. Many previous works researched under different types of the robot, such as
car-like robots, UAV, humanoid, and several degree of freedom (DOF) robots. Each robot has its
own moving limitation. This constraint is a cause of different kinematic constraints [21]. Kinematic
constraints should be considered under experimental method. When making experiments with
real robot, computation, and resources for solving the problem is restricted. On the other hand, the
simulation method might have some assumptions, which are different from real robot. The assumptions
make a problem simplified to solve and this simple problem contributes to test novel methodologies.
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3. Experiments Plan

In this paper, a simulation experiment for performances is considered under simple environments
and a single point robot, which is able to move without kinematic constraints. The experiment is
contributed to measure the performance of basic searching algorithms, as follows; Dijkstra algorithm,
A* algorithm, Wavefront algorithm, Genetic algorithm, Simulated annealing, Ant colony optimization,
and particle swarm optimization. Environment type is assumed as certain point type and static obstacle.
The experiment uses grid network in order to make environment simple, and obstacles are represented
as grid.

The object of the algorithm is to find a shortest path. Therefore, the objective function of the
comparison experiment is formulated, as follows [74].

min f
(
Ps, Pg

)
= d(Ps, P1) +

∑n−1

i=1
d(Pi, Pi+1) + d

(
Pn, Pg

)
(1)

The function is representing a path length from Ps to Pg on network and the meaning of d(a, b) is
network distance from node a to node b.

3.1. Algorithms

The Dijkstra algorithm, A* algorithm and Wavefront algorithm have been the most commonly
applied algorithms applied to solve the CFPP problem. However, other metaheuristic algorithms have
been applied, each a modified version based on flow and heuristics. The paper reviewed each simple
form of each algorithm. The flows for each metaheuristic algorithm are shown in Figures 4–7.
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In Figure 4, flow of GA is divided into two parts: initialization and generation. The initialization
part is initializing the GA’s population set, which is then improved in Generation part. The generation
part has three methods: crossover, mutation, and random generation. Each new population set is
generated through these methods and the next generations are updated based on the population set.
The generation number is counted when the best solution is not updated and resets to zero when the
best solution is updated. Executing a generation count completes the algorithm.
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The flow of SA is shown in Figure 5. The algorithm has two different stop criteria; temperature
and loop count. When a new solution in next loop fails the Boltzmann factor check, a pre-determined
reduction rate reduces the temperature. When a new solution in next loop passes the Boltzmann factor
check, the loop number is increased when the best solution is not updated. Again, as in Figure 4, the
number is reset to zero when updating the optimal solution.
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ACO flow has two steps, initialization and improvement step, as shown in Figure 6. Ant colony is
initialized in the initialization using the same method used with other algorithms. In the improvement
step, a solution will be generated in one of two ways. The first way is a pheromone concept and the
other is a reusing method in Initialization step. Each link has its own probability and ants find a path
following the probability in order to make pheromone concept. The link probability is added by the
following equation.

linkProbability(count + 1) = linkProbability(count) +
1

bestOFV
evapoRatelinkStep (2)

the improvement step has a step count trigger for escaping the loop. The number is increased by one,
when the flow pass a loop and it is set as zero, when the best solution is updated.
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Figure 7. The flowchart of PSO.

In Figure 7, flow of PSO is introduced as two parts: initialization and improvement step.
The algorithm has a similar structure to that of ACO. However, instead of concept of pheromone, PSO
uses a concept of inertia rate for mimicking the movement of swarm. Previous solutions are destroyed
by the inertia rates and new solutions are rebuilt using the best solution and an overlapped method for
making a new solution. A number for stopping criteria is counted by passing the loop and the number
is set as zero, when the best global solution is updated.

A method for making a new initial solution influences the performance of the algorithms. Thus,
in Figures 4–7, the algorithms use the same method, called ‘makeSol’ in order to limit its effects on the
algorithms. The flow of the method which includes a concept of potential field attempting to connect
to the goal point is shown in Figure 8.

3.2. Envionments

In order to test the performance under several different environments, this research uses typical
environments. In this paper, three different environment sizes are used for the experiments. Figure 9
shows six environments which have 10 × 10 cells. These environments are formed archetypal patterns,
such as ‘n’ shape, rectangles and slots. Environments, which have ‘n’ shape obstacle, are presented in
Figure 9a,b,d. Figure 9c is a simple environment with squared obstacle and Figure 9e has slot obstacles
which are known as difficult problem. The obstacle in Figure 9f is a part of environment in the paper
by Karaman [44].
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(e) 10_4ch; and, (f) 10_1o. 
Figure 9. The experimental configuration of the 10 × 10 cells: (a) 10_1n; (b) 10_4n; (c) 10_11s; (d) 10_7n;
(e) 10_4ch; and, (f) 10_1o.

Two environments with 20 × 20 cells are presented on Figure 10. These environments also are
reconfigured from the environment which is introduced in the paper by Karaman. An environment
shown in Figure 10a is reproduced from the origin figure and Figure 10b is reconstituted based on
the environment.
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Three environments with 40 × 40 girds are presented in in Figure 11. in order to measure the
different performance by network size. The environments have same shape as the environments in
Figure 9a,c,f, with the only difference being that the figures are divided into smaller grids.
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3.3. Metaheuristic Parameter

Metaheuristic algorithms are affected by their parameters. This is a reason why parameters must
be carefully defined. The parameters used in this paper are determined by each searching algorithm
and they are shown in Table 8. This research controlled two styles of parameters: population (ant and
particle) number and stop criteria. The population number is set as 10 and stop criteria is set as 100.

Many experimental design techniques are used, including full factorial experimental design,
in order to tune the algorithm parameters. In this paper, one of the packages in R, named ‘irace’,
is used to set the algorithm parameters [122]. The software package makes automatic sampling
configurations and measures the configurations while using Friedman’s test or t-test. Additionally,
it is designed to redefine the distribution of the sampling and the package iterates this flow.
The tuning procedure is performed for environment sets with a budget of 2000 experiments and
the initial parameter ranges are defined, as follows: Mutation Rate ∈ [0.01, 0.99]; Crossover Rate ∈
[0.01, 0.99]; Random Rate ∈ [0.01, 0.20]; Temperature ∈ [1000, 10000]; Reduction Rate ∈ [0.50, 0.95];
Stopping Temperature ∈ [0.01, 1.00]; Pheromone Rate ∈ [0.01, 0.50]; Evaporate Rate ∈ [0.50, 0.99];
Inertia Max Rate ∈ [0.50, 0.99]; Inertia Min Rate ∈ [0.01, 0.50]. Each configuration is measured total
summation of all environments objective function value. Table 9 shows the result of the tuned parameter.
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Table 8. Tuning range of the parameters.

Searching Algorithm Parameter Characteristic

GA

Population Number Integer
Stop Criteria Integer
Mutate Rate Double (0~1)

Crossover Rate Double (0~1)
Random Rate Double (0~1)

SA

Stop Criteria Integer
Temperature Double
Reduce Rate Double (0~1)

Stop Temperature Double

ACO

Ant Number Integer
Stop Criteria Integer

Pheromone Rate Double (0~1)
Evaporate Rate Double (0~1)

PSO

Particle Number Integer
Stop Criteria Integer

Inertia Max Rate Double (0~1)
Inertia Min Rate Double (0~1)

Table 9. Tuned value of the parameters.

Searching Algorithm Parameter Value

GA
Mutate Rate 0.97

Crossover Rate 0.59
Random Rate 0.15

SA
Temperature 2625.31

Reduction Rate 0.61
Stopping

Temperature 0.52

ACO
Pheromone Rate 0.44
Evaporate Rate 0.96

PSO
Inertia Max Rate 0.94
Inertia Min Rate 0.36

4. Computational Results

Using the tuned parameter by ‘irace’, this paper provides performance of the algorithms through
repeatability. The experiment is run 1000 times under the same computational environment, with
the following specifications: Intel Core i9-7900X central processing unit (CPU) (3.30GHz) processor;
32 GB of memory; and, Windows 10. The algorithm is developed using Java jdk11.0.1. The used
environments for the experiment are three sizes are and they are shown in Figures 9–11. The results
of the experiment are organized in following tables. In the table, ‘processing time’ means that the
shortest consumed time of best OFV. The result is rounded off to three decimal places. Additionally,
the notated number ‘0.0’ on time means that measured time is less than 1 millisecond.

Tables 10 and 11 show the results of experiment under 10× 10 grid environments. The performances
of metaheuristic algorithm are distinguished clearly, depending on obstacle type, the number of
obstacles, and algorithms. SA takes a shorter time to solve the problem than population-based
algorithms, which are GA, ACO, and PSO, but the solution quality of SA has larger fluctuations. In
Table 10, some cases of reported time variances of GA and ACO are larger than others. This shows that
the proposed GA and ACO have more unsettled performance than others in some cases. The algorithms
have a weakness for a problem with a huge local optimum, termed the 10_4ch problem. Additionally, the
larger number of obstacles, which are 10_7n and 10_11s problems, decreases the algorithm performance.
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Table 10. Experimental results of the metaheuristic algorithms within 10 × 10 case.

Problem
Name

Searching
Algorithm Best OFV Mean

OFV
Processing
Time (ms)

Average
Processing
Time (ms)

OFV
Variance

Time
Variance

10_1o

GA 14.817 14.820 0.0 14.661 0.001 28.056
SA 14.817 15.745 0.0 0.420 1.726 6.370

ACO 14.817 14.817 0.0 7.567 0 61.731
PSO 14.817 14.817 0.0 10.043 0 60.053

10_4ch

GA 27.136 29.893 281 355.175 1.807 14129.98
SA 27.648 29.889 0.0 8.135 1.819 62.096

ACO 28.307 31.933 328 315.228 1.752 4752.647
PSO 27.648 29.889 47 45.607 0.566 37.096

10_4n

GA 16.243 17.337 47 53.248 0.048 139.240
SA 16.243 17.663 0.0 0.860 0.103 12.733

ACO 16.243 17.355 31 17.06 0.034 25.762
PSO 16.243 17.169 15 15.726 0.095 18.089

10_7n

GA 14.065 14.305 62 90.302 0.025 833.630
SA 14.065 14.566 0.0 2.990 0.100 38.428

ACO 14.055 14.351 47 41.365 0.040 202.931
PSO 14.065 14.278 15 21.607 0.015 61.548

10_11s

GA 14.485 16.810 125 180.398 0.426 3084.414
SA 14.485 17.652 15 7.544 0.871 62.567

ACO 14.485 17.044 93 78.178 0.298 650.778
PSO 14.485 17.119 47 52.074 0.296 63.746

10_1n

GA 14.777 14.844 0.0 17.058 0.020 79.302
SA 14.777 15.505 0.0 0.265 0.176 4.069

ACO 14.777 14.777 0.0 14.406 0.000 31.709
PSO 14.777 14.777 0.0 7.556 0 62.998

Table 11. Experimental results of the other algorithms within 10 × 10 case.

Problem
Name

Searching
Algorithm Best OFV Mean

OFV
Processing
Time (ms)

Average
Processing
Time (ms)

OFV
Variance

Time
Variance

10_1o
Dijkstra 14.817 14.817 0.0 1.038 0 15.036

A* 14.817 14.817 0.0 0.831 0 12.363
Wavefront 17.414 17.414 0.0 0.189 0 2.946

10_4ch
Dijkstra 27.136 27.136 0.0 0.779 0 11.554

A* 27.136 27.136 0.0 0.771 0 12.039
Wavefront 219.782 219.782 15 15.932 0 4.964

10_4n
Dijkstra 16.243 16.243 0.0 0.815 0 12.133

A* 16.243 16.243 0.0 0.621 0 9.275
Wavefront 20.485 20.485 0.0 1.883 0 26.053

10_7n
Dijkstra 14.055 14.055 0.0 0.744 0 11.001

A* 14.055 14.055 0.0 0.625 0 9.394
Wavefront 17.314 17.314 0.0 0.031 0 0.481

10_11s
Dijkstra 14.485 14.485 0.0 1.123 0 16.288

A* 14.485 14.485 0.0 0.763 0 11.322
Wavefront 14.485 14.485 0.0 0.015 0 0.225

10_1n
Dijkstra 14.777 14.777 0.0 1.448 0 20.492

A* 14.777 14.777 0.0 1.198 0 17.296
Wavefront 72.083 72.083 0.0 0.300 0 4.655

The algorithms in Table 11 are heuristic algorithms, so each algorithm provides a unique solution.
The algorithms are usually dominantly faster than metaheuristic algorithms when solving this size of
problem. Wavefront algorithm is easily trapped in local optimum, such as 10_4ch, 10_4n, 10_7n, and
10_1n problem. However, the processing time of Wavefront algorithm is lower than other algorithms,
except for the 10_4ch case. In this case, the algorithm cannot find a reasonable solution, because of local
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optimum. The algorithms find a unique and the best solution for each problem, as Dijkstra algorithm
and A star algorithm function as exact algorithms with the condition of these experiments.

Figures 12 and 13 show the best represented solutions while using the algorithm. Figure 12a
shows the notation of the paths. Among the notations, ‘others’ means that all of the algorithms, except
algorithms, which are shown individually in the figure. Some of them find the shortest path and the
weakness of wavefront algorithm is easily found. In case of Figure 12d,f,h and Figure 13d, the solutions
of wavefront algorithm are trapped by obstacles, which has ‘n’ shapes or small slots.
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The results with 20 × 20 cell environments are organized in Tables 12 and 13. Average processing
time of Dijkstra algorithm and A star algorithm is recognizably increased in comparison with the
results of 10 × 10 grid environments. The value, which is OFV variance of 20_4o with SA, is noticeably
larger than other OFV variance. On the other hand, the other, the processing time, is only marginally
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different. For example, wavefront algorithm has a similar level with the outcome from the smaller
problem. Metaheuristic algorithms are still slower than other algorithms in this environment size and
their average processing time have similar characteristics with the results of 10 × 10 grid environments.

Table 12. Experimental results of the metaheuristic algorithms within 20 × 20 case.

Problem
Name

Searching
Algorithm Best OFV Mean

OFV
Processing
Time (ms)

Average
Processing
Time (ms)

OFV
Variance

Time
Variance

20_1o

GA 29.509 29.642 31 69.416 0.039 958.536
SA 29.509 29.867 0.0 0.464 0.040 6.976

ACO 29.509 29.509 140 186.123 0 238.633
PSO 29.509 29.509 0.0 8.251 0 65.400

20_4o

GA 17.470 17.749 94 190.572 0.087 6469.725
SA 17.470 18.497 0.0 2.137 3.040 28.829

ACO 17.470 17.557 156 234.829 0.041 3034.65
PSO 17.470 17.495 15 36.399 0.013 62.066

Table 13. Experimental results of the other algorithms within 20 × 20 case.

Problem
Name

Searching
Algorithm Best OFV Mean

OFV
Processing
Time (ms)

Average
Processing
Time (ms)

OFV
Variance

Time
Variance

20_1o
Dijkstra 29.509 29.509 31 45.066 0 43.279

A* 29.509 29.509 15 33.730 0 38.918
Wavefront 30.971 30.971 0.0 0.328 0 5.025

20_4o
Dijkstra 17.470 17.470 15 23.931 0 61.980

A* 17.470 17.470 0.0 8.360 0 62.405
Wavefront 17.828 17.828 0.0 0.315 0 4.871

Tables 14 and 15 show the experiment results under 40× 40 cell. On this size of network, the searching
speed of metaheuristic algorithms under some environments is faster than the speed of the Dijkstra
algorithm and A star algorithm. For instance, PSO is a faster method for problems named 40_1o, 40_1n in
comparison with the Dijkstra and A star algorithm. The best OFV of these experiments is the same as
the outcome of the exact algorithm, which means that the OFV is the global optimum. The Wavefront
algorithm is the fastest algorithm among these seven algorithms, but it is not able to escape from the local
optimum, such as the 40_1n case. Meanwhile, in the case of 40_11s, the average processing time of GA and
ACO significantly shows the weakness of the algorithms. The number of obstacles make their processing
times increase when compared to 40_1o and 40_1n. Time variance is also unstable in the case with GA
and ACO.

Table 14. Experimental results of the metaheuristic algorithms within 40 × 40 case.

Problem
Name

Searching
Algorithm Best OFV Mean

OFV
Processing
Time (ms)

Average
Processing
Time (ms)

OFV
Variance

Time
Variance

40_1o

GA 62.512 62.622 125 156.54 0.037 2315.346
SA 62.512 66.927 0.0 0.374 21.240 5.700

ACO 62.512 62.512 515 546.614 0 108.868
PSO 62.512 62.512 0.0 9.711 0 57.515

40_1n

GA 62.201 62.420 93 188.511 0.067 5195.051
SA 62.201 63.481 0.0 0.327 1.619 4.995

ACO 62.201 62.208 750 864.01 0.003 5275.087
PSO 62.201 62.201 0.0 13.239 0.000 34.564

40_11s

GA 61.160 65.949 3359 2819.886 7.753 966961.7
SA 60.677 68.213 63 23.476 15.223 116.924

ACO 61.172 67.476 1250 1562.399 6.878 251384.9
PSO 61.159 65.818 94 114.755 5.893 193.761
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Table 15. Experimental results of the other algorithms within 40 × 40 case.

Problem
Name

Searching
Algorithm Best OFV Mean

OFV
Processing
Time (ms)

Average
Processing
Time (ms)

OFV
Variance

Time
Variance

40_1o
Dijkstra 62.512 62.512 328 352.055 0 68.236

A* 62.512 62.512 124 133.200 0 62.801
Wavefront 73.899 73.899 0.0 1.486 0 21.079

40_1n
Dijkstra 62.201 62.201 609 625.265 0 47.522

A* 62.201 62.201 390 407.943 0 39.447
Wavefront 2727.895 2727.895 15 23.186 0 91.761

40_11s
Dijkstra 58.835 58.835 234 247.047 0 181.048

A* 58.835 58.835 78 89.608 0 80.601
Wavefront 64.527 64.527 0.0 1.276 0 18.266

Average processing time of these two algorithms is dramatically increased. In order to recognize
the time changes clearly, Figure 14 is presented. The graph is the result of following equation.

f (x) =
40 probs Average processing time
10 probs Average processing time

, (3)

As shown in the graph, Dijkstra and A star algorithms are remarkably more sensitive for network
size than other algorithms, implying that network size is the weakness of the algorithms.
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5. Conclusions

The problem of collision-free path planning has been studied in various areas resulting in many
different criteria for studying the problem. These differences have given rise to several different
terms with similar meanings, which, in turn, may actually hinder research for developing new
methodologies for the problem of collision-free path planning. Meanwhile, many papers use varied
searching algorithms, but their performances are not measured across the board under the exact same
experimental conditions. The searching algorithm of research papers was selected from related works,
because the algorithm is “typically used” and “good enough”. For this reason, some papers provide
performance reviews under the same categories, such as sampling-based algorithms. However, the
papers do not show the differences between the exact algorithms and heuristic based algorithms at the
same time. The algorithms each have their own advantages and disadvantages. Integrated research
is required in order to measure the pros and cons. Thus, this paper has two main contributions,
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which are categorization considering criteria and searching algorithms performance review under
grid environments.

Firstly, this research has organized the problem while considering these criteria as four categories:
environment type; environmental representation; searching algorithm; and experimental type. Each
category has specific classes of characteristics and the difference in the characteristics make contribution
of the other researches about CFPP problem. Through these categories, this research contributes to
understand CFPP problem structure and recently studied topics.

Second, a performance review for seven different searching algorithms for a network environment
are proposed in this study. Each algorithm has its own significant characteristics. The performance can
be altered according to network size, feature of obstacles or number of obstacles. The experiments
show that searching speed of Dijkstra and A star algorithm rapidly increases, depending on network
size more so than metaheuristic algorithms. Performance of the metaheuristic algorithm fluctuates
based on the number or shape of the obstacles. Therefore, this paper evaluated the performance of
these searching algorithms.

Recently, CFPP problem is studied under dynamic, stochastic or multi tasks condition recently.
However, the performance result of this paper focused on stationary obstacles, network model, and
single task condition. Many other conditions, such as kinematic constraint, different environmental
representation, or environment type, should be researched for measuring their effect. Also, metaheuristic
algorithms are defined as simplified form, thus they may have a performance gap between the suggested
algorithms and the studied algorithm recently.

We plan to redeem the limitation of this paper, as follows. Our further research will be studying
performance of recent algorithms under various conditions using a car-like robot. Through this plan,
various combined conditions of kinematic constraint, environmental representation, and environmental
type can be expected to consider. Also, an actual robot has limited specifications, such as the limitation
of sensing vague objects in real-time and computational limitations. With this further research, these
limitations can be considered while using a car-like robot.

On the other hand, the extension of the algorithm can be adopted and applied to real-time
environment specially in vision enabled mobile machines. The information captured by such vision
would provide much more accurate information for a mobile agent to aid in avoiding collisions. Thus,
future research could include the direction of path planning in a real time environment with a vision
enabled system.
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