
electronics

Article

A Performance Review of Collision-Free Path
Planning Algorithms

Hyunwoo Shin and Junjae Chae *

School of Air Transport, Transportation and Logistics, Korea Aerospace University, 76 Hanggongdaehak-ro,
Deogyang-gu, Goyang-si, Gyeonggi-do 10540, Korea; hyunwoo4171@kau.kr
* Correspondence: jchae@kau.ac.kr

Received: 12 January 2020; Accepted: 8 February 2020; Published: 12 February 2020
����������
�������

Abstract: Path planning for mobile agents is one of the areas that has drawn the attention of
researchers’, as evidenced in the large number of papers related to the collision-free path planning
(CFPP) algorithm. The purpose of this paper is to review the findings of those CFPP papers and the
methodologies used to generate possible solutions for CFPP for mobile agents. This survey shows
that the previous CFPP papers can be divided based on four characteristics. The performance of
each method primarily used to solve CFPP in previous research is evaluated and compared. Several
methods are implemented and tested in same computing environment to compare the performance
of generating solution in specified spatial environment with different obstacles or size. The strengths
and weakness of each methodology for CFPP are shown through this survey. Ideally, this paper will
provide reference for new future research.

Keywords: collision-free; path planning; robot motion planning; mover’s problem; heuristic
based algorithms

1. Introduction

The usage of mobile agents (MAs) including unmanned aerial vehicles (UAVs), autonomous robots
and automated guided vehicles (AGVs), in areas, such as container terminals, delivery to customers or
manufacturing processes only continues to increase [1]. The design problem of Collision-free path
planning (CFPP) is to determine a collision-free path of MAs within the target space of a specific
environment [2]. Research also refers to this design problem as motion planning or piano mover’s
problem [3]. The researchers have studied CFPP problem while using several kinematic constraints,
including point robots or using robots with specific degree of freedom (DOF) [4–6]. Autonomous
robots are also required to decide their motion using the logic. Researches have conducted extensive
research in response to the increasing importance of MAs.

In this paper, we have arranged the survey papers of the CFPP based problem according to the
paper’s original research purpose. Schwartz & Sharir [7] focused on classical geometry, topology,
algebraic geometry, algebra, and combinatorics. Additionally, they briefly discuss the characteristic
and complexity of geometric algorithms that are relevant to the CFPP problem. Hwang & Ahuja [8]
researched the different methodologies, obstacles, and algorithms, and discussed the characteristics
of the problem known as the gross motion plan. Sariff & Buniyamin [9] reviewed the algorithms for
solving CFPP problem in different environments. The study further briefly presented the advantages
and disadvantages of the algorithms. Masehian and Sedighizadeh [10] conducted a 35 years period
chronological survey regarding the classic and meta-heuristic algorithms for the CFPP problem. Goerzen
et al. [11] found that UAVs have significant differing issues than that of other robots, because it operates
in a three-dimensional (3D) environment. Roberge et al. [12] reviewed the performance of algorithms,
parallel genetic algorithm, and particle swarm optimization pertaining to the non-deterministic CFPP

Electronics 2020, 9, 316; doi:10.3390/electronics9020316 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-3986-2199
https://orcid.org/0000-0002-2657-047X
http://dx.doi.org/10.3390/electronics9020316
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/2/316?type=check_update&version=2

Electronics 2020, 9, 316 2 of 28

problem. In addition, the researchers examined the dynamic properties of a UAV’s path in a complex
three-dimensional environment. A survey of heuristic based algorithm for solving CFPP was recently
presented [13]. The research summarized chronological changes and sorted studies by algorithms,
which were nature-inspired methods, fuzzy logic, neural networks, and the potential field method.
The frequency of the problem attributes is also reviewed in the paper. Schwarting et al. [14] reviewed
and provided emerging trends in autonomous problems. The paper summarized problems, such as
integration of automation and safety guarantees when applied to robots.

Researchers in different fields have conducted similar studies; hence, there are problems with
regards to the definitions and terms. For example, some of the papers use the name of problems
as mover’s problem [15], motion planning problem [16] or path planning problem [2]. Numerous
methodologies are provided in the research while using different key words [5,13,17,18]. However,
a comparison of methodologies is rarely studied. Previous research has focused on the different
characteristics of the CFPP problem, such as sampling-based algorithm [19], or has used a very small
number of searching algorithms [12]. On the other hand, researches have not focused on the differences
in terminology and meanings. In the writers’ opinion, this lack of uniformity and conformity in
terminology makes it difficult to select and decide on an appropriate algorithm. Therefore, the
objectives of this study are as follows. First, the purpose of this research is to unify the name and
attributes. Secondly, to provide a method to classify algorithms for solving the problem. Third, the
performance of the algorithms for solving CFPP is measured within a fundamental environment.
These contributions will enable researchers, who study the CFPP problem to grasp the key point
in a problem. Finally, researchers will be better able to choose searching algorithms, through the
comparison of the different algorithms.

The rest of this paper is divided for four sections. The CFPP problem is defined in Section 2
and four different categories of CFPP problem are proposed. In Section 3, a plan of experiment for
searching algorithms performance review is briefly introduced. Flowcharts of the algorithms are shown
and environments for testing are suggested. Additionally, a method for tuning parameters, which
are components of metaheuristic algorithms, is concisely shown. The results of the experiments are
organized and analyzed in Section 4. In the final section, a conclusion and a summary are presented.

2. CFPP

The goal of collision-free path planning (CFPP) problem is helping MAs or robots to find a safe
path from the starting point to ending (goal) point [2]. The path from a result of the CFPP problem is
considered to be an effective bypass for MAs. The effectiveness is discussed from this perspective,
which is the shortest distance for MAs. Additionally, this can be researched with multi-objective
model, such as reducing resource consumption with shorter distances or finding a good solution in
shorter time. Four different attributes are required to define the problem type; environment type
(Env.T.; Section 2.1), environmental representation (Env.R.; Section 2.2), searching algorithm (S.Alg.;
Section 2.3), and experimental type (Exp.T.; Section 2.4). Additionally, related works that emphasize
and improve at least one point of any one of these characteristics are necessary to define the problem
type. Details of the categories are shown in Figure 1.

Electronics 2020, 9, 316 3 of 28
Electronics 2020, 9, 316 3 of 29

Figure 1. Characteristics of the collision-free path planning (CFPP).

In order to deliver information efficiently, this paper uses shorthand notation. The notation is
organized in Table 1.

Table 1. Shorthand notation for the tables.

Word Notation Word Notation
Environment type Env.T. Network N.

Environment representation Env.R. Coordinate system Co.S.
Searching algorithm S.Alg. Boundary representation B.R.
Experimental Type Exp.T. Cell tree C.T.

Obstacle type O.T. Polygonal approximation Po.A.
Point type P.T. Evolutionary programming E.P.

Workspace representation W.R. K nearest neighbor K near.
Obstacle representation Ob.R. Simulation S.

Experiment Exp. Probabilistic roadmap PRM
Workspace representation algorithm W.R.Alg. Rapidly-exploring Random Tree RRT

Certain C. Voronoi Diagram V.D.
Uncertain Uc. Visibility Graph Vgraph

Static S. Normal distribution transform NDT
Dynamic D. Circle approximation Ci.A

2.1. Environment Type

Environment types in CFPP problem are divided specifically, as follows: obstacle type (O.T.)
and point type (P.T.). Each type has specific characteristics and detail descriptions of the
characteristics are proposed as follows.

Firstly, the obstacle type is classified as static or dynamic [6,20]. Figure 2a describes static
obstacle type and Figure 2b is an example of dynamic obstacle type. The static obstacle environment,
which is also called the stationary obstacle environment, is a basic form of the CFPP problem. In this
case, the obstacles do not change their shape or position. The CFPP problem in a static environment
is the most basic model of the CFPP. This is one of the reasons why many papers use a static
environment assumption [13]. The dynamic obstacle environment, which is also called the moving
obstacle, can change the obstacle’s shape time dependently. This case considers the velocity and
acceleration of MAs.

Figure 1. Characteristics of the collision-free path planning (CFPP).

In order to deliver information efficiently, this paper uses shorthand notation. The notation is
organized in Table 1.

Table 1. Shorthand notation for the tables.

Word Notation Word Notation

Environment type Env.T. Network N.
Environment representation Env.R. Coordinate system Co.S.

Searching algorithm S.Alg. Boundary representation B.R.
Experimental Type Exp.T. Cell tree C.T.

Obstacle type O.T. Polygonal approximation Po.A.
Point type P.T. Evolutionary programming E.P.

Workspace representation W.R. K nearest neighbor K near.
Obstacle representation Ob.R. Simulation S.

Experiment Exp. Probabilistic roadmap PRM
Workspace representation algorithm W.R.Alg. Rapidly-exploring Random Tree RRT

Certain C. Voronoi Diagram V.D.
Uncertain Uc. Visibility Graph Vgraph

Static S. Normal distribution transform NDT
Dynamic D. Circle approximation Ci.A

2.1. Environment Type

Environment types in CFPP problem are divided specifically, as follows: obstacle type (O.T.) and
point type (P.T.). Each type has specific characteristics and detail descriptions of the characteristics are
proposed as follows.

Firstly, the obstacle type is classified as static or dynamic [6,20]. Figure 2a describes static obstacle
type and Figure 2b is an example of dynamic obstacle type. The static obstacle environment, which
is also called the stationary obstacle environment, is a basic form of the CFPP problem. In this case,
the obstacles do not change their shape or position. The CFPP problem in a static environment is the
most basic model of the CFPP. This is one of the reasons why many papers use a static environment
assumption [13]. The dynamic obstacle environment, which is also called the moving obstacle, can
change the obstacle’s shape time dependently. This case considers the velocity and acceleration of MAs.

Electronics 2020, 9, 316 4 of 28Electronics 2020, 9, 316 4 of 29

x

y

t

y

x
(a) (b)

Figure 2. Illustrations of the obstacle having different obstacle type: (a) Static obstacle; and, (b)
Dynamic obstacle.

Second, point type is classified as certain or uncertain [21]. As there is inherent uncertainty in
the MA’s sensing, point type should be assumed as certain or uncertain. Certain point type is
assumed when the MAs position and goal point is an exact location. The assumption is often used in
testing novel approaches while using simulation, because uncertain problem makes it difficult to
solve the problem. Uncertain point type is set when the MA’s point and goal point is not known
exactly. MAs use several sensors to recognize space. The sensors may include some errors, which
MAs must recognize in an uncertain space. The type makes the problem more challenging than with
a certain point type. This is one of the reasons why it is difficult to solve a CFPP problem with real
MAs. The problem is solved while using the stochastic technique, such as the Monte-Carlo method
[22–24].

2.2. Environmental Representation

Environmental representations in a CFPP problem have two different types: workspace
representation (W.R.) and obstacle representation (Ob.R.). Diverse studies about these have been
previously researched. The details of these studies are characterized below.

First, workspace representation has two representations: the coordinate system model and the
network model. The coordinate system model uses Algebra for describing the environment and the
MAs’ motion. This problem is called the Findspace problem, which is one aspect of spatial planning
[25]. The Findspace problem has three different workspaces; the polygonal workspace; the
polyhedral workspace; and, the semi-Algebraic workspace [21]. In addition, convexity and
non-convexity are also important aspects of the Findspace problem. Simply, the greater the number
of edges and vertices in a workspace representation, the greater the complexity of the problem.
Therefore, a polyhedral workspace would be more difficult to solve for than a polygonal workspace
[6]. Network model, which is also known as the Roadmap approach, uses links and nodes for
describing the environment. In this model, researchers have modelled the routes of the MA’s as links
and nodes using algorithms, such as the Voronoi diagram, the Visibility Graph, the
Rapidly-exploring random tree, and the Probabilistic roadmap. Additionally, the algorithms are
mainly differentiated from each other mainly by style generated. These include: the sampling-based
algorithm and the geometric modeling algorithm [17]. LaValle et al. [26] conducted extensive
researched of the sampling-based algorithm while using the Monte Carlo sampling method.

Their conclusions suggest that the basic grid network algorithm provides better performance in
certain cases than does a sampling-based algorithm. Thrun et al. [23] proposed a model wherein the
Monte Carlo localization is combined with the sampling-based algorithm. Janson et al. [24] posit that
the Monte Carlo Motion Planning (MCMP) is effective in solving the CFPP problem. Englot and

Figure 2. Illustrations of the obstacle having different obstacle type: (a) Static obstacle; and,
(b) Dynamic obstacle.

Second, point type is classified as certain or uncertain [21]. As there is inherent uncertainty in the
MA’s sensing, point type should be assumed as certain or uncertain. Certain point type is assumed
when the MAs position and goal point is an exact location. The assumption is often used in testing
novel approaches while using simulation, because uncertain problem makes it difficult to solve the
problem. Uncertain point type is set when the MA’s point and goal point is not known exactly. MAs use
several sensors to recognize space. The sensors may include some errors, which MAs must recognize
in an uncertain space. The type makes the problem more challenging than with a certain point type.
This is one of the reasons why it is difficult to solve a CFPP problem with real MAs. The problem is
solved while using the stochastic technique, such as the Monte-Carlo method [22–24].

2.2. Environmental Representation

Environmental representations in a CFPP problem have two different types: workspace representation
(W.R.) and obstacle representation (Ob.R.). Diverse studies about these have been previously researched.
The details of these studies are characterized below.

First, workspace representation has two representations: the coordinate system model and the
network model. The coordinate system model uses Algebra for describing the environment and the
MAs’ motion. This problem is called the Findspace problem, which is one aspect of spatial planning [25].
The Findspace problem has three different workspaces; the polygonal workspace; the polyhedral
workspace; and, the semi-Algebraic workspace [21]. In addition, convexity and non-convexity are also
important aspects of the Findspace problem. Simply, the greater the number of edges and vertices
in a workspace representation, the greater the complexity of the problem. Therefore, a polyhedral
workspace would be more difficult to solve for than a polygonal workspace [6]. Network model, which
is also known as the Roadmap approach, uses links and nodes for describing the environment. In this
model, researchers have modelled the routes of the MA’s as links and nodes using algorithms, such as
the Voronoi diagram, the Visibility Graph, the Rapidly-exploring random tree, and the Probabilistic
roadmap. Additionally, the algorithms are mainly differentiated from each other mainly by style
generated. These include: the sampling-based algorithm and the geometric modeling algorithm [17].
LaValle et al. [26] conducted extensive researched of the sampling-based algorithm while using the
Monte Carlo sampling method.

Their conclusions suggest that the basic grid network algorithm provides better performance
in certain cases than does a sampling-based algorithm. Thrun et al. [23] proposed a model wherein
the Monte Carlo localization is combined with the sampling-based algorithm. Janson et al. [24] posit
that the Monte Carlo Motion Planning (MCMP) is effective in solving the CFPP problem. Englot

Electronics 2020, 9, 316 5 of 28

and Hover [27] suggested the sampling-based algorithm under ACO framework to solve multi-goal
CFPP problems. This technique allows for a solution that can take into account multi-objects, such as
computational complexity and optimality. Ichter et al. [28] studied the sampling-based algorithm in a
learning-based framework where non-uniform sampling strategies are used for the CFPP problem in
“huge” spaces.

The sampling-based algorithm includes two common algorithms: the Probabilistic roadmap and
the Rapidly-exploring random tree. Kavraki et al. [29] solve the CFPP problem for articulated robots
while using two phases: the Probabilistic roadmap and the heuristic for searching within the roadmap.
The proposed method can be applied to any holonomic robot. The theoretical performance of the
Probabilistic roadmap was rarely studied before Kavraki et al. [19]. The paper studies the failure
probability of connecting two points. Also, the relationship among the number of nodes, failure
probability, and length of paths are studied. The Probabilistic roadmap and the Rapidly-exploring
random tree are also studied in practical way with various robots [30,31]. Several simulated and real
experiments using specific robots are performed. Complex and large environments, such as dynamic
obstacles or urban areas, are considered in the experiments. Kim et al. [32] propose the Tangent Bundle
Rapidly exploring random tree (TB-RRT) in order to improve the efficiency of the algorithm in a large
space. Also, related works under complex environment are studied in succession [33,34]. A centralized
case, such as spot-welding station with two to six robot manipulators in automobile manufacturing
field, is researched and an application is made for the case [35,36]. These papers purport that centralized
planning is more efficient than decentralized planning. Additionally, the sampling-based algorithms
are applied to a geometrically complex problem and a multi-robot problem [37,38]. Wilmarth et al. [39]
argue that the basic Probabilistic roadmap is an ineffective method for solving the CFPP problem in
a narrow space. Thus, a novel algorithm, named MAPRM, is suggested for solving specific narrow
space. Saha et al. [40] concluded the small-step retraction method can be applied to the CFPP problem.
Meanwhile, the CFPP problem can be expanded to the tour problem, as can the traveling-salesman
problem or task-planning problem [41,42]. The algorithms are mainly divided into two divisions: path
finding and tour (sequence) finding in order to solve the problem,

Meanwhile, several papers have evaluated the performance of the sampling-based algorithm.
The sampling configuration and probability measure are affected by the performance of the Probabilistic
roadmap [43]. Further, Karaman and Frazzoli [44] studied the performance of the Probabilistic roadmaps
and Rapidly-exploring random trees sampling-based algorithms. Recently, Marble and Bekris [45]
discuss and introduce a method providing robust solution qualities. More details about related to
sampling-based algorithm research are organized in Table 2.

Whatever path that is generated in a network model, should be smoothed before applying to
MAs [17]. Smoothing affects the performance of the algorithm [46], and it has been studied by some
papers [47,48].

Secondly, Hwang and Ahuja [8] propose six basic obstacle representations that are chosen in
consideration of workspace representation and an approximation of the obstacles. These six obstacle
representations are: original objects, gird, cell tree, polygonal approximation, constructive solid
geometry, and boundary representation. The representation styles are shown in Figure 3. These obstacle
representations are chosen by workspace representation and approximation of the obstacles.

Electronics 2020, 9, 316 6 of 28

Table 2. Classification of the papers while using the sampling-based algorithm.

Ref. Author & Year
Env.T. Env.R

S.Alg.
Exp.T.

W.R.Alg.
P.T. O.T W.R. Ob.R Exp. Robot

[29] Kavraki et al., 1996 C. S. N. Grid Heuristic S. Articulated
robots PRM

[19] Kavraki et al., 1998 C. - - B.R. - S. 6 DOF PRM
[49] Hsu et al., 1997 C. S. N. - Heuristic S. 6 DOF PRM
[39] Wilmarth et al., 1999 C. S. N. B.R. - S. - MAPRM
[31] Kuffner & LaValle, 2000 C. S. N. - Heuristic S. 7 DOF RRT

[23] Thrun et al., 2001 Uc. S. N. B.R.,
C.T.

MCL
algorithm S. RWI B18

robot Sampling based

[35] Sánchez & Latombe, 2002 C. D. N. Po.A. Heuristic S. Multi
robot PRM

[36] Sanchez & Latombe, 2002 Uc. D. N. Po.A. Heuristic S. - PRM
[37] Sánchez & Latombe, 2003 C. D. N. - Heuristic S. 6 robots PRM

[26] LaValle et al., 2004 - - N. - - S. - Sampling
based review

[40] Saha et al., 2005 C. S. N. - F* S. - PRM
[43] Hsu et al., 2006 Uc. S. N. - Heuristic S. - PRM
[41] Saha et al., 2006 - S. N. - Heuristic S. - PRM
[50] Alterovitz et al., 2007 Uc. S. N. B.R. Heuristic S. - Sampling based
[30] Hsu et al., 2002 Uc. D. N. B.R. Heuristic Real - PRM

[34] Kuwata et al., 2009 Uc. D. N.,
Co.S. Grid Heuristic S. Vehicle RRT

[27] Englot & Hover, 2011 C. S. N. - ACO S. - Sampling based
[44] Karaman & Frazzoli, 2011 C. S. N. B.R. Heuristic S. - Sampling based
[33] Malone et al., 2014 - D. N. Grid Dijkstra S. - PRM
[24] Janson et al., 2018 Uc. S. N. B.R. MCMP S. - Sampling based

[51] Contreras-Cruz et al.,
2015 Uc. S. N. - EP,

Dijkstra Real Xidoo-Bot PRM

[42] Dantam et al., 2016 - S. N. - Heuristic Real - RRT

[38] Solovey et al., 2016 - S. N. - K Near.,
M* S.

High DOF
Multi
robot

RRT

[32] Kim et al., 2016 - S. N. - K Near. S. - RRT
[45] Marble & Bekris, 2017 C. S. N. - K Near. S. - PRM

[28] Ichter et al., 2018 - D. N. - Heuristic S. Multi
robots Sampling based

Electronics 2020, 9, 316 7 of 29

(a) (b) (c)

line{(x1,y1),(x2,y1)},
line{(x1,y1),(x1,y2)},
line{(x2,y1),(x2,y2)},
line{(x1,y2),(a1,y2)},
line{(a2,y2),(x2,y2)},
circular_arc{center(a3,y2),r(r1),angle(0,180)}

(d) (e) (f)

Figure 3. Six different workspace representations [8]: (a) Original object; (b) Grid; (c) Cell tree; (d)
Constructive solid geometry; (e) Polygonal approximation; and, (f) Boundary representation.

2.3. Searching Algorithms

Searching algorithms or query process in probabilistic roadmaps are chosen by workspace
representation. Some searching algorithms are applied to specific representations. For example, A*
and Dijkstra algorithms are only applicable under network conditions. For instance, to solve
problem with network, A*, Dijkstra algorithm or heuristic-based algorithms are often used. On the
other hand, optimal approaches are used for problem under a coordinate system. There is extensive
research that provides searching algorithms for several conditions in reasonable time. The
algorithms can be classified as classic algorithms or heuristic-based algorithms [10,13,18].

2.3.1. Classical Algorithm

Dijkstra Algorithm is a common used algorithm for solving the network problem [52]. This
algorithm offers an optimal path in a network, when all of the network link distances are positive.
The A* algorithm is also frequently used in order to solve the shortest path problem on network [53].
Some methodologies, which are a combination of a Voronoi diagram and the Dijkstra algorithm, are
provided by several researches [54,55]. Additionally, the Dijkstra algorithm was studied as query
process of probabilistic roadmaps [33,56]. An application was suggested for solving the CFPP
problem while using the Dijkstra algorithm [57]. A* algorithm is broadly used to solve the CFPP
problem under network conditions. Several research papers related to a visibility graph were
applied to A* algorithm to solve CFPP problem [2,20,58]. On the other hand, some papers provide
methods applied under a sampling-based environment [59,60]. Many papers suggested novel
algorithms, which were developed using Dijkstra’s algorithm or A* algorithm [61–63]. Papers about
A* and Dijkstra algorithms are shown in Table 3.

Table 3. Classification of the papers using the exact algorithm.

Ref. Author & Year
Env.T. Env.R

S.Alg
.

Exp.T.
W.R.Alg.

P.T. O.T. W.R
. Ob.R Exp Robot

[54]
Bhattacharya &
Gavrilova, 2007

- D. N. B.R. Dijkstra S. - V.D.

Figure 3. Six different workspace representations [8]: (a) Original object; (b) Grid; (c) Cell tree;
(d) Constructive solid geometry; (e) Polygonal approximation; and, (f) Boundary representation.

Electronics 2020, 9, 316 7 of 28

2.3. Searching Algorithms

Searching algorithms or query process in probabilistic roadmaps are chosen by workspace
representation. Some searching algorithms are applied to specific representations. For example, A*
and Dijkstra algorithms are only applicable under network conditions. For instance, to solve problem
with network, A*, Dijkstra algorithm or heuristic-based algorithms are often used. On the other hand,
optimal approaches are used for problem under a coordinate system. There is extensive research
that provides searching algorithms for several conditions in reasonable time. The algorithms can be
classified as classic algorithms or heuristic-based algorithms [10,13,18].

2.3.1. Classical Algorithm

Dijkstra Algorithm is a common used algorithm for solving the network problem [52]. This algorithm
offers an optimal path in a network, when all of the network link distances are positive. The A* algorithm
is also frequently used in order to solve the shortest path problem on network [53]. Some methodologies,
which are a combination of a Voronoi diagram and the Dijkstra algorithm, are provided by several
researches [54,55]. Additionally, the Dijkstra algorithm was studied as query process of probabilistic
roadmaps [33,56]. An application was suggested for solving the CFPP problem while using the Dijkstra
algorithm [57]. A* algorithm is broadly used to solve the CFPP problem under network conditions. Several
research papers related to a visibility graph were applied to A* algorithm to solve CFPP problem [2,20,58].
On the other hand, some papers provide methods applied under a sampling-based environment [59,60].
Many papers suggested novel algorithms, which were developed using Dijkstra’s algorithm or A*
algorithm [61–63]. Papers about A* and Dijkstra algorithms are shown in Table 3.

Table 3. Classification of the papers using the exact algorithm.

Ref. Author & Year
Env.T. Env.R

S.Alg.
Exp.T.

W.R.Alg.
P.T. O.T. W.R. Ob.R Exp Robot

[54] Bhattacharya & Gavrilova,
2007 - D. N. B.R. Dijkstra S. - V.D.

[55] Ho & Liu, 2009 - S. N. B.R. Dijkstra S. Car-like
robot V.D.

[56] Janson et al., 2018 - - N. B.R. Dijkstra S. - PRM
[57] Wang et al., 2011 C. S. N. B.R. Dijkstra S. - Grid

[20] Alexopoulos & Griffin, 1992 C. S. N. B.R. A* S. A mobile
robot Vgraph

[64] Fu & Liu, 1990 C. S. N. Po.A. A* S. - Vgraph
[58] Herman, 1986 C. S. N. C.T. A* S. - C.T.
[2] Lozano-Pérez & Wesley, 1979 C. S. N. B.R. A* S. - Vgraph

[60] Berg et al., 2006 Uc. D. N. B.R. D* S. - Roadmap

[59] Bohlin & Kavraki, 2000 C. S. N. B.R. A* S. 6 DOF
robot PRM

[62] Deng et al., 2012 Uc. D. N. - Dijkstra S. - -
[63] Duchoň et al., 2014 - - N. Grid A* S. - SLAM based grid
[61] Noto & Sato, 2002 - - N. - Dijkstra S. - Grid

2.3.2. Heuristic Based Algorithm

There are many heuristic-based methods for the CFPP problem. Wavefront algorithm is one of
the heuristics that adopts the idea of a potential field and it was applied with various characteristics.
For instance, the Wavefront algorithm is used for solving a problem with three-dimensional normal
distributions transformations [65]. Several kinds of the metaheuristic are applied to the CFPP problem
that have a network or coordinate system.

Evolutionary algorithms, such as the Genetic algorithm (GA), are usually studied under network
environments [66–69] that are related to CFPP. Additionally, several algorithms are developed for
under coordinate system conditions [70–73]. Some novel algorithms that are based on GA are provided
from related works [74–78]. GA is one of the most applicable algorithms to solve the CFPP problem
with multi-robot [79]. Table 4 briefly shows those papers which use Wavefront or GA.

Electronics 2020, 9, 316 8 of 28

Table 4. Classification of the paper using the heuristic-based algorithm (Wavefront and Genetic algorithm
(GA)).

Ref. Author & Year
Env.T. Env.R S.Alg. Exp.T. W.R.Alg.

P.T. O.T. W.R. Ob.R. Exp. Robot

[65] Stoyanov et al., 2010 C. - N. - Wavefront S. - NDT
[66] AL-Taharwa et al., 2008 C. S. N. Grid GA S. - Grid
[67] Cai & Peng, 2002 C. S. N. B.R. GA S. Two robots Obstacle edge
[68] Yang & Yoo, 2018 - D. N. Grid GA, ACO S. UAV Grid Layer
[69] Hu & Yang, 2004 C. D. N. Grid GA S. - Grid

[73] MahmoudZadeh et al.,
2018 Uc. D. Co.S. B.R. EA S. AUV -

[71] Elshamli et al., 2004 - D. N. B.R. GA S. - -

[70] Jiang et al., 2018 C. S. Co.S. B.R. GA S. - Mechanical
arm

[72] Zhao et al., 1994 C. S. Co.S. B.R. GA S. Mobile
Manipulator -

[78] Tu & Yang, 2004 C. D. N. Grid GA S. - Grid
[75] Lamini et al., 2018 C. S. N. Grid GA S. - Grid
[74] Lee et al., 2018 C. S. N. Grid GA S. - Grid
[77] Sedighi et al., 2004 C. S. N. Grid GA S. - Grid
[76] Tuncer & Yildirim, 2012 C. D. N. Grid GA S. - Grid

[79] Nazarahari et al., 2019 C. S. Co.S. B.R. GA,
Wavefront S. Multi-robot Potential field

Simulated Annealing (SA) is typically combined with the potential field method [80–84]. The other
searching algorithms, such as general heuristic algorithm, population-based metaheuristic algorithm
and fuzzy logic, and environmental representations, are also researched with SA [85–90]. SA based
algorithms have also been applied in CFPP problems to solve vehicle congestion in smart cities. [91].
Papers that are based on SA, which are cited above, are organized in Table 5.

Table 5. Classification of the paper using the heuristic-based algorithm (Simulated Annealing (SA)).

Ref. Author & Year
Env.T. Env.R S.Alg. Exp.T. W.R.Alg.

P.T. O.T. W.R. Ob.R. Exp. Robot

[80] Janabi-Sharifi & Vinke,
1993 C. S. Co.S. B.R. SA S. Disk robot Potential field

[82] Park et al., 2001 - S. Co.S. B.R. SA Both Mobile
robot Potential field

[84] Park & Lee, 2002 - S. Co.S. B.R. SA Both Mobile
robot Potential field

[81] Zhu et al., 2006 C. S. Co.S. B.R. SA S. - Potential field

[90] Carriker et al., 1990 C. S. Co.S. B.R. SA S. Mobile
Manipulator -

[89] Kroumov & Yu, 2009 C. S. Co.S. B.R. SA, NN S. - Potential field

[86] Martínez-Alfaro &
Gómez-García, 1998 C. S. Co.S. B.R. SA, Fuzzy S. - -

[85] Miao & Tian, 2008 C. D. N. B.R. SA S. - Obstacle edge
[88] Miao & Tian, 2013 C. D. N. B.R. SA S. - Obstacle edge
[87] Tavares et al., 2011 C. S. Co.S. B.R. SA S. - -
[91] Amer et al., 2019 C. D. N. - SA S. Vehicles Road

Particle swarm optimization (PSO) was originally defined in a continuous environment, so much
CFPP research is studied under a coordinate system [46,92–100]. Chen and Li [99] use a distinguishable
method for obstacle representation, which is circle approximation (Ci.A.). They assume the obstacles as
being a circle. On the other hand, some research provide methods, which are PSO-based algorithms in
a network condition [101–104]. Some research has focused on solving the multi-robots CFPP problem
while using PSO [105,106]. In Table 6, additional information from previous research related to PSO
is shown.

Electronics 2020, 9, 316 9 of 28

Table 6. Classification of the paper using the heuristic-based algorithm (PSO).

Ref. Author & Year
Env.T. Env.R Exp.T. W.R.Alg.

P.T. O.T. W.R. Ob.R. Exp. Robot

[99] Chen & Li, 2006 C. S. Co.S. Ci.A. S. Car-like
robot -

[93] Foo et al., 2007 - S. Co.S. B.R. S. UAV -
[95] Fu et al., 2011 - S. Co.S. B.R. S. UAV -
[96] Gong et al., 2011 C. S. Co.S. B.R. S. - -

[97] Saska et al., 2006 C. S. Co.S. B.R. S. Robotic
soccer -

[92] Song et al., 2019 C. S. Co.S. Grid S. - Grid
[46] Tharwat et al., 2019 C. S. Co.S. B.R. S. - -
[94] Zhang et al., 2013 Uc. S. Co.S. B.R. S. - -
[98] Zhang et al., 2013 C. S. Co.S. B.R. S. UAV -

[104] Kang et al., 2008 C. S. N. B.R. S. - Obstacle edge

[100] Masehian &
Sedighizadeh, 2010 C. S. Co.S. B.R. S. - -

[102] Phung et al., 2017 C. S. N. - S. UAV Vision-based
inspection

[103] Shiltagh & Jalal, 2013 C. S. N. Grid S. - Grid
[101] Wang et al., 2015 C. D. N. Grid S. - Grid
[105] Alejo et al., 2013 - - Co.S. - S. Multi-UAV -
[106] Thabit & Mohades, 2019 C. S. N. Grid S. Multi-UAV Grid

Ant colony optimization (ACO) is usually studied under varying network environments, such
as grid network and Voronoi diagram [107–119]. Few papers, likewise, researched GA with ACO
and coordinate system [120]. A paper, which solves the CFPP problem with automated underwater
vehicles (AUV), is studied [121]. This paper suggests an ACO based algorithm to solve large-scale
CFPP problems. Table 7 organizes details regarding papers based on ACO.

Table 7. Classification of the paper using the heuristic-based algorithm (ant colony optimization (ACO)).

Ref. Author & Year
Env.T. Env.R Exp.T. W.R.Alg.

P.T. O.T. W.R. Ob.R. Exp. Robot

[112] Akka & Khaber, 2018 C. S. N. Gird S. - Grid
[115] Brand et al., 2010 C. S. N. Grid S. - Grid
[114] Chia et al., 2010 C. S. N. Grid S. - Grid
[109] Garcia et al., 2009 C. D. N. Grid S. - Grid
[108] Jiao et al., 2018 C. S. N. Grid S. Wheelchairs Grid
[107] Xing et al., 2011 C. D. N. Grid S. - Grid
[118] Xiong et al., 2019 C. S. N. Grid Both AMV V.D.

[117] Cong & Ponnambalam,
2009 C. S. N. Grid S. - Grid

[110] Yen & Cheng, 2018 C. S. N. Grid S. (Multi-task) Grid

[111] Hsiao et al., 2004 - - N. - S. - Random
Generated

[113] Yu et al., 2019 C. S. N. B.R. S. AUV
(Multi-task) Cube, Dense

[116] Zhang et al., 2010 C. S. N. Grid S. UAV Point
[120] Fan et al., 2003 C. S. Co.S. B.R. S. - -

[119] Wang et al., 2019 C. S. N. Grid S. Ground
robot Cube

[121] Ma et al., 2019 C. S. N. Grid S. AUV Cube

2.4. Experimental Type

In experimental type, two characteristics, which are the robot type and experimental method,
should be decided. Many previous works researched under different types of the robot, such as
car-like robots, UAV, humanoid, and several degree of freedom (DOF) robots. Each robot has its
own moving limitation. This constraint is a cause of different kinematic constraints [21]. Kinematic
constraints should be considered under experimental method. When making experiments with
real robot, computation, and resources for solving the problem is restricted. On the other hand, the
simulation method might have some assumptions, which are different from real robot. The assumptions
make a problem simplified to solve and this simple problem contributes to test novel methodologies.

Electronics 2020, 9, 316 10 of 28

3. Experiments Plan

In this paper, a simulation experiment for performances is considered under simple environments
and a single point robot, which is able to move without kinematic constraints. The experiment is
contributed to measure the performance of basic searching algorithms, as follows; Dijkstra algorithm,
A* algorithm, Wavefront algorithm, Genetic algorithm, Simulated annealing, Ant colony optimization,
and particle swarm optimization. Environment type is assumed as certain point type and static obstacle.
The experiment uses grid network in order to make environment simple, and obstacles are represented
as grid.

The object of the algorithm is to find a shortest path. Therefore, the objective function of the
comparison experiment is formulated, as follows [74].

min f
(
Ps, Pg

)
= d(Ps, P1) +

∑n−1

i=1
d(Pi, Pi+1) + d

(
Pn, Pg

)
(1)

The function is representing a path length from Ps to Pg on network and the meaning of d(a, b) is
network distance from node a to node b.

3.1. Algorithms

The Dijkstra algorithm, A* algorithm and Wavefront algorithm have been the most commonly
applied algorithms applied to solve the CFPP problem. However, other metaheuristic algorithms have
been applied, each a modified version based on flow and heuristics. The paper reviewed each simple
form of each algorithm. The flows for each metaheuristic algorithm are shown in Figures 4–7.

Electronics 2020, 9, 316 11 of 29

The object of the algorithm is to find a shortest path. Therefore, the objective function of the
comparison experiment is formulated, as follows [74]. 𝑚𝑖𝑛 𝑓(𝑃 , 𝑃) = 𝑑(𝑃 , 𝑃) + ∑ 𝑑(𝑃 , 𝑃) + 𝑑(𝑃 , 𝑃), (1)

The function is representing a path length from 𝑃 to 𝑃 on network and the meaning of 𝑑(𝑎, 𝑏) is network distance from node a to node b.

3.1. Algorithms

The Dijkstra algorithm, A* algorithm and Wavefront algorithm have been the most commonly
applied algorithms applied to solve the CFPP problem. However, other metaheuristic algorithms
have been applied, each a modified version based on flow and heuristics. The paper reviewed each
simple form of each algorithm. The flows for each metaheuristic algorithm are shown in Figure 4,
Figure 5, Figure 6 and Figure 7.

Initialization

Generation

i <
population.size()

Population.add(new makeSol)
i++

Algorithm start

populationSort()

count < stop

temp.add(New MutationSol
((originPartSol + restMakeSol))

temp.add(New CrossoverSol
((dadPartSol + momPartSol))

j <
population.size()
*mutationRate

j <
population.size()
*crossoverRate

temp.add(New makeSol)
j++

j <
population.size()

*randRate

No
j=0

temp.clear()
j = 0

populationUpdate(temp)
bestUpdate()

bestUpdated?Yes

Yes

No
j=0

No

Yes

Yes
count = 0

No
count++

Algorithm end

No

Yes

Figure 4. The flowchart of GA.

In Figure 4, flow of GA is divided into two parts: initialization and generation. The initialization
part is initializing the GA’s population set, which is then improved in Generation part. The
generation part has three methods: crossover, mutation, and random generation. Each new
population set is generated through these methods and the next generations are updated based on

Figure 4. The flowchart of GA.

Electronics 2020, 9, 316 11 of 28

In Figure 4, flow of GA is divided into two parts: initialization and generation. The initialization
part is initializing the GA’s population set, which is then improved in Generation part. The generation
part has three methods: crossover, mutation, and random generation. Each new population set is
generated through these methods and the next generations are updated based on the population set.
The generation number is counted when the best solution is not updated and resets to zero when the
best solution is updated. Executing a generation count completes the algorithm.

Electronics 2020, 9, 316 12 of 29

the population set. The generation number is counted when the best solution is not updated and
resets to zero when the best solution is updated. Executing a generation count completes the
algorithm.

Algorithm start

tempSol.OFV <
bestSol.OFV

currentSol = new makeSol
bestSol = currentSol

count = 0

tempSol = New AnnealingSol
(originPartSol + restMakeSol)

rand() < Boltz

Boltz = power(e, (currentSol.OFV-
tempSol.OFV)/temperature)

currentSol = tempSol

bestSol = tempSol
count = 0

No Yes

Yes

temperature =
reduceRate*temperature

No

temperature <
stopTemperature

&&
count > stop

Algorithm endYes

No

Figure 5. The flowchart of SA.

The flow of SA is shown in Figure 5. The algorithm has two different stop criteria; temperature
and loop count. When a new solution in next loop fails the Boltzmann factor check, a pre-determined
reduction rate reduces the temperature. When a new solution in next loop passes the Boltzmann
factor check, the loop number is increased when the best solution is not updated. Again, as in Figure
4, the number is reset to zero when updating the optimal solution.

Figure 5. The flowchart of SA.

The flow of SA is shown in Figure 5. The algorithm has two different stop criteria; temperature
and loop count. When a new solution in next loop fails the Boltzmann factor check, a pre-determined
reduction rate reduces the temperature. When a new solution in next loop passes the Boltzmann factor
check, the loop number is increased when the best solution is not updated. Again, as in Figure 4, the
number is reset to zero when updating the optimal solution.

Electronics 2020, 9, 316 12 of 28
Electronics 2020, 9, 316 13 of 29

Figure 6. The flowchart of ACO.

ACO flow has two steps, initialization and improvement step, as shown in Figure 6. Ant colony
is initialized in the initialization using the same method used with other algorithms. In the
improvement step, a solution will be generated in one of two ways. The first way is a pheromone
concept and the other is a reusing method in Initialization step. Each link has its own probability and
ants find a path following the probability in order to make pheromone concept. The link probability
is added by the following equation. 𝑙𝑖𝑛𝑘𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑐𝑜𝑢𝑛𝑡 + 1) = 𝑙𝑖𝑛𝑘𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑐𝑜𝑢𝑛𝑡) + 𝑒𝑣𝑎𝑝𝑜𝑅𝑎𝑡𝑒 , (2)

the improvement step has a step count trigger for escaping the loop. The number is increased
by one, when the flow pass a loop and it is set as zero, when the best solution is updated.

Figure 6. The flowchart of ACO.

ACO flow has two steps, initialization and improvement step, as shown in Figure 6. Ant colony is
initialized in the initialization using the same method used with other algorithms. In the improvement
step, a solution will be generated in one of two ways. The first way is a pheromone concept and the
other is a reusing method in Initialization step. Each link has its own probability and ants find a path
following the probability in order to make pheromone concept. The link probability is added by the
following equation.

linkProbability(count + 1) = linkProbability(count) +
1

bestOFV
evapoRatelinkStep (2)

the improvement step has a step count trigger for escaping the loop. The number is increased by one,
when the flow pass a loop and it is set as zero, when the best solution is updated.

Electronics 2020, 9, 316 13 of 28

Electronics 2020, 9, 316 14 of 29

Figure 7. The flowchart of PSO.

In Figure 7, flow of PSO is introduced as two parts: initialization and improvement step. The
algorithm has a similar structure to that of ACO. However, instead of concept of pheromone, PSO
uses a concept of inertia rate for mimicking the movement of swarm. Previous solutions are
destroyed by the inertia rates and new solutions are rebuilt using the best solution and an
overlapped method for making a new solution. A number for stopping criteria is counted by passing
the loop and the number is set as zero, when the best global solution is updated.

A method for making a new initial solution influences the performance of the algorithms. Thus,
in Figures 4–7, the algorithms use the same method, called ‘makeSol’ in order to limit its effects on
the algorithms. The flow of the method which includes a concept of potential field attempting to
connect to the goal point is shown in Figure 8.

Figure 7. The flowchart of PSO.

In Figure 7, flow of PSO is introduced as two parts: initialization and improvement step.
The algorithm has a similar structure to that of ACO. However, instead of concept of pheromone, PSO
uses a concept of inertia rate for mimicking the movement of swarm. Previous solutions are destroyed
by the inertia rates and new solutions are rebuilt using the best solution and an overlapped method for
making a new solution. A number for stopping criteria is counted by passing the loop and the number
is set as zero, when the best global solution is updated.

A method for making a new initial solution influences the performance of the algorithms. Thus,
in Figures 4–7, the algorithms use the same method, called ‘makeSol’ in order to limit its effects on the
algorithms. The flow of the method which includes a concept of potential field attempting to connect
to the goal point is shown in Figure 8.

3.2. Envionments

In order to test the performance under several different environments, this research uses typical
environments. In this paper, three different environment sizes are used for the experiments. Figure 9
shows six environments which have 10 × 10 cells. These environments are formed archetypal patterns,
such as ‘n’ shape, rectangles and slots. Environments, which have ‘n’ shape obstacle, are presented in
Figure 9a,b,d. Figure 9c is a simple environment with squared obstacle and Figure 9e has slot obstacles
which are known as difficult problem. The obstacle in Figure 9f is a part of environment in the paper
by Karaman [44].

Electronics 2020, 9, 316 14 of 28
Electronics 2020, 9, 316 15 of 29

Algorithm start

current!=Goal

link(current,goal) =
true

current = Start

sol.add(this.link)
current = goal

find one of
link(current, obstacleNearVertex) =

true

sol.add(this.link)
current = the cell

Yes

NoNo

Figure 8. The flowchart of ‘makeSol’ logic.

3.2. Envionments

In order to test the performance under several different environments, this research uses typical
environments. In this paper, three different environment sizes are used for the experiments. Figure 9
shows six environments which have 10 × 10 cells. These environments are formed archetypal
patterns, such as ‘n’ shape, rectangles and slots. Environments, which have ‘n’ shape obstacle, are
presented in Figure 9a,b,d. Figure 9c is a simple environment with squared obstacle and Figure 9e
has slot obstacles which are known as difficult problem. The obstacle in Figure 9f is a part of
environment in the paper by Karaman [44].

(a) (b) (c)

(d) (e) (f)

Figure 9. The experimental configuration of the 10 × 10 cells: (a) 10_1n; (b) 10_4n; (c) 10_11s; (d) 10_7n;
(e) 10_4ch; and, (f) 10_1o.

Figure 8. The flowchart of ‘makeSol’ logic.

Electronics 2020, 9, 316 15 of 29

Algorithm start

current!=Goal

link(current,goal) =
true

current = Start

sol.add(this.link)
current = goal

find one of
link(current, obstacleNearVertex) =

true

sol.add(this.link)
current = the cell

Yes

NoNo

Figure 8. The flowchart of ‘makeSol’ logic.

3.2. Envionments

In order to test the performance under several different environments, this research uses typical
environments. In this paper, three different environment sizes are used for the experiments. Figure 9
shows six environments which have 10 × 10 cells. These environments are formed archetypal
patterns, such as ‘n’ shape, rectangles and slots. Environments, which have ‘n’ shape obstacle, are
presented in Figure 9a,b,d. Figure 9c is a simple environment with squared obstacle and Figure 9e
has slot obstacles which are known as difficult problem. The obstacle in Figure 9f is a part of
environment in the paper by Karaman [44].

(a) (b) (c)

(d) (e) (f)

Figure 9. The experimental configuration of the 10 × 10 cells: (a) 10_1n; (b) 10_4n; (c) 10_11s; (d) 10_7n;
(e) 10_4ch; and, (f) 10_1o.
Figure 9. The experimental configuration of the 10 × 10 cells: (a) 10_1n; (b) 10_4n; (c) 10_11s; (d) 10_7n;
(e) 10_4ch; and, (f) 10_1o.

Two environments with 20 × 20 cells are presented on Figure 10. These environments also are
reconfigured from the environment which is introduced in the paper by Karaman. An environment
shown in Figure 10a is reproduced from the origin figure and Figure 10b is reconstituted based on
the environment.

Electronics 2020, 9, 316 15 of 28

Electronics 2020, 9, 316 16 of 29

Two environments with 20 × 20 cells are presented on Figure 10. These environments also are
reconfigured from the environment which is introduced in the paper by Karaman. An environment
shown in Figure 10a is reproduced from the origin figure and Figure 10b is reconstituted based on
the environment.

(a) (b)

Figure 10. The experimental configuration of the 20 × 20 cells: (a) 20_4o; (b) 20_1o.

Three environments with 40 × 40 girds are presented in in Figure 11. in order to measure the
different performance by network size. The environments have same shape as the environments in
Figure 9a,c,f, with the only difference being that the figures are divided into smaller grids.

(a) (b) (c)

Figure 11. The experimental configuration of the 40 × 40 cells: (a) 40_1o; (b) 40_1n; and, (c) 40_11s.

3.3. Metaheuristic Parameter

Metaheuristic algorithms are affected by their parameters. This is a reason why parameters
must be carefully defined. The parameters used in this paper are determined by each searching
algorithm and they are shown in Table 8. This research controlled two styles of parameters:
population (ant and particle) number and stop criteria. The population number is set as 10 and stop
criteria is set as 100.

Table 8. Tuning range of the parameters.

Searching algorithm Parameter Characteristic

GA

Population Number Integer
Stop Criteria Integer
Mutate Rate Double (0~1)

Crossover Rate Double (0~1)
Random Rate Double (0~1)

SA

Stop Criteria Integer
Temperature Double
Reduce Rate Double (0~1)

Stop Temperature Double
ACO Ant Number Integer

Figure 10. The experimental configuration of the 20 × 20 cells: (a) 20_4o; (b) 20_1o.

Three environments with 40 × 40 girds are presented in in Figure 11. in order to measure the
different performance by network size. The environments have same shape as the environments in
Figure 9a,c,f, with the only difference being that the figures are divided into smaller grids.

Electronics 2020, 9, 316 16 of 29

Two environments with 20 × 20 cells are presented on Figure 10. These environments also are
reconfigured from the environment which is introduced in the paper by Karaman. An environment
shown in Figure 10a is reproduced from the origin figure and Figure 10b is reconstituted based on
the environment.

(a) (b)

Figure 10. The experimental configuration of the 20 × 20 cells: (a) 20_4o; (b) 20_1o.

Three environments with 40 × 40 girds are presented in in Figure 11. in order to measure the
different performance by network size. The environments have same shape as the environments in
Figure 9a,c,f, with the only difference being that the figures are divided into smaller grids.

(a) (b) (c)

Figure 11. The experimental configuration of the 40 × 40 cells: (a) 40_1o; (b) 40_1n; and, (c) 40_11s.

3.3. Metaheuristic Parameter

Metaheuristic algorithms are affected by their parameters. This is a reason why parameters
must be carefully defined. The parameters used in this paper are determined by each searching
algorithm and they are shown in Table 8. This research controlled two styles of parameters:
population (ant and particle) number and stop criteria. The population number is set as 10 and stop
criteria is set as 100.

Table 8. Tuning range of the parameters.

Searching algorithm Parameter Characteristic

GA

Population Number Integer
Stop Criteria Integer
Mutate Rate Double (0~1)

Crossover Rate Double (0~1)
Random Rate Double (0~1)

SA

Stop Criteria Integer
Temperature Double
Reduce Rate Double (0~1)

Stop Temperature Double
ACO Ant Number Integer

Figure 11. The experimental configuration of the 40 × 40 cells: (a) 40_1o; (b) 40_1n; and, (c) 40_11s.

3.3. Metaheuristic Parameter

Metaheuristic algorithms are affected by their parameters. This is a reason why parameters must
be carefully defined. The parameters used in this paper are determined by each searching algorithm
and they are shown in Table 8. This research controlled two styles of parameters: population (ant and
particle) number and stop criteria. The population number is set as 10 and stop criteria is set as 100.

Many experimental design techniques are used, including full factorial experimental design,
in order to tune the algorithm parameters. In this paper, one of the packages in R, named ‘irace’,
is used to set the algorithm parameters [122]. The software package makes automatic sampling
configurations and measures the configurations while using Friedman’s test or t-test. Additionally,
it is designed to redefine the distribution of the sampling and the package iterates this flow.
The tuning procedure is performed for environment sets with a budget of 2000 experiments and
the initial parameter ranges are defined, as follows: Mutation Rate ∈ [0.01, 0.99]; Crossover Rate ∈
[0.01, 0.99]; Random Rate ∈ [0.01, 0.20]; Temperature ∈ [1000, 10000]; Reduction Rate ∈ [0.50, 0.95];
Stopping Temperature ∈ [0.01, 1.00]; Pheromone Rate ∈ [0.01, 0.50]; Evaporate Rate ∈ [0.50, 0.99];
Inertia Max Rate ∈ [0.50, 0.99]; Inertia Min Rate ∈ [0.01, 0.50]. Each configuration is measured total
summation of all environments objective function value. Table 9 shows the result of the tuned parameter.

Electronics 2020, 9, 316 16 of 28

Table 8. Tuning range of the parameters.

Searching Algorithm Parameter Characteristic

GA

Population Number Integer
Stop Criteria Integer
Mutate Rate Double (0~1)

Crossover Rate Double (0~1)
Random Rate Double (0~1)

SA

Stop Criteria Integer
Temperature Double
Reduce Rate Double (0~1)

Stop Temperature Double

ACO

Ant Number Integer
Stop Criteria Integer

Pheromone Rate Double (0~1)
Evaporate Rate Double (0~1)

PSO

Particle Number Integer
Stop Criteria Integer

Inertia Max Rate Double (0~1)
Inertia Min Rate Double (0~1)

Table 9. Tuned value of the parameters.

Searching Algorithm Parameter Value

GA
Mutate Rate 0.97

Crossover Rate 0.59
Random Rate 0.15

SA
Temperature 2625.31

Reduction Rate 0.61
Stopping

Temperature 0.52

ACO
Pheromone Rate 0.44
Evaporate Rate 0.96

PSO
Inertia Max Rate 0.94
Inertia Min Rate 0.36

4. Computational Results

Using the tuned parameter by ‘irace’, this paper provides performance of the algorithms through
repeatability. The experiment is run 1000 times under the same computational environment, with
the following specifications: Intel Core i9-7900X central processing unit (CPU) (3.30GHz) processor;
32 GB of memory; and, Windows 10. The algorithm is developed using Java jdk11.0.1. The used
environments for the experiment are three sizes are and they are shown in Figures 9–11. The results
of the experiment are organized in following tables. In the table, ‘processing time’ means that the
shortest consumed time of best OFV. The result is rounded off to three decimal places. Additionally,
the notated number ‘0.0’ on time means that measured time is less than 1 millisecond.

Tables 10 and 11 show the results of experiment under 10× 10 grid environments. The performances
of metaheuristic algorithm are distinguished clearly, depending on obstacle type, the number of
obstacles, and algorithms. SA takes a shorter time to solve the problem than population-based
algorithms, which are GA, ACO, and PSO, but the solution quality of SA has larger fluctuations. In
Table 10, some cases of reported time variances of GA and ACO are larger than others. This shows that
the proposed GA and ACO have more unsettled performance than others in some cases. The algorithms
have a weakness for a problem with a huge local optimum, termed the 10_4ch problem. Additionally, the
larger number of obstacles, which are 10_7n and 10_11s problems, decreases the algorithm performance.

Electronics 2020, 9, 316 17 of 28

Table 10. Experimental results of the metaheuristic algorithms within 10 × 10 case.

Problem
Name

Searching
Algorithm Best OFV Mean

OFV
Processing
Time (ms)

Average
Processing
Time (ms)

OFV
Variance

Time
Variance

10_1o

GA 14.817 14.820 0.0 14.661 0.001 28.056
SA 14.817 15.745 0.0 0.420 1.726 6.370

ACO 14.817 14.817 0.0 7.567 0 61.731
PSO 14.817 14.817 0.0 10.043 0 60.053

10_4ch

GA 27.136 29.893 281 355.175 1.807 14129.98
SA 27.648 29.889 0.0 8.135 1.819 62.096

ACO 28.307 31.933 328 315.228 1.752 4752.647
PSO 27.648 29.889 47 45.607 0.566 37.096

10_4n

GA 16.243 17.337 47 53.248 0.048 139.240
SA 16.243 17.663 0.0 0.860 0.103 12.733

ACO 16.243 17.355 31 17.06 0.034 25.762
PSO 16.243 17.169 15 15.726 0.095 18.089

10_7n

GA 14.065 14.305 62 90.302 0.025 833.630
SA 14.065 14.566 0.0 2.990 0.100 38.428

ACO 14.055 14.351 47 41.365 0.040 202.931
PSO 14.065 14.278 15 21.607 0.015 61.548

10_11s

GA 14.485 16.810 125 180.398 0.426 3084.414
SA 14.485 17.652 15 7.544 0.871 62.567

ACO 14.485 17.044 93 78.178 0.298 650.778
PSO 14.485 17.119 47 52.074 0.296 63.746

10_1n

GA 14.777 14.844 0.0 17.058 0.020 79.302
SA 14.777 15.505 0.0 0.265 0.176 4.069

ACO 14.777 14.777 0.0 14.406 0.000 31.709
PSO 14.777 14.777 0.0 7.556 0 62.998

Table 11. Experimental results of the other algorithms within 10 × 10 case.

Problem
Name

Searching
Algorithm Best OFV Mean

OFV
Processing
Time (ms)

Average
Processing
Time (ms)

OFV
Variance

Time
Variance

10_1o
Dijkstra 14.817 14.817 0.0 1.038 0 15.036

A* 14.817 14.817 0.0 0.831 0 12.363
Wavefront 17.414 17.414 0.0 0.189 0 2.946

10_4ch
Dijkstra 27.136 27.136 0.0 0.779 0 11.554

A* 27.136 27.136 0.0 0.771 0 12.039
Wavefront 219.782 219.782 15 15.932 0 4.964

10_4n
Dijkstra 16.243 16.243 0.0 0.815 0 12.133

A* 16.243 16.243 0.0 0.621 0 9.275
Wavefront 20.485 20.485 0.0 1.883 0 26.053

10_7n
Dijkstra 14.055 14.055 0.0 0.744 0 11.001

A* 14.055 14.055 0.0 0.625 0 9.394
Wavefront 17.314 17.314 0.0 0.031 0 0.481

10_11s
Dijkstra 14.485 14.485 0.0 1.123 0 16.288

A* 14.485 14.485 0.0 0.763 0 11.322
Wavefront 14.485 14.485 0.0 0.015 0 0.225

10_1n
Dijkstra 14.777 14.777 0.0 1.448 0 20.492

A* 14.777 14.777 0.0 1.198 0 17.296
Wavefront 72.083 72.083 0.0 0.300 0 4.655

The algorithms in Table 11 are heuristic algorithms, so each algorithm provides a unique solution.
The algorithms are usually dominantly faster than metaheuristic algorithms when solving this size of
problem. Wavefront algorithm is easily trapped in local optimum, such as 10_4ch, 10_4n, 10_7n, and
10_1n problem. However, the processing time of Wavefront algorithm is lower than other algorithms,
except for the 10_4ch case. In this case, the algorithm cannot find a reasonable solution, because of local

Electronics 2020, 9, 316 18 of 28

optimum. The algorithms find a unique and the best solution for each problem, as Dijkstra algorithm
and A star algorithm function as exact algorithms with the condition of these experiments.

Figures 12 and 13 show the best represented solutions while using the algorithm. Figure 12a
shows the notation of the paths. Among the notations, ‘others’ means that all of the algorithms, except
algorithms, which are shown individually in the figure. Some of them find the shortest path and the
weakness of wavefront algorithm is easily found. In case of Figure 12d,f,h and Figure 13d, the solutions
of wavefront algorithm are trapped by obstacles, which has ‘n’ shapes or small slots.

Electronics 2020, 9, 316 19 of 29

Figures 12 and 13 show the best represented solutions while using the algorithm. Figure 12a
shows the notation of the paths. Among the notations, ‘others’ means that all of the algorithms,
except algorithms, which are shown individually in the figure. Some of them find the shortest path
and the weakness of wavefront algorithm is easily found. In case of Figure 12d, f, h and Figure 13d,
the solutions of wavefront algorithm are trapped by obstacles, which has ‘n’ shapes or small slots.

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 12. The best path of each algorithms with ‘n’ shape obstacles (a) 10_7n (GA, SA, PSO); (b)
10_7n (Wavefront); (c) 10_7n (Others); (d) 10_4n (Wavefront); (e) 10_4n (Others); (f) 10_1n
(Wavefront); and, (g) 10_1n (Others).

Figure 12. The best path of each algorithms with ‘n’ shape obstacles (a) 10_7n (GA, SA, PSO); (b) 10_7n
(Wavefront); (c) 10_7n (Others); (d) 10_4n (Wavefront); (e) 10_4n (Others); (f) 10_1n (Wavefront); and,
(g) 10_1n (Others).

Electronics 2020, 9, 316 19 of 28
Electronics 2020, 9, 316 20 of 29

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 13. The best path with the rest environment (a) 10_4ch (Wavefront); (b) 10_4ch (ACO); (c)
10_4ch (SA, PSO); (d) 10_4ch (Others); (e) 10_1o (Wavefront); (f) 10_1o (Others); and, (g) 10_11s (all
algorithms).

The results with 20 × 20 cell environments are organized in Tables 12 and 13. Average
processing time of Dijkstra algorithm and A star algorithm is recognizably increased in comparison
with the results of 10 × 10 grid environments. The value, which is OFV variance of 20_4o with SA, is
noticeably larger than other OFV variance. On the other hand, the other, the processing time, is only
marginally different. For example, wavefront algorithm has a similar level with the outcome from

Figure 13. The best path with the rest environment (a) 10_4ch (Wavefront); (b) 10_4ch (ACO); (c) 10_4ch
(SA, PSO); (d) 10_4ch (Others); (e) 10_1o (Wavefront); (f) 10_1o (Others); and, (g) 10_11s (all algorithms).

The results with 20 × 20 cell environments are organized in Tables 12 and 13. Average processing
time of Dijkstra algorithm and A star algorithm is recognizably increased in comparison with the
results of 10 × 10 grid environments. The value, which is OFV variance of 20_4o with SA, is noticeably
larger than other OFV variance. On the other hand, the other, the processing time, is only marginally

Electronics 2020, 9, 316 20 of 28

different. For example, wavefront algorithm has a similar level with the outcome from the smaller
problem. Metaheuristic algorithms are still slower than other algorithms in this environment size and
their average processing time have similar characteristics with the results of 10 × 10 grid environments.

Table 12. Experimental results of the metaheuristic algorithms within 20 × 20 case.

Problem
Name

Searching
Algorithm Best OFV Mean

OFV
Processing
Time (ms)

Average
Processing
Time (ms)

OFV
Variance

Time
Variance

20_1o

GA 29.509 29.642 31 69.416 0.039 958.536
SA 29.509 29.867 0.0 0.464 0.040 6.976

ACO 29.509 29.509 140 186.123 0 238.633
PSO 29.509 29.509 0.0 8.251 0 65.400

20_4o

GA 17.470 17.749 94 190.572 0.087 6469.725
SA 17.470 18.497 0.0 2.137 3.040 28.829

ACO 17.470 17.557 156 234.829 0.041 3034.65
PSO 17.470 17.495 15 36.399 0.013 62.066

Table 13. Experimental results of the other algorithms within 20 × 20 case.

Problem
Name

Searching
Algorithm Best OFV Mean

OFV
Processing
Time (ms)

Average
Processing
Time (ms)

OFV
Variance

Time
Variance

20_1o
Dijkstra 29.509 29.509 31 45.066 0 43.279

A* 29.509 29.509 15 33.730 0 38.918
Wavefront 30.971 30.971 0.0 0.328 0 5.025

20_4o
Dijkstra 17.470 17.470 15 23.931 0 61.980

A* 17.470 17.470 0.0 8.360 0 62.405
Wavefront 17.828 17.828 0.0 0.315 0 4.871

Tables 14 and 15 show the experiment results under 40× 40 cell. On this size of network, the searching
speed of metaheuristic algorithms under some environments is faster than the speed of the Dijkstra
algorithm and A star algorithm. For instance, PSO is a faster method for problems named 40_1o, 40_1n in
comparison with the Dijkstra and A star algorithm. The best OFV of these experiments is the same as
the outcome of the exact algorithm, which means that the OFV is the global optimum. The Wavefront
algorithm is the fastest algorithm among these seven algorithms, but it is not able to escape from the local
optimum, such as the 40_1n case. Meanwhile, in the case of 40_11s, the average processing time of GA and
ACO significantly shows the weakness of the algorithms. The number of obstacles make their processing
times increase when compared to 40_1o and 40_1n. Time variance is also unstable in the case with GA
and ACO.

Table 14. Experimental results of the metaheuristic algorithms within 40 × 40 case.

Problem
Name

Searching
Algorithm Best OFV Mean

OFV
Processing
Time (ms)

Average
Processing
Time (ms)

OFV
Variance

Time
Variance

40_1o

GA 62.512 62.622 125 156.54 0.037 2315.346
SA 62.512 66.927 0.0 0.374 21.240 5.700

ACO 62.512 62.512 515 546.614 0 108.868
PSO 62.512 62.512 0.0 9.711 0 57.515

40_1n

GA 62.201 62.420 93 188.511 0.067 5195.051
SA 62.201 63.481 0.0 0.327 1.619 4.995

ACO 62.201 62.208 750 864.01 0.003 5275.087
PSO 62.201 62.201 0.0 13.239 0.000 34.564

40_11s

GA 61.160 65.949 3359 2819.886 7.753 966961.7
SA 60.677 68.213 63 23.476 15.223 116.924

ACO 61.172 67.476 1250 1562.399 6.878 251384.9
PSO 61.159 65.818 94 114.755 5.893 193.761

Electronics 2020, 9, 316 21 of 28

Table 15. Experimental results of the other algorithms within 40 × 40 case.

Problem
Name

Searching
Algorithm Best OFV Mean

OFV
Processing
Time (ms)

Average
Processing
Time (ms)

OFV
Variance

Time
Variance

40_1o
Dijkstra 62.512 62.512 328 352.055 0 68.236

A* 62.512 62.512 124 133.200 0 62.801
Wavefront 73.899 73.899 0.0 1.486 0 21.079

40_1n
Dijkstra 62.201 62.201 609 625.265 0 47.522

A* 62.201 62.201 390 407.943 0 39.447
Wavefront 2727.895 2727.895 15 23.186 0 91.761

40_11s
Dijkstra 58.835 58.835 234 247.047 0 181.048

A* 58.835 58.835 78 89.608 0 80.601
Wavefront 64.527 64.527 0.0 1.276 0 18.266

Average processing time of these two algorithms is dramatically increased. In order to recognize
the time changes clearly, Figure 14 is presented. The graph is the result of following equation.

f (x) =
40 probs Average processing time
10 probs Average processing time

, (3)

As shown in the graph, Dijkstra and A star algorithms are remarkably more sensitive for network
size than other algorithms, implying that network size is the weakness of the algorithms.

Electronics 2020, 9, 316 22 of 29

PSO 61.159 65.818 94 114.755 5.893 193.761

Table 15. Experimental results of the other algorithms within 40 × 40 case.

Problem
Name

Searchin
g

Algorith
m

Best
OFV

Mean
OFV

Processing
Time (ms)

Average Processing
Time (ms)

OFV
Variance

Time
Varianc

e

40_1o
Dijkstra 62.512 62.512 328 352.055 0 68.236

A* 62.512 62.512 124 133.200 0 62.801
Wavefront 73.899 73.899 0.0 1.486 0 21.079

40_1n
Dijkstra 62.201 62.201 609 625.265 0 47.522

A* 62.201 62.201 390 407.943 0 39.447
Wavefront 2727.895 2727.895 15 23.186 0 91.761

40_11s
Dijkstra 58.835 58.835 234 247.047 0 181.048

A* 58.835 58.835 78 89.608 0 80.601
Wavefront 64.527 64.527 0.0 1.276 0 18.266

Average processing time of these two algorithms is dramatically increased. In order to
recognize the time changes clearly, Figure 14 is presented. The graph is the result of following
equation.

𝑓(𝑥) = , (3)

As shown in the graph, Dijkstra and A star algorithms are remarkably more sensitive for
network size than other algorithms, implying that network size is the weakness of the algorithms.

Figure 14. The process time increasing rate between 40 probs and 10 probs.

5. Conclusions

The problem of collision-free path planning has been studied in various areas resulting in many
different criteria for studying the problem. These differences have given rise to several different
terms with similar meanings, which, in turn, may actually hinder research for developing new
methodologies for the problem of collision-free path planning. Meanwhile, many papers use varied
searching algorithms, but their performances are not measured across the board under the exact
same experimental conditions. The searching algorithm of research papers was selected from related
works, because the algorithm is “typically used” and “good enough”. For this reason, some papers
provide performance reviews under the same categories, such as sampling-based algorithms.

0
50

100
150
200
250
300
350
400
450

D
ijk

str
a

A
*

W
av

ef
ro

nt
D

ijk
str

a
A

*
W

av
ef

ro
nt

D
ijk

str
a

A
*

W
av

ef
ro

nt G
A SA

A
CO PS

O
G

A SA
A

CO PS
O

G
A SA

A
CO PS

O

1o 11s 1n 1o 11s 1n

Ti
m

es

Figure 14. The process time increasing rate between 40 probs and 10 probs.

5. Conclusions

The problem of collision-free path planning has been studied in various areas resulting in many
different criteria for studying the problem. These differences have given rise to several different
terms with similar meanings, which, in turn, may actually hinder research for developing new
methodologies for the problem of collision-free path planning. Meanwhile, many papers use varied
searching algorithms, but their performances are not measured across the board under the exact same
experimental conditions. The searching algorithm of research papers was selected from related works,
because the algorithm is “typically used” and “good enough”. For this reason, some papers provide
performance reviews under the same categories, such as sampling-based algorithms. However, the
papers do not show the differences between the exact algorithms and heuristic based algorithms at the
same time. The algorithms each have their own advantages and disadvantages. Integrated research
is required in order to measure the pros and cons. Thus, this paper has two main contributions,

Electronics 2020, 9, 316 22 of 28

which are categorization considering criteria and searching algorithms performance review under
grid environments.

Firstly, this research has organized the problem while considering these criteria as four categories:
environment type; environmental representation; searching algorithm; and experimental type. Each
category has specific classes of characteristics and the difference in the characteristics make contribution
of the other researches about CFPP problem. Through these categories, this research contributes to
understand CFPP problem structure and recently studied topics.

Second, a performance review for seven different searching algorithms for a network environment
are proposed in this study. Each algorithm has its own significant characteristics. The performance can
be altered according to network size, feature of obstacles or number of obstacles. The experiments
show that searching speed of Dijkstra and A star algorithm rapidly increases, depending on network
size more so than metaheuristic algorithms. Performance of the metaheuristic algorithm fluctuates
based on the number or shape of the obstacles. Therefore, this paper evaluated the performance of
these searching algorithms.

Recently, CFPP problem is studied under dynamic, stochastic or multi tasks condition recently.
However, the performance result of this paper focused on stationary obstacles, network model, and
single task condition. Many other conditions, such as kinematic constraint, different environmental
representation, or environment type, should be researched for measuring their effect. Also, metaheuristic
algorithms are defined as simplified form, thus they may have a performance gap between the suggested
algorithms and the studied algorithm recently.

We plan to redeem the limitation of this paper, as follows. Our further research will be studying
performance of recent algorithms under various conditions using a car-like robot. Through this plan,
various combined conditions of kinematic constraint, environmental representation, and environmental
type can be expected to consider. Also, an actual robot has limited specifications, such as the limitation
of sensing vague objects in real-time and computational limitations. With this further research, these
limitations can be considered while using a car-like robot.

On the other hand, the extension of the algorithm can be adopted and applied to real-time
environment specially in vision enabled mobile machines. The information captured by such vision
would provide much more accurate information for a mobile agent to aid in avoiding collisions. Thus,
future research could include the direction of path planning in a real time environment with a vision
enabled system.

Author Contributions: Conceptualization, J.C., and H.S.; Data curation, H.S.; Formal analysis, H.S.; Funding
acquisition, J.C.; Investigation, H.S.; Methodology, H.S.; Project administration, J.C.; Resources, H.S.; Software,
H.S.; Supervision, J.C.; Validation, H.S.; Visualization, H.S.; Writing—original draft, H.S.; Writing—review &
editing, J.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Korea Aerospace University faculty research grant.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Grazia Speranza, M. Trends in transportation and logistics. Eur. J. Oper. Res. 2018, 264, 830–836. [CrossRef]
2. Lozano-Pérez, T.; Wesley, M.A. An algorithm for planning collision-free paths among polyhedral obstacles.

Commun. ACM 1979, 22, 560–570. [CrossRef]
3. Schwartz, J.T.; Sharir, M. On the “piano movers” problem I. The case of a two-dimensional rigid polygonal

body moving amidst polygonal barriers. Commun. Pure Appl. Math. 1983, 36, 345–398. [CrossRef]
4. Gasparetto, A.; Boscariol, P.; Lanzutti, A.; Vidoni, R. Trajectory Planning in Robotics. Math. Comput. Sci.

2012, 6, 269–279. [CrossRef]
5. Canny, J. The Complexity of Robot Motion Planning; The MIT Press: Cambridge, MA, USA, 1988;

ISBN 9780262031363.
6. Sharir, M. Algorithmic motion planning in robotics. Computer 1989, 22, 9–19. [CrossRef]

http://dx.doi.org/10.1016/j.ejor.2016.08.032
http://dx.doi.org/10.1145/359156.359164
http://dx.doi.org/10.1002/cpa.3160360305
http://dx.doi.org/10.1007/s11786-012-0123-8
http://dx.doi.org/10.1109/2.16221

Electronics 2020, 9, 316 23 of 28

7. Schwartz, J.T.; Sharir, M. A survey of motion planning and related geometric algorithms. Artif. Intell. 1988,
37, 157–169. [CrossRef]

8. Hwang, Y.K.; Ahuja, N. Gross motion planning—A survey. ACM Comput. Surv. 1992, 24, 219–291. [CrossRef]
9. Sariff, N.; Buniyamin, N. An overview of autonomous mobile robot path planning algorithms. In Proceedings

of the 2006 4th Student Conference on Research and Development, Selangor, Malaysia, 27–28 June 2006;
pp. 183–188.

10. Masehian, E.; Sedighizadeh, D. Classic and Heuristic Approaches in Robot Motion Planning–A Chronological
Review. World Acad. Sci. Eng. Technol. 2007, 29, 101–106.

11. Goerzen, C.; Kong, Z.; Mettler, B. A Survey of Motion Planning Algorithms from the Perspective of
Autonomous UAV Guidance. J. Intell. Robot. Syst. 2010, 57. [CrossRef]

12. Roberge, V.; Tarbouchi, M.; Labonte, G. Comparison of Parallel Genetic Algorithm and Particle Swarm
Optimization for Real-Time UAV Path Planning. IEEE Trans. Ind. Inform. 2012, 9, 132–141. [CrossRef]

13. Mac, T.T.; Copot, C.; Tran, D.T.; De Keyser, R. Heuristic approaches in robot path planning: A survey.
Robot. Auton. Syst. 2016, 86, 13–28. [CrossRef]

14. Schwarting, W.; Alonso-Mora, J.; Rus, D. Planning and Decision-Making for Autonomous Vehicles. Annu. Rev.
Control Robot. Auton. Syst. 2018, 1, 187–210. [CrossRef]

15. Reif, J.H. Complexity of the mover’s problem and generalizations. In Proceedings of the 20th Annual
Symposium on Foundations of Computer Science (sfcs 1979), San Juan, Puerto Rico, USA, 29–31 October
1979; pp. 421–427. [CrossRef]

16. Ó’Dúnlaing, C.; Yap, C.K. A “retraction” method for planning the motion of a disc. J. Algorithms 1985, 6,
104–111. [CrossRef]

17. LaValle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006; ISBN 9780511546877.
18. Mohanty, P.; Parhi, D. Controlling the Motion of an Autonomous Mobile Robot Using Various Techniques: A

Review. J. Adv. Mech. Eng. 2013, 1, 24–39. [CrossRef]
19. Kavraki, L.E.; Kolountzakis, M.N.; Latombe, J.-C. Analysis of probabilistic roadmaps for path planning.

IEEE Trans. Robot. Autom. 1998, 14, 166–171. [CrossRef]
20. Alexopoulos, C.; Griffin, P.M. Path planning for a mobile robot. IEEE Trans. Syst. Man Cybern. 1992, 22,

318–322. [CrossRef]
21. Latombe, J.-C. Robot Motion Planning; The Springer International Series in Engineering and Computer Science;

Springer: New York, NY, USA, 2012; ISBN 9781461540229.
22. Barraquand, J.; Latombe, J.-C. A Monte-Carlo algorithm for path planning with many degrees of freedom.

In Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, OH, USA,
13–18 May 1990; pp. 1712–1717.

23. Thrun, S.; Fox, D.; Burgard, W.; Dellaert, F. Robust Monte Carlo localization for mobile robots. Artif. Intell.
2001, 128, 99–141. [CrossRef]

24. Janson, L.; Schmerling, E.; Pavone, M. Monte Carlo Motion Planning for Robot Trajectory Optimization
Under Uncertainty. In Robotics Research; Springer: New York, NY, USA, 2018; pp. 343–361.

25. Lozano-Pérez, T. Spatial Planning: A Configuration Space Approach. IEEE Trans. Comput. 1983, 32, 108–120.
[CrossRef]

26. LaValle, S.M.; Branicky, M.S.; Lindemann, S.R. On the Relationship between Classical Grid Search and
Probabilistic Roadmaps. Int. J. Robot. Res. 2004, 23, 673–692. [CrossRef]

27. Englot, B.; Hover, F. Multi-goal feasible path planning using ant colony optimization. In Proceedings of
the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011;
pp. 2255–2260.

28. Ichter, B.; Harrison, J.; Pavone, M. Learning Sampling Distributions for Robot Motion Planning. In Proceedings
of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia,
21–25 May 2018; pp. 7087–7094.

29. Kavraki, L.E.; Svestka, P.; Latombe, J.-C.; Overmars, M.H. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [CrossRef]

30. Hsu, D.; Kindel, R.; Latombe, J.-C.; Rock, S. Randomized Kinodynamic Motion Planning with Moving
Obstacles. Int. J. Robot. Res. 2002, 21, 233–255. [CrossRef]

http://dx.doi.org/10.1016/0004-3702(88)90053-7
http://dx.doi.org/10.1145/136035.136037
http://dx.doi.org/10.1007/s10846-009-9383-1
http://dx.doi.org/10.1109/TII.2012.2198665
http://dx.doi.org/10.1016/j.robot.2016.08.001
http://dx.doi.org/10.1146/annurev-control-060117-105157
http://dx.doi.org/10.1109/SFCS.1979.10
http://dx.doi.org/10.1016/0196-6774(85)90021-5
http://dx.doi.org/10.7726/jame.2013.1003
http://dx.doi.org/10.1109/70.660866
http://dx.doi.org/10.1109/21.148404
http://dx.doi.org/10.1016/S0004-3702(01)00069-8
http://dx.doi.org/10.1109/TC.1983.1676196
http://dx.doi.org/10.1177/0278364904045481
http://dx.doi.org/10.1109/70.508439
http://dx.doi.org/10.1177/027836402320556421

Electronics 2020, 9, 316 24 of 28

31. Kuffner, J.J.; LaValle, S.M. RRT-connect: An efficient approach to single-query path planning. In Proceedings
of the 2000 ICRA. Millennium Conference, IEEE International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No.00CH37065), San Francisco, CA, USA, 24–28 April 2000; pp. 995–1001.

32. Kim, B.; Um, T.T.; Suh, C.; Park, F.C. Tangent bundle RRT: A randomized algorithm for constrained motion
planning. Robotica 2016, 34, 202–225. [CrossRef]

33. Malone, N.; Lesser, K.; Oishi, M.; Tapia, L. Stochastic reachability based motion planning for multiple moving
obstacle avoidance. In Proceedings of the 17th International Conference on Hybrid Systems: Computation
and Control, Berlin, Germany, April 2014; pp. 51–60.

34. Kuwata, Y.; Karaman, S.; Teo, J.; Frazzoli, E.; How, J.P.; Fiore, G. Real-Time Motion Planning With Applications
to Autonomous Urban Driving. IEEE Trans. Control Syst. Technol. 2009, 17, 1105–1118. [CrossRef]

35. Sánchez, G.; Latombe, J. On Delaying Collision Checking in PRM Planning: Application to Multi-Robot
Coordination. Int. J. Robot. Res. 2002, 21, 5–26. [CrossRef]

36. Sanchez, G.; Latombe, J.-C. Using a PRM planner to compare centralized and decoupled planning for
multi-robot systems. In Proceedings of the 2002 IEEE International Conference on Robotics and Automation
(Cat. No.02CH37292), Washington DC, USA, 11–15 May 2002; pp. 2112–2119.

37. Sánchez, G.; Latombe, J.-C. A Single-Query Bi-Directional Probabilistic Roadmap Planner with Lazy Collision
Checking. In Proceedings of the International Symposium on Robotics Research, Lorne, VIC, Australia, 9–12
November 2001; pp. 403–417.

38. Solovey, K.; Salzman, O.; Halperin, D. Finding a needle in an exponential haystack: Discrete RRT for
exploration of implicit roadmaps in multi-robot motion planning. Int. J. Robot. Res. 2016, 35, 501–513.
[CrossRef]

39. Wilmarth, S.A.; Amato, N.M.; Stiller, P.F. MAPRM: A probabilistic roadmap planner with sampling on the
medial axis of the free space. In Proceedings of the 1999 IEEE International Conference on Robotics and
Automation (Cat. No.99CH36288C), Detroit, MI, USA, 10–15 May 1999; pp. 1024–1031.

40. Saha, M.; Latombe, J.-C.; Chang, Y.-C.; Prinz, F. Finding Narrow Passages with Probabilistic Roadmaps:
The Small-Step Retraction Method. Auton. Robot. 2005, 19, 301–319. [CrossRef]

41. Saha, M.; Roughgarden, T.; Latombe, J.-C.; Sánchez-Ante, G. Planning Tours of Robotic Arms among
Partitioned Goals. Int. J. Robot. Res. 2006, 25, 207–223. [CrossRef]

42. Dantam, N.T.; Kingston, Z.K.; Chaudhuri, S.; Kavraki, L.E. Incremental Task and Motion Planning:
A Constraint-Based Approach. In Proceedings of the Robotics: Science and Systems; Ann Arbor, Michigan,
USA, 18–22 June 2016.

43. Hsu, D.; Latombe, J.; Kurniawati, H. On the probabilistic foundations of probabilistic roadmap planning.
Int. J. Robot. Res. 2006, 25, 627–643. [CrossRef]

44. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011,
30, 846–894. [CrossRef]

45. Marble, J.D.; Bekris, K.E. Asymptotically Near-Optimal Is Good Enough for Motion Planning. In Robotics
Research; Springer: New York, NY, USA, 2017; pp. 419–436.

46. Tharwat, A.; Elhoseny, M.; Hassanien, A.E.; Gabel, T.; Kumar, A. Intelligent Bézier curve-based path planning
model using Chaotic Particle Swarm Optimization algorithm. Clust. Comput. 2019, 22, 4745–4766. [CrossRef]

47. Bottasso, C.L.; Leonello, D.; Savini, B. Path Planning for Autonomous Vehicles by Trajectory Smoothing
Using Motion Primitives. IEEE Trans. Control. Syst. Technol. 2008, 16, 1152–1168. [CrossRef]

48. Yang, K.; Sukkarieh, S. An Analytical Continuous-Curvature Path-Smoothing Algorithm. IEEE Trans. Robot.
2010, 26, 561–568. [CrossRef]

49. Hsu, D.; Latombe, J.-C.; Motwani, R. Path planning in expansive configuration spaces. In Proceedings of the
International Conference on Robotics and Automation, Albuquerque, NM, USA, April 1997; pp. 2719–2726.

50. Alterovitz, R.; Simeon, T.; Goldberg, K. The Stochastic Motion Roadmap: A Sampling Framework for
Planning with Markov Motion Uncertainty. In Proceedings of the Robotics: Science and Systems, Atlanta,
GA, USA, 27–30 June 2007.

51. Contreras-Cruz, M.A.; Ayala-Ramirez, V.; Hernandez-Belmonte, U.H. Mobile robot path planning using
artificial bee colony and evolutionary programming. Appl. Soft Comput. 2015, 30, 319–328. [CrossRef]

52. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
53. Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths.

IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [CrossRef]

http://dx.doi.org/10.1017/S0263574714001234
http://dx.doi.org/10.1109/TCST.2008.2012116
http://dx.doi.org/10.1177/027836402320556458
http://dx.doi.org/10.1177/0278364915615688
http://dx.doi.org/10.1007/s10514-005-4748-1
http://dx.doi.org/10.1177/0278364906061705
http://dx.doi.org/10.1177/0278364906067174
http://dx.doi.org/10.1177/0278364911406761
http://dx.doi.org/10.1007/s10586-018-2360-3
http://dx.doi.org/10.1109/TCST.2008.917870
http://dx.doi.org/10.1109/TRO.2010.2042990
http://dx.doi.org/10.1016/j.asoc.2015.01.067
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1109/TSSC.1968.300136

Electronics 2020, 9, 316 25 of 28

54. Bhattacharya, P.; Gavrilova, M.L. Voronoi diagram in optimal path planning. In Proceedings of the 4th
International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007), Glamorgan, UK,
9–11 July 2007; pp. 38–47.

55. Ho, Y.-J.; Liu, J.-S. Collision-free curvature-bounded smooth path planning using composite Bezier curve
based on Voronoi diagram. In Proceedings of the 2009 IEEE International Symposium on Computational
Intelligence in Robotics and Automation-(CIRA), Daejeon, South Korea, 15–18 December 2009; pp. 463–468.

56. Janson, L.; Ichter, B.; Pavone, M. Deterministic sampling-based motion planning: Optimality, complexity,
and performance. Int. J. Robot. Res. 2018, 37, 46–61. [CrossRef]

57. Wang, H.; Yu, Y.; Yuan, Q. Application of Dijkstra algorithm in robot path-planning. In Proceedings of the
2011 Second International Conference on Mechanic Automation and Control Engineering, Hohhot, China,
15–17 July 2011; pp. 1067–1069.

58. Herman, M. Fast, Three-Dimensional, Collision-Free Motion Planning. In Proceedings of the 1986
IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 7–10 April 1986;
pp. 1056–1063.

59. Bohlin, R.; Kavraki, L.E. Path planning using lazy PRM. In Proceedings of the 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat.
No.00CH37065), San Francisco, CA, USA, 24–28 April 2000; pp. 521–528.

60. van den Berg, J.; Ferguson, D.; Kuffner, J. Anytime path planning and replanning in dynamic environments.
In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006,
Orlando, FL, USA, 15–19 May 2006; pp. 2366–2371.

61. Noto, M.; Sato, H. A method for the shortest path search by extended Dijkstra algorithm. In Proceedings
of the SMC 2000 Conference Proceedings, 2000 IEEE International Conference on Systems, Man and
Cybernetics. “Cybernetics Evolving to Systems, Humans, Organizations, and their Complex Interactions”
(Cat. No.00CH37166), Nashville, TN, USA, 8–11 October 2002; pp. 2316–2320.

62. Deng, Y.; Chen, Y.; Zhang, Y.; Mahadevan, S. Fuzzy Dijkstra algorithm for shortest path problem under
uncertain environment. Appl. Soft Comput. 2012, 12, 1231–1237. [CrossRef]

63. Duchoň, F.; Babinec, A.; Kajan, M.; Beňo, P.; Florek, M.; Fico, T.; Jurišica, L. Path Planning with Modified a
Star Algorithm for a Mobile Robot. Procedia Eng. 2014, 96, 59–69. [CrossRef]

64. Fu, L.-C.; Liu, D.-Y. An efficient algorithm for finding a collision-free path among polyhedral obstacles.
J. Robot. Syst. 1990, 7, 129–137. [CrossRef]

65. Stoyanov, T.; Magnusson, M.; Andreasson, H.; Lilienthal, A.J. Path planning in 3D environments using the
Normal Distributions Transform. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 3263–3268.

66. AL-Taharwa, I.; Sheta, A.; Al-Weshah, M. A Mobile Robot Path Planning Using Genetic Algorithm in Static
Environment. J. Comput. Sci. 2008, 4, 341–344. [CrossRef]

67. Cai, Z.; Peng, Z. Cooperative coevolutionary adaptive genetic algorithm in path planning of cooperative
multi-mobile robot systems. J. Intell. Robot. Syst. Theory Appl. 2002, 33, 61–71. [CrossRef]

68. Yang, Q.; Yoo, S.-J. Optimal UAV Path Planning: Sensing Data Acquisition Over IoT Sensor Networks Using
Multi-Objective Bio-Inspired Algorithms. IEEE Access 2018, 6, 13671–13684. [CrossRef]

69. Hu, Y.; Yang, S.X. A knowledge based genetic algorithm for path planning of a mobile robot. In Proceedings
of the IEEE International Conference on Robotics and Automation, ICRA ’04, New Orleans, LA, USA,
26 April–1 May 2004; pp. 4350–4355.

70. Jiang, A.; Yao, X.; Zhou, J. Research on path planning of real-time obstacle avoidance of mechanical arm
based on genetic algorithm. J. Eng. 2018, 1579–1586. [CrossRef]

71. Elshamli, A.; Abdullah, H.A.; Areibi, S. Genetic algorithm for dynamic path planning. In Proceedings of the
Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No.04CH37513), Niagara
Falls, ON, Canada, 2–5 May 2004; pp. 677–680.

72. Zhao, M.; Ansari, N.; Hou, E.S.H. Mobile manipulator path planning by a genetic algorithm. J. Robot. Syst.
1994, 11, 143–153. [CrossRef]

73. MahmoudZadeh, S.; Yazdani, A.M.; Sammut, K.; Powers, D.M. Online path planning for AUV rendezvous
in dynamic cluttered undersea environment using evolutionary algorithms. Appl. Soft Comput. 2018, 70,
929–945. [CrossRef]

http://dx.doi.org/10.1177/0278364917714338
http://dx.doi.org/10.1016/j.asoc.2011.11.011
http://dx.doi.org/10.1016/j.proeng.2014.12.098
http://dx.doi.org/10.1002/rob.4620070107
http://dx.doi.org/10.3844/jcssp.2008.341.344
http://dx.doi.org/10.1023/A:1014463014150
http://dx.doi.org/10.1109/ACCESS.2018.2812896
http://dx.doi.org/10.1049/joe.2018.8266
http://dx.doi.org/10.1002/rob.4620110302
http://dx.doi.org/10.1016/j.asoc.2017.10.025

Electronics 2020, 9, 316 26 of 28

74. Lee, H.-Y.; Shin, H.; Chae, J. Path Planning for Mobile Agents Using a Genetic Algorithm with a Direction
Guided Factor. Electronics 2018, 7, 212. [CrossRef]

75. Lamini, C.; Benhlima, S.; Elbekri, A. Genetic Algorithm Based Approach for Autonomous Mobile Robot Path
Planning. Procedia Comput. Sci. 2018, 127, 180–189. [CrossRef]

76. Tuncer, A.; Yildirim, M. Dynamic path planning of mobile robots with improved genetic algorithm. Comput.
Electr. Eng. 2012, 38, 1564–1572. [CrossRef]

77. Sedighi, K.H.; Ashenayi, K.; Manikas, T.W.; Wainwright, R.L.; Tai, H.-M. Autonomous local path planning for
a mobile robot using a genetic algorithm. In Proceedings of the 2004 Congress on Evolutionary Computation
(IEEE Cat. No.04TH8753), Portand, OR, USA, 19–23 June 2004; pp. 1338–1345.

78. Tu, J.; Yang, S.X. Genetic algorithm based path planning for a mobile robot. In Proceedings of the 2003
IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), Taipei, Taiwan, 14–19
September 2003; pp. 1221–1226.

79. Nazarahari, M.; Khanmirza, E.; Doostie, S. Multi-objective multi-robot path planning in continuous
environment using an enhanced genetic algorithm. Expert Syst. Appl. 2019, 115, 106–120. [CrossRef]

80. Janabi-Sharifi, F.; Vinke, D. Robot path planning by integrating the artificial potential field approach
with simulated annealing. In Proceedings of the Proceedings of IEEE Systems Man and Cybernetics
Conference-SMC, Le Touquet, France, 17–20 October 1993; pp. 282–287.

81. Zhu, Q.; Yan, Y.; Xing, Z. Robot Path Planning Based on Artificial Potential Field Approach with Simulated
Annealing. In Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications,
Jinan, China, 16–18 October 2006; pp. 622–627.

82. Park, M.G.; Jeon, J.H.; Lee, M.C. Obstacle avoidance for mobile robots using artificial potential field approach
with simulated annealing. In Proceedings of the 2001 IEEE International Symposium on Industrial Electronics
Proceedings (Cat. No.01TH8570), Pusan, South Korea, 12–16 June 2001; pp. 1530–1535.

83. Janabi-Sharifi, F.; Vinke, D. Integration of the artificial potential field approach with simulated annealing
for robot path planning. In Proceedings of the 8th IEEE International Symposium on Intelligent Control,
Chicago, IL, USA, 25–27 August 1993; pp. 536–541.

84. Park, M.G.; Lee, M.C. Experimental evaluation of robot path planning by artificial potential field approach
with simulated annealing. In Proceedings of the 41st SICE Annual Conference, Osaka, Japan, 5–7 August
2002; pp. 2190–2195.

85. Miao, H.; Tian, Y.-C. Robot path planning in dynamic environments using a simulated annealing based
approach. In Proceedings of the 2008 10th International Conference on Control, Automation, Robotics and
Vision, Hanoi, Vietnam, 17–20 December 2008; pp. 1253–1258.

86. Martínez-Alfaro, H.; Gómez-García, S. Mobile robot path planning and tracking using simulated annealing
and fuzzy logic control. Expert Syst. Appl. 1998, 15, 421–429. [CrossRef]

87. Tavares, R.S.; Martins, T.C.; Tsuzuki, M.S.G. Simulated annealing with adaptive neighborhood: A case study
in off-line robot path planning. Expert Syst. Appl. 2011, 38, 2951–2965. [CrossRef]

88. Miao, H.; Tian, Y.-C. Dynamic robot path planning using an enhanced simulated annealing approach.
Appl. Math. Comput. 2013, 222, 420–437. [CrossRef]

89. Kroumov, V.; Yu, J. 3D path planning for mobile robots using annealing neural network. In Proceedings of
the 2009 International Conference on Networking, Sensing and Control, Okayama, Japan, 26–29 March 2009;
pp. 130–135.

90. Carriker, W.F.; Khosla, P.K.; Krogh, B.H. The Use of Simulated Annealing to Solve the Mobile Manipulator
Path Planning Problem. In Proceedings of the IEEE International Conference on Robotics and Automation,
Cincinnati, OH, USA, 13–18 May 1990; pp. 204–209.

91. Amer, H.M.; Al-Kashoash, H.; Hawes, M.; Chaqfeh, M.; Kemp, A.; Mihaylova, L. Centralized simulated
annealing for alleviating vehicular congestion in smart cities. Technol. Forecast. Soc. Chang. 2019, 142, 235–248.
[CrossRef]

92. Song, B.; Wang, Z.; Zou, L.; Xu, L.; Alsaadi, F.E. A new approach to smooth global path planning of mobile
robots with kinematic constraints. Int. J. Mach. Learn. Cybern. 2019, 10, 107–119. [CrossRef]

93. Foo, J.L.; Knutzon, J.; Oliver, J.; Winer, E. Three-Dimensional Multi-Objective Path Planner for Unmanned
Aerial Vehicles Using Particle Swarm Optimization. In Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, USA, 23–26 April 2007; p. 1881.

http://dx.doi.org/10.3390/electronics7100212
http://dx.doi.org/10.1016/j.procs.2018.01.113
http://dx.doi.org/10.1016/j.compeleceng.2012.06.016
http://dx.doi.org/10.1016/j.eswa.2018.08.008
http://dx.doi.org/10.1016/S0957-4174(98)00055-4
http://dx.doi.org/10.1016/j.eswa.2010.08.084
http://dx.doi.org/10.1016/j.amc.2013.07.022
http://dx.doi.org/10.1016/j.techfore.2018.09.013
http://dx.doi.org/10.1007/s13042-017-0703-7

Electronics 2020, 9, 316 27 of 28

94. Zhang, Y.; Gong, D.; Zhang, J. Robot path planning in uncertain environment using multi-objective particle
swarm optimization. Neurocomputing 2013, 103, 172–185. [CrossRef]

95. Fu, Y.; Ding, M.; Zhou, C. Phase Angle-Encoded and Quantum-Behaved Particle Swarm Optimization
Applied to Three-Dimensional Route Planning for UAV. IEEE Trans. Syst. Man Cybern. Part. A Syst. Hum.
2011, 42, 511–526. [CrossRef]

96. Gong, D.; Zhang, J.; Zhang, Y. Multi-objective Particle Swarm Optimization for Robot Path Planning in
Environment with Danger Sources. J. Comput. 2011, 6, 1554–1561. [CrossRef]

97. Saska, M.; Macaš, M.; Přeučil, L.; Lhotská, L. Robot path planning using particle swarm optimization of
ferguson splines. IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA 2006, 19, 833–839. [CrossRef]

98. Zhang, Y.; Wu, L.; Wang, S. UCAV Path Planning by Fitness-Scaling Adaptive Chaotic Particle Swarm
Optimization. Math. Probl. Eng. 2013. [CrossRef]

99. Chen, X.; Li, Y. Smooth Path Planning of a Mobile Robot Using Stochastic Particle Swarm Optimization.
In Proceedings of the 2006 International Conference on Mechatronics and Automation, Luoyang, Henan,
China, 25–28 June 2006; pp. 1722–1727.

100. Masehian, E.; Sedighizadeh, D. A multi-objective PSO-based algorithm for robot path planning.
In Proceedings of the 2010 IEEE International Conference on Industrial Technology, Vina del Mar, Chile,
14–17 March 2010; pp. 465–470.

101. Wang, X.; Zhang, G.; Zhao, J.; Rong, H.; Ipate, F.; Lefticaru, R. A Modified Membrane-Inspired Algorithm
Based on Particle Swarm Optimization for Mobile Robot Path Planning. Int. J. Comput. Commun. Control.
2015, 10, 732–745. [CrossRef]

102. Phung, M.D.; Quach, C.H.; Dinh, T.H.; Ha, Q. Enhanced discrete particle swarm optimization path planning
for UAV vision-based surface inspection. Autom. Constr. 2017, 81, 25–33. [CrossRef]

103. Shiltagh, N.A.; Jalal, L.D. Optimal Path Planning For Intelligent Mobile Robot Navigation Using Modified
Particle Swarm Optimization. Int. J. Eng. Adv. Technol. 2013, 2, 260–267.

104. Kang, H.I.; Lee, B.; Kim, K. Path Planning Algorithm Using the Particle Swarm Optimization and the
Improved Dijkstra Algorithm. In Proceedings of the 2008 IEEE Pacific-Asia Workshop on Computational
Intelligence and Industrial Application, Wuhan, China, 19–20 December 2008; pp. 1002–1004.

105. Alejo, D.; Cobano, J.A.; Heredia, G.; Ollero, A. Particle Swarm Optimization for collision-free 4D trajectory
planning in Unmanned Aerial Vehicles. In Proceedings of the 2013 International Conference on Unmanned
Aircraft Systems (ICUAS), Atlanta, GA, USA, 28–31 May 2013; pp. 298–307.

106. Thabit, S.; Mohades, A. Multi-Robot Path Planning Based on Multi-Objective Particle Swarm Optimization.
IEEE Access 2019, 7, 2138–2147. [CrossRef]

107. Xing, L.N.; Rohlfshagen, P.; Chen, Y.W.; Yao, X. A Hybrid Ant Colony Optimization Algorithm for the
Extended Capacitated Arc Routing Problem. IEEE Trans. Syst. Man Cybern. Part. B (Cybern.) 2011, 41,
1110–1123. [CrossRef] [PubMed]

108. Jiao, Z.; Ma, K.; Rong, Y.; Wang, P.; Zhang, H.; Wang, S. A path planning method using adaptive polymorphic
ant colony algorithm for smart wheelchairs. J. Comput. Sci. 2018, 25, 50–57. [CrossRef]

109. Garcia, M.A.P.; Montiel, O.; Castillo, O.; Sepúlveda, R.; Melin, P. Path planning for autonomous mobile robot
navigation with ant colony optimization and fuzzy cost function evaluation. Appl. Soft Comput. 2009, 9,
1102–1110. [CrossRef]

110. Yen, C.-T.; Cheng, M.-F. A study of fuzzy control with ant colony algorithm used in mobile robot for shortest
path planning and obstacle avoidance. Microsyst. Technol. 2018, 24, 125–135. [CrossRef]

111. Hsiao, Y.T.; Chuang, C.L.; Chien, C.C. Ant colony optimization for best path planning. In Proceedings of the
IEEE International Symposium on Communications and Information Technology, Sapporo, Japan, 26–29
October 2004; pp. 109–113.

112. Akka, K.; Khaber, F. Mobile robot path planning using an improved ant colony optimization. Int. J. Adv.
Robot. Syst. 2018, 15. [CrossRef]

113. Yu, X.; Chen, W.-N.; Gu, T.; Yuan, H.; Zhang, H.; Zhang, J. ACO-A*: Ant Colony Optimization Plus A* for 3-D
Traveling in Environments With Dense Obstacles. IEEE Trans. Evol. Comput. 2019, 23, 617–631. [CrossRef]

114. Chia, S.H.; Su, K.L.; Guo, J.H.; Chung, C.Y. Ant Colony System Based Mobile Robot Path Planning. In
Proceedings of the 2010 Fourth International Conference on Genetic and Evolutionary Computing, Shenzhen,
China, 13–15 December 2010; pp. 210–213.

http://dx.doi.org/10.1016/j.neucom.2012.09.019
http://dx.doi.org/10.1109/TSMCA.2011.2159586
http://dx.doi.org/10.4304/jcp.6.8.1554-1561
http://dx.doi.org/10.1109/ETFA.2006.355416
http://dx.doi.org/10.1155/2013/705238
http://dx.doi.org/10.15837/ijccc.2015.5.2030
http://dx.doi.org/10.1016/j.autcon.2017.04.013
http://dx.doi.org/10.1109/ACCESS.2018.2886245
http://dx.doi.org/10.1109/TSMCB.2011.2107899
http://www.ncbi.nlm.nih.gov/pubmed/21324786
http://dx.doi.org/10.1016/j.jocs.2018.02.004
http://dx.doi.org/10.1016/j.asoc.2009.02.014
http://dx.doi.org/10.1007/s00542-016-3192-9
http://dx.doi.org/10.1177/1729881418774673
http://dx.doi.org/10.1109/TEVC.2018.2878221

Electronics 2020, 9, 316 28 of 28

115. Brand, M.; Masuda, M.; Wehner, N.; Yu, X.-H. Ant Colony Optimization algorithm for robot path planning.
In Proceedings of the 2010 International Conference On Computer Design and Applications, Qinhuangdao,
Chian, 25–27 June 2010.

116. Zhang, C.; Zhen, Z.; Wang, D.; Li, M. UAV path planning method based on ant colony optimization.
In Proceedings of the 2010 Chinese Control and Decision Conference, Xuzhou, China, 26–28 May 2010;
pp. 3790–3792.

117. Cong, Y.Z.; Ponnambalam, S.G. Mobile robot path planning using ant colony optimization. In Proceedings
of the 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore, 14–17
July 2009; pp. 851–856.

118. Xiong, C.; Chen, D.; Lu, D.; Zeng, Z.; Lian, L. Path planning of multiple autonomous marine vehicles for
adaptive sampling using Voronoi-based ant colony optimization. Robot. Auton. Syst. 2019, 115, 90–103.
[CrossRef]

119. Wang, L.; Kan, J.; Guo, J.; Wang, C. 3D Path Planning for the Ground Robot with Improved Ant Colony
Optimization. Sensors 2019, 19, 815. [CrossRef] [PubMed]

120. Fan, Y.P.; Luo, X.; Yi, S.; Yang, S.Y.; Zhang, H. Optimal path planning for mobile robots based on intensified ant
colony optimization algorithm. In Proceedings of the IEEE International Conference on Robotics, Intelligent
Systems and Signal Processing, Changsha, Hunan, China, 8–13 October 2003; pp. 131–136.

121. Ma, Y.-N.; Gong, Y.-J.; Xiao, C.-F.; Gao, Y.; Zhang, J. Path Planning for Autonomous Underwater Vehicles:
An Ant Colony Algorithm Incorporating Alarm Pheromone. IEEE Trans. Veh. Technol. 2019, 68, 141–154.
[CrossRef]

122. López-Ibáñez, M.; Dubois-Lacoste, J.; Pérez Cáceres, L.; Birattari, M.; Stützle, T. The irace package: Iterated
racing for automatic algorithm configuration. Oper. Res. Perspect. 2016, 3, 43–58. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.robot.2019.02.002
http://dx.doi.org/10.3390/s19040815
http://www.ncbi.nlm.nih.gov/pubmed/30781539
http://dx.doi.org/10.1109/TVT.2018.2882130
http://dx.doi.org/10.1016/j.orp.2016.09.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	CFPP
	Environment Type
	Environmental Representation
	Searching Algorithms
	Classical Algorithm
	Heuristic Based Algorithm

	Experimental Type

	Experiments Plan
	Algorithms
	Envionments
	Metaheuristic Parameter

	Computational Results
	Conclusions
	References

