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Abstract: The rapid development of mobile communications and the continuous growth of service
needs lead to an increase in the number of base stations (BSs). Through virtualization and cloud
technology, virtual Baseband Units (BBUs) are deployed on a virtual machine (VM) to build a BBU
pool to achieve hardware resource sharing, which not only saves BS construction costs but also
facilitates management and control. However, too high or too low server resource utilization in the
pool not only affects the performance of the virtual BBU but also increases the maintenance cost of
the physical equipment. In this paper, BBUs are virtualized to construct a virtual BBU pool based
on the OpenStack cloud architecture and a dual threshold adaptive dynamic migration strategy is
proposed in this scenario. Establish upper and lower threshold of resource utilization of the servers
in the pool and the strategy determines whether the dynamic migration is triggered according to the
resource utilization of each compute node. If the migration is triggered, the strategy selects the virtual
resource to be moved out and the target node to realize the dynamic migration to achieve the purpose
of balancing the server load and saving energy consumption. The migration strategy proposed in this
paper is simulated on Cloudsim and the experimental results show that the strategy can effectively
reduce the number of migrations and migration time on the basis of reducing energy consumption
and SLA violations. This paper successfully deployed the strategy on the OpenStack platform, which
implements dynamic migration autonomously to save the overall energy consumption of the BBU
pool, instead of manual operations.

Keywords: BBU Pool; dynamic migration; OpenStack; Cloudsim

1. Introduction

With the development of mobile communication technology and the commercial use of 5G, mobile
operators ensure the normal use of user services in their coverage areas and meet the need for a
higher data rate, fast and efficient network services [1] by deploying a large number of base stations
(BSs). The increasing number of BSs will lead to increasing problems. Firstly, in the traditional mobile
communication system, each BS is relatively independent and cannot share resources [2]. Each BS
only undertakes the processing of access user services within its coverage area, so the deployment and
maintenance of a large number of BSs require significant construction costs. Secondly, the auxiliary
equipment such as air conditioners equipped during the operation of BSs will also cause energy
consumption problems. To solve the challenges mentioned above, the concept and architecture of
centralized access network are proposed. Cloud-radio access networks (C-RAN) is a promising 5G
mobile network architecture [2], which implements the functional separation of traditional BS into two
parts—the baseband unit (BBU) and the remote radio head (RRH). It allows BBUs to be geographically

Electronics 2020, 9, 314; doi:10.3390/electronics9020314 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-7404-8785
https://orcid.org/0000-0002-2886-4121
http://dx.doi.org/10.3390/electronics9020314
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/2/314?type=check_update&version=2


Electronics 2020, 9, 314 2 of 19

separated from RRHs [3,4]. BBU performs baseband signal digital processing together with all upper
layer functions. RRH acts as the wireless signal transmission and reception with antennas. Each RRH
does not belong to any specific physical BBU and a virtual BS can process the radio signals from /to
a particular RRH. C-RAN can reduce capital expenditure (CAPEX) and operating expense (OPEX)
of 5G by separating RRH from BBUs based on network functions virtualization (NFV) concepts [5].
IBM, Huawei and other equipment manufacturers have also put forward a centralized architecture
implementation scheme, combined with software defined network (SDN) and NFV, to complete
the unified management and allocation of BS computing resources on cloud computing platforms.
Applying cloud computing as the computing paradigm of the centralized BBU pool can reduce the
power consumption and improve hardware utilization, through resource sharing and virtualization,
that is, a server can be further virtualized into many virtual machines (VMs) [6] running multiple
isolated virtual BBU instances.

The continuous arrival or end of communication services leads to great differences in the load
distribution of different BBUs in the BBU pool. To ensure the normal operation of the user services in
the coverage area, the no-load or low-load BBUs must maintain the same running state as the high-load
BBUs. On the one hand, the physical servers with these virtualized BBUs may degrade the quality
of service because of the too high utilization of resources. On the other hand, the low utilization
of resources wastes the physical resources while maintaining the power cost. BBUs are deployed
in the server cluster centrally through virtualization to form a BBU pool and realizes the dynamic
scheduling of virtual resources according to the utilization of real-time resource, which cannot only
share physical resources but also improve the utilization of cluster server processing resources in the
BBU pool, improve the overall operation reliability of the pool and reduce the power consumption.
Since virtual BBUs are deployed on the VMs, the dynamic migration method of the VMs in the cloud
environment can be adopted to improve the resource utilization rate and achieve load balancing.

Load balancing is a migration process of the load from over utilized nodes to underutilized nodes
to reduce the wastage of the resources in a cloud environment [1]. It can be done by VM selection
and migration that appropriate VMs are selected either from the overloaded or under-loaded host
for migration. Yazir et al. implemented a threshold to determine whether migration is required by
monitoring the resource utilization of the server and performs a migration operation once it detects
that its resource utilization exceeds the high load threshold [7]. The authors of References [8,9]
adopt the algorithm called Minimum Migration Time (MMT), which selects a VM based on the
value of the migration time, the less, the better. Reference [10] selects the VM selection strategy with
maximum utilization for migration and VM placement algorithm using the Minimum Power High
Available Capacity strategy to find new places of VM has been developed. Reference [11] calculates
total utilization (TU) combined with CPU and memory to choose the smallest TU as destination
host. However, if the threshold is exceeded, the migration is triggered immediately and unnecessary
migration may be triggered because of an instantaneous peak value, resulting in unnecessary system
overhead. Razali et al. in Reference [12] make the historical data as a training set, establish a prediction
model and predict the CPU usage for the next moment. In Reference [13], a prediction based on fuzzy
logic is used to predict future resource utilization. The authors in Reference [14] use threshold and time
sequence prediction technique, which does not perform migration operations immediately when it is
detected that server resource utilization exceeds the threshold but continues to observe several cycles
to determine whether to initiate migration. This method determines the migration time and avoids
invalid migrations, which can save the overall energy consumption of the data center. However, the
running communication service is sensitive to the quality of service in the BBU pool. If the virtual BBU
does reach the continuous high load state at this time, long observation time of several consecutive
cycles may lead to the sharp deterioration of the quality of service of the communication service in
the BS.

Based on the architecture of a centralized access network, this paper uses virtualization technology
on x86 architecture servers to virtualize the functions of traditional BBUs (such as physical layer
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baseband processing and high-level protocol processing) on VMs, to build a centralized BBU pool and
use OpenStack cloud platform for unified control and deployment of virtual resources in the pool. In
this scenario, this paper proposes a dual threshold adaptive dynamic migration strategy, which sets
the upper and lower threshold for the physical nodes’ resource utilization in the BBU pool and realize
adaptive dynamic migration. The main contributions of this paper are summarized as follows:

(1) We virtualize the BBU and build a virtual BBU pool combined with OpenStack cloud architecture.
In the OpenStack-based BBU pool, all the processing resources provided by physical servers can be
managed and allocated by a unified real-time virtual operating system.

(2) We propose a dual threshold adaptive (DTA) dynamic migration strategy divided into three
parts. The first part is the adaptive migration trigger strategy combined with the Kalman filter
algorithm, which can avoid a certain instantaneous peak of server resource utilization to trigger
unnecessary migration because of too high or too low and effectively determine the time to trigger
migration. The second part is selection strategy of VM, based on the number of migrations and the
migration time. The last part is selection of target server node, combined with prediction and resource
utilization to make a comprehensive judgment.

(3) The simulation is carried out first by the CloudSim platform to evaluate the proposed migration
strategy, which can improve energy consumption and SLA violation and significantly reduce the total
number of migrations and migration time. Then the strategy is implemented on the OpenStack and the
results are finally analyzed that this strategy can avoid invalid migration, instead of manual, realize
adaptive dynamic migration and achieve the load balancing purpose.

The rest of the paper is organized as follows. Section 2 presents a system scenario of BBU pool
based on OpenStack and introduces related works of migration and parameter definition. In Section 3,
we describe the migration strategy in detail. Section 4 shows the simulation results on Cloudsim and
OpenStack. Then conclusions are drawn in Section 5.

2. System Scenario and Related Works

2.1. Virtual BBU Pool based on OpenStack Architecture

This paper adopts the distributed architecture of BBU and RRH, as shown in Figure 1. BBUs
are clustered as a BBU pool in a centralized location. RRHs support high capacity in hot spots,
while the virtualized BBU pool provides large-scale collaborative processing and cooperative radio
resource allocation [15]. The pool has at least one control management to control the performance of
all virtual resources.

Through virtualization technology, a virtual layer is built on a general server cluster of the X86
architecture. Multiple VMs are run on the virtual layer and a virtualized BBU pool is constructed
through the running VMs deployed on many common servers. Integrate the BBU pool with the
OpenStack and remotely connect to the RRH. The resources used by each VM will be planned according
to the resource allocation plan of the BBU pool and support different functions of baseband processing
units. The OpenStack cloud platform solves the problem of the automatic creation of virtual resources.
Figure 2 shows the virtual BBU pool architecture based on OpenStack, which can manage and deploy
the pool and implement dynamic migration. With the OpenStack cloud architecture, physical servers
can be deployed as compute nodes, these nodes and the virtual BBU pool deployed on these nodes can
be managed and controlled by a controller node (also deployed on a physical server).
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2.2. Related Model Definition

2.2.1. Model of Power

The research in Reference [16] shows that power consumption by physical machines can be
described by a linear relationship between power consumption and CPU utilization. The study also
points out that a free physical machine uses approximately 70% of its power consumption on average
when it is fully utilized. Define the power consumption as a CPU utilization function from Equation
(1).

P(u) = k× Pmax + (1− k) · Pmax × u, (1)

where Pmax is the maximum power of a server in the running state, k is the percentage of power
consumed by an idle physical server and u is the CPU utilization. As the utilization of CPU changes over
time due to the workload variability and u(t) is a function of the time. The total energy consumption
can be defined by Equation (2). According to this model, the energy consumption is determined by the
CPU utilization.

E =

∫
t
P(u(t)) dt. (2)

2.2.2. Cost of VM Dynamic Migration

Dynamic migration of VMs allows transferring VMs between physical nodes with short downtime.
However, dynamic migration has a negative influence on the performance of applications running in a
VM during a migration. Studies in Reference [17] found that a reduction in performance and downtime
depends on the behavior of applications. The length of a dynamic migration depends on the total
amount of memory used by the VM and available network bandwidth. In order to avoid performance
degradation, a VM migration cost model is adopted in Reference [17] to help choose migratable VMs.
As the authors say in Reference [18], a single VM Migration can cause performance degradation and
can be estimated by an extra 10% of CPU utilization and this implies that each migration may cause
SLA violations. Therefore, it is crucial to minimize the number of VM migrations and select the VM
using the least memory. Thus in the migration strategy from this paper, the performance degradation
of VM j is defined in Equations (3) and (4).

Ud j = 0.1
∫ t0+Tmj

t0

u j(t)dt (3)

Tm j =
M j

B j
, (4)

where Ud j is VM j’s total performance degradation, t0 refers to the time when the migration starts, Tm j

is the time taken to complete the migration, u j(t) is the CPU utilization at time t. M j is the amount
of memory used by VM j and B j is the network bandwidth. The smaller the memory of VM to be
migrated, the smaller the migration time and the smaller the impact on the system.

2.2.3. SLA Violation (SLAV) Metric

In a cloud environment, since many users are competing for resources, each cloud service provider
needs to ensure that the application requirements are met, which is usually defined in the form of
SLA [19]. It is defined as a violation of the SLA between the resource provider and the user when the
performance request of the resource exceeds the available capacity and the Equation (5) as follows:

SLAV =
1
J

J∑
x=1

Tsx

Tax
·

1
N

N∑
i=1

Cdi
Cri

, (5)
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where J is the number of hosts, Tsx is the total time that utilization of host x reach to 100% and Tax

is a lifetime (total time that the host is active) of the host x. When host utilization reaches 100%, the
application performance is bounded by the host. N shows a number of VMs, Cdi estimated as 10%
CPU utilization of VMi in all migrations. Cri is the total CPU requested by VMi.

Table 1 shows the parameter definitions that will be used in Section 3.

Table 1. Parameter Definition.

Parameter Description

H_i _[CPU/Mem]util CPU or memory utilization for a compute node in the migration trigger section
H_i _Pre[CPU/Mem]util CPU or memory utilization for a compute node after the prediction in the migration trigger section

DCPU/DMem Difference between overload resource utilization and the upper threshold
OverloadHost Overload compute node
VMtomigrate Selected VM to be migrated from Overload Host

VMk_[CPU/Mem] CPU or memory utilization of VMk
VMk−[CPU/Mem] Difference between VMk_[CPU/Mem] and DCPU/DMem

Hostlistidle Compute nodes in the threshold range after prediction
hj−[CPU/Mem] CPU or memory utilization for computing node from Hostlistidle

hostidx Selected target compute node

3. Migration Strategy Description

A dual threshold adaptive (DTA) dynamic migration strategy proposed in this paper is divided
into three parts: (1) adaptive trigger migration strategy based on Kalman filter algorithm prediction;
(2) the selection of VM to be migrated; and (3), the selection of target physical node. These parts will be
discussed in the following sections.

3.1. Adaptive Trigger Migration Strategy based on Kalman Filter Algorithm Prediction

It is necessary to monitor the running state of each physical compute node and set migration
conditions for the resource state to determine whether the dynamic migration should be triggered
or not. In this paper, the upper threshold is set to alleviate the problem that the physical server
increases energy consumption and SLA violations because of the high load, so as to ensure that the
resource utilization of the running node in the pool meets the demand on the basis of saving energy
consumption. Set a lower threshold and migrate the VM on the compute nodes elsewhere and shut
down or sleep the physical server to reduce the energy consumption of the physical cluster, when the
server utilization is below the threshold. Because the resource utilization of physical servers is not
stable, the CPU or memory utilization at a certain time may cause unnecessary migration due to too
high or too low condition, result in a waste of system energy consumption. In this paper, the Kalman
filter algorithm is used to predict the resource utilization, which only a small amount of data is needed
to get the predicted starting point (the more data will make the result better). It can adjust itself and
automatically set the parameters from continuous observation. Because the server resource utilization
is instantaneous, the use of prediction technology can effectively prevent the invalid migration of
virtual resource. The predicted migration trigger strategy based on the Kalman filter algorithm is used
to determine whether the server resource utilization is higher or lower than the threshold.

Kalman filter takes the least mean square error as the best criterion to find a set of recursive
estimation models. The basic idea is to use the state space model of signal and noise, to update the
estimation of state variables by the estimated value of the previous time and the observed value of the
present time and to find the estimated value of the occurrence time. The estimator is considered as a
linear system and γ(k) represents the resource utilization of the server in the migration strategy at the
current time.

Firstly, the predicted value γ̃(k) is set as the optimal estimation of the previous state with Equation
(6), where γ̂(k−1) is the last estimated resource utilization.

γ̃(k) = γ̂(k−1). (6)
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Then, the estimated value of the current time is calculated by Equation (7). Where γ(k) is the
observation of the current time. Kg(k) is the Kalman gain and calculated by the Equation (8) and
Equation (9):

γ̂(k) = γ̃(k) + Kg(k)[γ(k) − γ̃(k)] (7)

Kg(k) =
P̃(k)

P̃(k)+R
(8)

P̃(k) =P(k− 1)+Q, (9)

where R and Q are the variances of system noise and observation noise, respectively. P(k) represents
the deviation of the filter and is updated by Equation (10) to continue iteratively filter.

P
(
k) = (1−Kg

(
k))P̃(k). (10)

The migration strategy proposed in this paper is to judge the relationship between resource
utilization and threshold combined with prediction. A detailed process is shown in Figure 3 as a
trigger flow. In the proposed trigger strategy, the load utilization of each compute node is polled first
to monitor and the CPU and memory utilization are used as the trigger migration criteria. Then judge
the relationship of utilization and the threshold. If one or more parameters are not within the threshold
range, use the prediction model to determine the relationship between the load utilization and the
threshold at the next moment. If the predicted value exceeds the upper threshold, the compute node is
considered overloaded and calculate DCPU/DMem, which is the difference between overload resource
utilization and the upper threshold. Otherwise, the strategy enters the underload judgment process
with prediction model. If the predicted value is below the lower threshold, the node is identified as the
underload node.
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To implement a migration strategy, the VM to be migrated is selected from the overload/underload
compute node according to the VM selection strategy from Section 3.2 and then the target server node
to be migrated is determined from Section 3.3 to realize dynamic migrations. The strategy proposed
defines the triggering of overload as three cases. (a) type 0: both CPU and memory utilization exceed
the upper threshold, (b) type 1: only CPU utilization exceeds the upper threshold and (c) type 2: only
memory utilization exceeds the upper threshold. If one or more utilization parameters are below the
lower threshold, the dynamic migration is triggered and the underload node is shut down to reduce
energy consumption. If all the parameters are within the threshold range, it is considered normal and
then enters the next round of judgment process.

3.2. The Selection of VM to be Migrated (DTA-VM Selection)

Once the overload compute node is detected, the next step is to select VMs to migrate from the
node to avoid performance degradation. In this paper, a VM selection strategy (DTA-VM selection) is
proposed. Firstly, the VM with the least number of migrations is selected and then, in the selected
VM subset, the strategy selects the VM with the minimum migration time. The migration time can be
estimated as the number of RAM used by VM divided by the network bandwidth available to the
server node. The proposed VM selection strategy shows in Algorithm 1.

VMk_CPU and VMk_Mem represent the difference between the utilization of VM’s CPU and
memory and D (DCPU or DMem). If the difference is greater than or equal to 0, it is indicated that only
one VM needs to be migrated to lower the resource utilization rate of the server below the upper
threshold and this VM will be stored in the VMlist_count subset. In the subset of VMs that satisfy
the minimum migration counts in the VMlist_count, the memory usage of each VM is sorted and
the smallest memory is selected as the final VM to be migrated. If the list VMlist_count is empty,
the strategy will judge the resource utilization by calculating f from algorithm 1 for each VM on the
overloaded host and select the VM, which can alleviate the server load to the greatest extent.

Algorithm 1 DTA-VM selection strategy

Input: OverloadHost, D(DCPU or DMem)

Output: VMtomigrate
foreach VM inOverloadHost do
type 0: VMk−CPU= VMk_CPU−DCPU, VMk−Mem= VMk_Mem−DMem
type 1: VMk−CPU= VMk_CPU−DCPU
type 2: VMk−Mem= VMk_Mem−DMem
if (type 0: VMk−CPU>= 0 and VMk−Mem>= 0; type 1: VMk−CPU>= 0; type 2: VMk−Mem>= 0)
VMlist_count←VMk
else
type 0: w1 = DCPU

DCPU+DMem
, w2 = DMem

DCPU+DMem

type 1: w1 = 1, w2 = 0
type 2: w1 = 0, w2 = 1
fk = w1 ·VMk−CPU + w2 ·VMk−Mem VMlist_f←VMk, fk
end if
if VMlist_count =!NULL
sort VMlist_count by memory
VMtomigrate = VMlist _count[0]
else
sort VMlist_f by fk
VMtomigrate = VMlist _f[0]
end if
end for
return VMtomigrate
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When the compute node triggers migration because of too low load, the VM selection is not
needed because all the VMs in the node are then directly migrated and this node will be closed in order
to save energy.

3.3. The Selection of Target Physical Node (DTA-Target Selection)

When the Nova_Scheduler module selects the target node in the OpenStack, it selects the node
which meets the requirements of VM resources and has the most memory surplus, regardless of other
factors. Therefore, the strategy of selecting the target server node proposed in this paper takes into
account not only the current CPU and memory usage of the server node but also the resource usage of
the target node after the migration of the VM. The target compute node selection strategy is proposed
based on Kalman filter prediction, which gives priority to select the nodes in the set within the normal
threshold range to reduce the computational workload.

The target node selection strategy shows in Algorithm 2, for each other server node in the
cloud-based BBU pool, to avoid unnecessary migration, prediction technology is used to predict
the resource utilization of the running nodes that can accept migration in the pool. Only when the
predicted values are within the threshold range, the size of the decision value F from algorithm 2 of
CPU and memory utilization will be sorted and the sorted server list will be returned. The server
node listed first is the most suitable target node. The calculation of the F value is similar to f in the
previous section and there are also three cases. The selection of the target node in the case of underload
is performed according to type 0.

Algorithm 2 DTA-Target selection strategy

Input: VMtomigrate, Hostlistidle, D(DCPU or DMem)

Output: hostidx
foreach host in Hostlistidle = {h 1, h2, , , hj

}
do

if hj_ CPU + VM_CPU < Upper_CPU _Threshold and
hj_ CPU + VM_CPU < Upper_CPU _Threshold

for Hostlistidle = {h 1, h2, , , hj
}

do

type 0: w1 = DCPU
DCPU+DMem

, w2 = DMem
DCPU+DMem

,
type 1: w1 = 1, w2 = 0
type 2: w1 = 0, w2 = 1
F j = w1 · hj−CPU + w2 · hj −Mem
min = max.value
if F j < min then
min =F j
hostidx = hj
end if
end for
end if
end for
return hostidx

4. Simulation and Results

4.1. Experimental Environment

The DTA dynamic migration strategy proposed in this paper is firstly simulated and compared
on Cloudsim and then applied to the OpenStack cloud platform for concrete implementation.
CloudSim [20] is a cloud environment simulation software that can simulate virtualized and cloud-based
entities, such as data centers, VMs and physical hosts, to model and simulate a cloud computing
system. Based on Cloudsim, we can implement different resource allocation strategies and evaluate
strategy performance. OpenStack [21] is an open source project developed jointly by NASA and
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Rackspace to provide software for building and managing public and private clouds through which
any company or individual can build a cloud computing environment. OpenStack is the software of
the cloud computing IaaS layer, which provides an infrastructure solution for the needs of scalable
private and public clouds of all sizes.

(1) The hardware used in the Cloudsim simulation experiment is a laptop with a pre-installed
Windows 10 (64-bit) operating system (CPU type: Intel Core i5-7300HQ, memory 8G). Because
CloudSim is based on Java, Eclipse is selected as its operating platform. In this paper, JDK1.8 and
Eclipse 4.1.1 are downloaded and simulated with the version of CloudSim5.0. A virtual BBU pool,
including 300 physical servers and 1000 VMs, is created based on the constructed simulation platform.
The processing power per server node is based on 2000 MIPS and 4000 MIPS and the processing power
allocation per VM is based on 1000 MIPS, 2000MIPS and 3000 MIPS. VMs are assigned to odd ordinal
hosts in order and then to even ordinal hosts. The number of tasks submitted by user is 1500 and is
assigned to the VM in sequence. The detailed experimental parameters are shown in Table 2.

Table 2. Detailed experimental parameters.

Parameter Value Unit

Number of hosts 300 /
Hosts’ CPU capacity 2000, 4000 MIPS
Hosts’ memory size 4096, 6144 MB

Number of VMs 1000 /
VMs’ CPU capacity 1000, 2000, 3000 MIPS
VMs’ memory size 256, 512, 1024 MB
Number of tasks 1500 /
Length of tasks 108,000,000 /

The simulation set running time is 12 hours and the scheduling interval is 300 seconds and
system resource usage update, operation information collection and VM scheduling are performed. In
order to verify the effectiveness of the proposed strategy, it is necessary to compare and analyze the
existing VM selection and the target node selection strategy. In this experiment, firstly, the following
three VM selection strategies are compared with DTA-VM selection strategy: Maximum Correlation
(MC) strategy, Minimum Utilization (MU) strategy and Random Selection (RS) [9] strategy. Then, the
proposed DTA-Target node strategy is compared with the IQR, LR and the most memory remaining
strategy for OpenStack.

(2) In this experiment, the BBU pool based on the OpenStack cloud environment was built
composed of four physical servers. One of them acts as a cloud controller and the other three servers
act as compute nodes in this cloud environment. The experimental architecture is shown in Figure 4.

The controller node acts as the whole controller, responsible for controlling resources and the
compute nodes act as a resource computing and storage resource node in the cloud environment.
Through multi-node deployment, the server hardware failure can be dealt with without much difficulty
or the dynamic migration of VM can be performed without interfering with the client. Keystone, Nova,
Glance, Neutron, Horizon and Cinder components of OpenStack are deployed on the control node,
where Nova can implement management of virtual BBU pools such as creating VMs and implementing
dynamic migration operations. OpenStack uses the web graphical interface or command line to
control the entire cloud-based BBU pool. In this experimental deployment architecture, each server
is configured with two network interfaces. The private network segment is made up of interface1,
allowing each component of OpenStack to communicate with each other and the service provided by
the cloud environment is provided by interface2, realizing the connection with the Internet.

In the cloud system, node clusters implement SSH mutual access without password and dynamic
migration is achieved through shared storage. In this scenario, VM instances are stored in shared
storage and migration is mainly the migration of instance memory status, which greatly improves the
migration speed. In this experiment, the dynamic migration mode is set to the pre-copy mode and
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there is no real implementation of BBU related protocols on the VMs. BBU performs operations such
as baseband processing or RRH return signal processing, which has a load effect on the VMs. This
effect can be simulated by the script running on the VMs. The script implements CPU and memory
pressure operation, simulates the dynamic load changes brought by BBU performing signal processing
protocol and other functions. In the implementation, controller and compute nodes are installed in the
ubntu16.04 64-bit operating system. In the OpenStack experimental environment, the controller node
is deployed on an intel i5-6500, 12G memory, x86-architecture server with dual network cards. Twelve
VMs (ubntu16.04 64-bit OS) are set up and Table 3 shows the deployment of VMs and compute nodes
before implementing the migration strategy proposed in the paper.
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Table 3. The deployment information of VMs and compute nodes.

Compute Node VM ID VCPU Ram(M) Disk(G)

Compute1
CPU: Intel Core

i7-8700
RAM:16G

x86 architecture

1 2 1024 10
2 2 1024 10
4 1 2048 20
7 1 1024 5

Compute2
CPU: Intel Core

i7-4770
RAM:8G

x86 architecture

3 2 1024 10
6 1 512 5
10 1 1024 10
12 2 512 5

Compute3
CPU: Intel Xeon

E5-2643
RAM:128G

x86 architecture

5 1 1024 20

8 2 2048 10

9 1 1024 10
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4.2. Experimental Results and Analysis

4.2.1. Simulation of Migration Strategy on Cloudsim

In order to compare the performance of the proposed migration strategy with that of the existing
algorithms, we consider four indicators: the total energy consumption of the BBU pool when performing
the work, SLA violation, the total migration number when the dynamic migration occurs and the
dynamic migration time.

The first group: First Fit is the default target host placing method. Under the host detection
strategy (Mad, Iqr, Lr, Thr), DTA-VM selection is compared with the following three VM selection
strategies—MC, MU and RS. The simulation results are shown in Figures 5–8, compared with the
existing strategy, DTA-VM selection effectively reduces energy consumption, SLA violations, the
number of migration and migration time. In terms of SLA violations and the number of migrations,
DTA-VM selection is reduced by more than 50% compared to MU and the effect is reduced by about
half in terms of migration time compared to the other three selection algorithms. Because DTA-VM
selection achieves load balancing with as few number of migration and migration times as possible,
the consumption caused by migration and SLA violations can be reduced.
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Figure 8. Migration time of DTA-VM selection.

The second group: based on the proposed strategy (DTA-VM selection), MC, MU and RS VM
selection strategy, the proposed DTA-Target selection and First Fit and OpenStack "maximum memory
remaining" strategy are compared and analyzed for performance. As shown in Figures 9–12, the
DTA-Target selection proposed is not much different in terms of energy consumption. However, the
performance of the target node is reduced by more than 50% in terms of SLA violation; and compared
with the performance of the number of migration and migration time, DTA-Target selection is far lower
than the existing two strategies. This is because DTA-Target selection can comprehensively consider
the resource state and predict the status of the VM migration to the target node to reduce consumption
and SLAV caused by repeated migration.
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In summary, when the DTA-VM selection and DTA-Target selection proposed in this paper work
together, the above four performances can obtain more desirable effects. The simulation on Cloudsim
can prove that the DTA dynamic migration strategy has a significant improvement in performance.

4.2.2. The experiment of Migration Strategy on OpenStack

In order to simulate the effect of dynamic change of load, this experiment based on the OpenStack
cloud platform, the VMs with the ID number of 1–6,8 and 12 are tested for irregular CPU or memory
stress tests, respectively. The experimental observation time is 270 minutes and the migration strategy
deployed on the controller node polls and monitors the resource utilization of compute nodes every 60
seconds. According to the prediction of the Kalman filter algorithm and the manually set upper and
lower limit threshold, it is determined whether dynamic migration is needed or not. In this paper, two
groups of experiments are carried out, namely, the upper threshold overload migration and the lower
threshold underload migration. The upper and lower threshold values are 80% and 10%, respectively.
The dynamic variation of CPU and memory utilization over time is shown in Figures 13–15, which
show the experimental results of the dynamic migration of upper and lower threshold in the migration
strategy, respectively. This experiment is mainly to verify the feasibility of the dynamic migration
strategy. There will be a short and unavoidable interruption in the migration process of the VMs,
which will be studied in detail in the future work.
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Figure 15. Compute node resource utilization based on lower threshold migration.

In the initial stage of the experiment, continuous CPU and memory stress test scripts are executed
for all the VMs on the nodes. As can be seen from the Figure 13, the resource (CPU and memory)
utilization of the three compute nodes is in a steady state in the first 30 minutes. After 30 minutes,
keep compute1 and compute2 unchanged, perform a more intense load pressure script on compute2
and the CPU and memory utilization of compute2 are on the rise. Both CPU and memory utilization
of compute2 exceeds the upper threshold in about 20 minutes and it does not migrate immediately.
Similarly, in about 125 minutes, the CPU utilization of compute1 exceeds the upper limit threshold
but does not migrate immediately according to the prediction. This is because the resource utilization
exceeds the upper threshold is temporary at these two times and the unnecessary migration operation
is avoided based on the Kalman prediction algorithm. Starting from about 70 minutes, the CPU
utilization of compute2 exceeded the upper threshold again. Combined with Kalman’s prediction, the
dynamic migration of VM is carried out in accordance with the requirements of the migration strategy.
The load utilization of compute2 has gradually increased and the CPU utilization of compute2 exceeded
the upper threshold again at around 70 minutes. Combined with the prediction model to determine
that compute2 is an overload node, the dynamic migration of VM is carried out in accordance with the
requirements of the migration strategy. At about 105 minutes, the memory utilization of compute2
exceeded the upper threshold and a dynamic migration was performed by Kalman’s prediction. After
the migration, the memory utilization rate of compute2 drops significantly and the load utilization of
compute2 returns to within the normal threshold range.

Reducing the load pressure on compute2 in about 130 minutes, as can be seen in Figure 14, the
load situation of the computing node gradually becomes stable. From about 160 minutes, the load
pressure of compute2 is gradually increased again and both compute2’s CPU and memory utilization
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are above the upper threshold at about 175 minutes. Through the prediction, a dynamic migration
operation of the VM was performed. After the dynamic migration, the VM of compute2 migrates
to other idle compute nodes. After the dynamic migration strategy selection, the VM of compute2
migrates to compute3 node. It can be seen that the resource utilization of compute2 drops below the
upper threshold after the dynamic migration. Since the physical resources of the compute3 node are
very abundant, the load utilization of this node after the migration of the virtual machine has increased
slightly but it is not obvious.

Figure 15 shows resource utilization of compute nodes based on lower threshold migration of
OpenStack. In the experiment, the intensity of the load pressure script executed by the VMs on
compute2 and compute3 is not changed and compute1 gradually reduces the load pressure intensity.
From about 240 minutes, the CPU utilization of compute1 is below the lower threshold and the
under-load migration is determined. All VMs on the node are migrated to other nodes within the
threshold range. During the dynamic migration process, the VMs are migrated to compute2 and
compute3. After the migration process, the load utilization of the other two nodes has increased
and the CPU utilization of compute1 is close to 0 and the node is shut down to reduce the energy
consumption of the cloud-based BBU pool. The CPU utilization of compute3 is below the lower
threshold in approximately 242 minutes and the dynamic migration is not required by the Kalman
prediction. The VMs on compute1 are migrated to compute2 and compute3 and the resource utilization
of these two compute nodes increases.

Due to the limited experimental conditions, there are only three compute nodes in the OpenStack
environment but through the above experiments, it can be seen that the system and strategy designed
in this paper are feasible. Combined with the simulation of the migration strategy used in the system
in the third section, the effectiveness of the migration strategy proposed in this paper can be proved.

5. Conclusions

In the virtual BBU pool, it is necessary to reduce energy consumption without affecting the
destruction of SLA. This paper proposes a dual threshold adaptive (DTA) dynamic migration strategy,
including a triggered migration mechanism based on Kalman filter prediction, DTA-VM selection
strategy and DTA-Target selection strategy, which can more accurately determine the resource utilization
of the servers in the BBU pool and trigger the migration. In the strategy, the dynamic migration VM,
from the overloaded host is selected based on the minimum number of migration and minimum
migration time to avoid the increase of energy consumption caused by the multiple migrations of VM
in the BBU pool. The DTA-Target selection strategy predicts whether the resource performance of
the VM after the migration meets the threshold requirements, comprehensively considers the CPU
and memory utilization and selects the target node to reduce the migration failure caused by the
lack of physical resources of the node after the VM migration. Through the DTA migration strategy,
adaptive dynamic migration can be realized to reduce energy consumption and SLA violations in the
BBU pool. The experimental results show that the DTA migration strategy proposed in this paper has
better performance in the cloud center. The migration strategy is further realized in the BBU pool
based on the OpenStack platform. Without manual intervention, the change of the workload can be
automatically responded and the energy consumption is saved. In the future, the authors will do more
in-depth research on the actual deployment of the integration of BBU functions with OpenStack.

Author Contributions: C.W. proposed the basic framework of the research scenario. In addition, C.W. was in
charge of modeling the problem and proposed the migration strategy. Y.C. performed the simulations and wrote
the paper. Z.Z. provided suggestions for platform building. W.W. gave some suggestions on the mathematical
model and formula derivation. All authors have read and agreed to the published version of the manuscript.
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