
electronics

Article

A Parallel Connected Component Labeling
Architecture for Heterogeneous Systems-on-Chip

Stefania Perri 1,* , Fanny Spagnolo 2 and Pasquale Corsonello 2

1 Department of Mechanical, Energy and Management Engineering, University of Calabria,
87036 Arcavacata di Rende, Italy

2 Department of Informatics, Modeling, Electronics and System Engineering, University of Calabria,
87036 Arcavacata di Rende, Italy; f.spagnolo@dimes.unical.it (F.S.); p.corsonello@unical.it (P.C.)

* Correspondence: stefania.perri@unical.it; Tel.: +3909-8449-4765

Received: 20 December 2019; Accepted: 6 February 2020; Published: 8 February 2020
����������
�������

Abstract: Connected component labeling is one of the most important processes for image analysis,
image understanding, pattern recognition, and computer vision. It performs inherently sequential
operations to scan a binary input image and to assign a unique label to all pixels of each object.
This paper presents a novel hardware-oriented labeling approach able to process input pixels in
parallel, thus speeding up the labeling task with respect to state-of-the-art competitors. For purposes
of comparison with existing designs, several hardware implementations are characterized for different
image sizes and realization platforms. The obtained results demonstrate that frame rates and resource
efficiency significantly higher than existing counterparts are achieved. The proposed hardware
architecture is purposely designed to comply with the fourth generation of the advanced extensible
interface (AXI4) protocol and to store intermediate and final outputs within an off-chip memory.
Therefore, it can be directly integrated as a custom accelerator in virtually any modern heterogeneous
embedded system-on-chip (SoC). As an example, when integrated within the Xilinx Zynq-7000 X
C7Z020 SoC, the novel design processes more than 1.9 pixels per clock cycle, thus furnishing more
than 30 2k × 2k labeled frames per second by using 3688 Look-Up Tables (LUTs), 1415 Flip Flops
(FFs), and 10 kb of on-chip memory.

Keywords: connected component labeling; hardware accelerator; heterogeneous SoC; Filed
Programmable Gate Arrays (FPGAs)

1. Introduction

Machine vision, image processing, and pattern recognition algorithms often require segmented
visual objects and/or regions of interest to be identified and analyzed. To this aim, the well-known
connected component labeling (CCL) and connected component analysis (CCA) operations are typically
performed [1,2]. While the main goal of CCL is to assign a unique label to all pixels belonging to
the same connected component in a binary input image, the objective of CCA is to extract, for each
recognized connected component, features, such as area, perimeter, bounding box, center of gravity, etc.

The CCL and CCA algorithms are intermediate steps of more complex tasks [3,4]. Therefore, executing
them as fast and efficiently as possible is crucial to avoid bottleneck in the overall workload [2,5–31].

While, in some applications, only synthetic features are required for the subsequent image
analysis [1,5], in many others, fully labeled output images are needed [3]. In the former, the feature
extraction step is fused with the labeling one, thus simplifying the whole process. In the latter,
these simplifications are not possible, and the processing time becomes much higher. This research
work is specifically focused on the design of custom hardware architectures for the acceleration of
the CCL computation. Since the connected components can have complex shapes and connectivity,

Electronics 2020, 9, 292; doi:10.3390/electronics9020292 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-1363-9201
https://orcid.org/0000-0002-9528-1110
http://dx.doi.org/10.3390/electronics9020292
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/2/292?type=check_update&version=2

Electronics 2020, 9, 292 2 of 19

it represents a very time-consuming basic operation to perform on digital images [2]. CCL algorithms
are classified into several categories [2], based on how many raster scans of the input image are required
to provide the output labeled image. The latter has the same size of the input image and contains the
labels assigned to the input pixels.

Several attempts to improve the performance of these algorithms were presented in the recent
past. They exploit parallelism by means of either multi-core processors and Graphics Processing Units
(GPUs) [5,27–31] or custom hardware architectures [10,11,14–23,26]. As it is well known, for many
consumer applications, like those related to the Internet of things (IoT), reaching high speed is as
important as achieving low cost and high energy efficiency [16,32]. The design discussed in this paper
is tailored to such a class of applications. Therefore, heterogeneous FPGA-based systems-on-chip
(SoCs) were chosen as the target realization platforms. These systems merge the flexibility offered
by operating systems and by software routines, typically needed to control peripheral interfaces and
interconnection resources, with the computational capability of highly parallel specialized hardware
architectures that may provide the desired acceleration.

This paper presents a novel two-scan hardware-oriented labeling approach able to parallelize
the CCL process at both pixel and frame level. In order to do this, it exchanges data with an external
memory. The proposed architecture elaborates two input binary pixels in parallel and provides two
labeled pixels at once. Furthermore, while the generic input binary image undergoes its first raster
scan for being provisionally labeled, the previously elaborated frame is scanned for the final step,
and its output is transferred to the appropriate destination, thus maximizing the achievable throughput.
Both input and output data bandwidths are kept limited and both read and write accesses on the
image memory are maintained regularly. The proposed design complies with the fourth generation
of the high-performance advanced extensible interface (AXI4) protocol [33], and, differently from
several existing hardware accelerators designed as standalone modules [23,29–31], time and resource
overheads required to comply with the communication protocol are taken into account.

For purposes of comparison with existing competitors, different implementation platforms
were used. Speed performances and resources requirements of the novel parallel hardware design
were analyzed for image sizes ranging from 640 × 480 to 2k × 2k with the number of manageable
labels varying between 64 and 8192. Obtained results demonstrate that the proposed parallel CCL
architecture can process at least 1.88 pixels per clock cycle, which is a throughput that none of the
existing counterparts reaches. This advantage is obtained with an on-chip memory requirement
ranging from 0.375 to 104 kb, which is significantly lower than the referred competitors. As an example,
when integrated within a complete heterogeneous embedded SoC realized using the Xilinx Zynq-7000
X C7Z020 device, the implementation able to process 2k × 2k binary images with at most 1024 labels
sustains the 30.3 fps frame rate by occupying only 3688 LUTs, 1414 FFs, and 10 kb of on-chip Random
Access Memory (RAM). When compared to the most efficient competitor [22], at a parity of image size
and number of managed labels, the proposed design exhibits a resources efficiency ~4.7 times higher.

The rest of the paper is organized as follows: a brief background on CCA and CCL is provided in
Section 2; the novel CCL approach is introduced in Section 3; Section 4 describes the parallel hardware
architecture purpose-designed to integrate the proposed CCL method within a complete embedded
SoC; implementation and comparison results are provided in Section 5; finally, conclusions are drawn
in Section 6.

2. Background and Related Works

CCA and CCL play a crucial role in many image analysis and pattern-recognition tasks. The main
goal of the CCA is to extract, for the connected components (i.e., different objects) in an input image,
some features that are subsequently processed depending on the specific application. One-scan CCA
algorithms [1,2,6,9,10,15,17,21,24,26] are particularly efficient since they exploit a provisional CCL
step to distinguish the different connected components in the input image. The latter is scanned
in raster order, and each foreground pixel is labeled depending on its four or eight neighbors, thus

Electronics 2020, 9, 292 3 of 19

leading to a four-connected or an eight-connected neighborhood, respectively. The critical event,
called label collision or equivalence, happens when the pixels in the neighborhood have different
labels. The ambiguity occurring in this case is typically solved by assigning to the current pixel
the lowest equivalent label. Due to the even more complicated condition that intertwines multiple
collisions within a chain of equivalences, resolving the chains of collisions efficiently is very difficult [2].
Even though the provisional CCL could not assign unique labels to the pixels belonging to the same
connected components, it allows extracting the desired features correctly, without performing further
image scans.

However, several applications strictly require the complete correct labeled image [3,15]. In these
cases, to ensure that all the pixels of the generic connected component are uniquely labeled, at least
one further image scan is necessary to assign the final unambiguous label to each pixel of the input
image. Based on how many raster scans are performed overall to provide the final labeled image,
the CCL approaches known in literature can be classified into three main categories: one scan, two scan,
and multi-scan [2].

The one-scan CCL architecture recently presented in Reference [15] exploits a run-length encoding
technique and reaches the noticeable speed performance of ~ 39 2k × 1.5k frames per second, at the
running frequency of 300 MHz. However, it shows a relatively low throughput rate of ~ 3.73 clock
cycles per pixel and requires ~ 2.5 Mb of on-chip memory, generally available only in expensive
high-end devices.

The two-scan algorithms require only two regular forward scans to provide completely labeled
images. During the first scan, the provisionally labeled image is produced and encountered collisions
are recorded. Then, the collision resolution step is performed. Finally, through the second raster scan,
foreground pixels receive their final labels depending on the information recorded during the previous
scan. The two-scan approaches allow achieving a good trade-off between speed performances and
resources requirements, thus making their hardware designs very attractive solutions to accelerate the
labeling task [18,19,22,23,25,29–31].

Finally, multi-scan algorithms alternate repeatedly time-consuming forward and backward scans,
access input pixels in irregular ways, and typically are on-chip memory-greedy [1,2]. For these reasons,
these methods do not represent attractive candidates for achieving efficient hardware implementations,
especially when high-resolution images must be processed.

Taking all the above considerations into account, the attention is mainly focused on two-scan
CCL approaches, even though they suffer from the occurrence that complex shapes within the
processed image may cause long chains of collisions. In fact, the time required to resolve collisions
is not deterministic and increases for longer chains. As a further drawback, since collisions may be
encountered multiple times, redundant information may be recorded.

Some of the hardware architectures previously proposed for two-scan CCL methods were (or can
be) integrated within heterogeneous image processing embedded systems, like that illustrated in
Figure 1. There, the two main portions, consisting of a general-purpose processor and the user-defined
logic, communicate with each other through an appropriate protocol. Typically, an external camera
acquires the input image using the desired data format. The input pixels received by the image capture
module are stored, if necessary, within an external memory and streamed to the pre-processing module
that performs all the operations, like filtering, thresholding, binarization, etc., required to produce
the image to be labeled. The latter is stored in the external memory and successively resumed to be
streamed toward the CCL accelerator. In the meantime, the image capture acquires the next input frame
and the pre-processing module prepares it for the labeling. The CCL and the eventual subsequent
computation on the labeled image are hardware-implemented together with the Direct Memory Access
(DMA) cores that are responsible for the data transfers to/from the external memory, which also stores
the labeled output images.

Electronics 2020, 9, 292 4 of 19

Electronics 2020, 9, x FOR PEER REVIEW 4 of 19

Figure 1. Architecture of a heterogeneous embedded system.

The main activities of such a designed embedded system are schematized in Figure 2a, which
shows salient steps performed by each module over time to process two consecutive input binary
images. After the initialization, the processor executes software routines responsible for managing,
among others, the activity of DMAs. The DMAs are configured to specify which off-chip memory
areas must be accessed in read and write modes during data transfers. The DMAs then stream binary
input pixels to the CCL accelerator and collect provisional labels in the off-chip memory. The
subsequent configuration instructs the DMAs to read (write) provisional (final) labels from (to) the
external memory. Then, provisional labels are streamed toward the CCL, which resolves collisions
and furnishes the final equivalent labels within a pattern-dependent time. If required, these labels
can be further processed; then, the same activities are repeated for each subsequent input image. With
respect to the above activity diagram, the approach proposed in Reference [18] has the merit of
overlapping the operations required to resolve collisions with the second DMA configuration.
Moreover, the presence of a label-translator LUT makes the architecture able to produce the final
labels of the k-th input binary image and the provisional labels of the (k + 1)-th input image in parallel,
thus significantly increasing the achievable frame rate. However, the use of a two-dimensional (2D)
register array limits to few hundreds the number of labels that can be provisionally assigned.

(a)

Off-chip
memory

Camera

DMAs

Post-labelling
process

Processor

User-defined logic

Provisional
Labelling

Collision
resolution

 Pixels
Prov. Labels

Prov. labels
Final labels

Pre-Processing

Final labels
Features

Pixels_out
Pixels_in

CCL Accelerator

Configurations

MemData_out

Status
MemData_in

Stream_in

Stream _in

Stream_out

Stream _out

Data _in

On-chip

Operating
System

&
Software
routines

Image Capture

Configuration
Status

Data_out
Data_in Stream _out

Stream_in

Pixels
Configuration

Initialisation 11

Configure DMAs 11 11 11 11 11 11 11

Stream binary pixels to CCL 11 11 11 11 11 11 11

Provisional labelling 11 11 11 11 11 11 11

Send provisional labels to external memory 11 11 11 11 11 11 11

Configure DMAs 11 11 11 11 11 11 11

Stream provisional labels to CCL 11 11 11 11 11 11 11

Resolve collisions and produce final labels 11 11 11 11 11 11 11

Send final labels to external memory 11 11 11 11 11 11 11

Post-labelling 11 11 11 11 11 11 11

Configure DMAs 11 11 11 11 11 11 11

Stream binary pixels to CCL 11 11 11 11 11 11 11

Provisional labelling 11 11 11 11 11 11 11

Send provisional labels to external memory 11 11 11 11 11 11 11

Configure DMAs 11 11 11 11 11 11 11

Stream provisional labels to CCL 11 11 11 11 11 11 11

Resolve collisions and produce final labels 11 11 11 11 11 11 11

Send final labels to external memory 11 11 11 11 11 11 11

Post-labelling 11 11 11 11 11 11 11
t

Activity

Figure 1. Architecture of a heterogeneous embedded system.

The main activities of such a designed embedded system are schematized in Figure 2a, which
shows salient steps performed by each module over time to process two consecutive input binary
images. After the initialization, the processor executes software routines responsible for managing,
among others, the activity of DMAs. The DMAs are configured to specify which off-chip memory areas
must be accessed in read and write modes during data transfers. The DMAs then stream binary input
pixels to the CCL accelerator and collect provisional labels in the off-chip memory. The subsequent
configuration instructs the DMAs to read (write) provisional (final) labels from (to) the external
memory. Then, provisional labels are streamed toward the CCL, which resolves collisions and furnishes
the final equivalent labels within a pattern-dependent time. If required, these labels can be further
processed; then, the same activities are repeated for each subsequent input image. With respect to
the above activity diagram, the approach proposed in Reference [18] has the merit of overlapping the
operations required to resolve collisions with the second DMA configuration. Moreover, the presence
of a label-translator LUT makes the architecture able to produce the final labels of the k-th input binary
image and the provisional labels of the (k + 1)-th input image in parallel, thus significantly increasing
the achievable frame rate. However, the use of a two-dimensional (2D) register array limits to few
hundreds the number of labels that can be provisionally assigned.

Electronics 2020, 9, x FOR PEER REVIEW 4 of 19

Figure 1. Architecture of a heterogeneous embedded system.

The main activities of such a designed embedded system are schematized in Figure 2a, which
shows salient steps performed by each module over time to process two consecutive input binary
images. After the initialization, the processor executes software routines responsible for managing,
among others, the activity of DMAs. The DMAs are configured to specify which off-chip memory
areas must be accessed in read and write modes during data transfers. The DMAs then stream binary
input pixels to the CCL accelerator and collect provisional labels in the off-chip memory. The
subsequent configuration instructs the DMAs to read (write) provisional (final) labels from (to) the
external memory. Then, provisional labels are streamed toward the CCL, which resolves collisions
and furnishes the final equivalent labels within a pattern-dependent time. If required, these labels
can be further processed; then, the same activities are repeated for each subsequent input image. With
respect to the above activity diagram, the approach proposed in Reference [18] has the merit of
overlapping the operations required to resolve collisions with the second DMA configuration.
Moreover, the presence of a label-translator LUT makes the architecture able to produce the final
labels of the k-th input binary image and the provisional labels of the (k + 1)-th input image in parallel,
thus significantly increasing the achievable frame rate. However, the use of a two-dimensional (2D)
register array limits to few hundreds the number of labels that can be provisionally assigned.

(a)

Off-chip
memory

Camera

DMAs

Post-labelling
process

Processor

User-defined logic

Provisional
Labelling

Collision
resolution

 Pixels
Prov. Labels

Prov. labels
Final labels

Pre-Processing

Final labels
Features

Pixels_out
Pixels_in

CCL Accelerator

Configurations

MemData_out

Status
MemData_in

Stream_in

Stream _in

Stream_out

Stream _out

Data _in

On-chip

Operating
System

&
Software
routines

Image Capture

Configuration
Status

Data_out
Data_in Stream _out

Stream_in

Pixels
Configuration

Initialisation 11

Configure DMAs 11 11 11 11 11 11 11

Stream binary pixels to CCL 11 11 11 11 11 11 11

Provisional labelling 11 11 11 11 11 11 11

Send provisional labels to external memory 11 11 11 11 11 11 11

Configure DMAs 11 11 11 11 11 11 11

Stream provisional labels to CCL 11 11 11 11 11 11 11

Resolve collisions and produce final labels 11 11 11 11 11 11 11

Send final labels to external memory 11 11 11 11 11 11 11

Post-labelling 11 11 11 11 11 11 11

Configure DMAs 11 11 11 11 11 11 11

Stream binary pixels to CCL 11 11 11 11 11 11 11

Provisional labelling 11 11 11 11 11 11 11

Send provisional labels to external memory 11 11 11 11 11 11 11

Configure DMAs 11 11 11 11 11 11 11

Stream provisional labels to CCL 11 11 11 11 11 11 11

Resolve collisions and produce final labels 11 11 11 11 11 11 11

Send final labels to external memory 11 11 11 11 11 11 11

Post-labelling 11 11 11 11 11 11 11
t

Activity

Figure 2. Cont.

Electronics 2020, 9, 292 5 of 19
Electronics 2020, 9, x FOR PEER REVIEW 5 of 19

(b)

Figure 2. Activities as performed by (a) a conventional two-scan connected component labeling
(CCL), and (b) the new parallel CCL.

3. The Proposed Labeling Architecture

The novel labeling architecture here proposed is designed to scan the input image in raster order.
For simplicity, the case in which it elaborates couples of adjacent binary pixels to assign two adjacent
provisional labels contemporaneously is detailed below. However, the novel approach can support
even higher parallelism levels in accordance with the hardware platform used. As shown later,
collisions are managed on the fly and the labels equivalences are updated, preventing long collision
chains. In contrast to state-of-the-art two-scan methods, the novel approach is characterized by a
collision resolution step that is pattern-independent, thus being much faster than traditional
methods. Moreover, as illustrated in the activity diagram reported in Figure 2b, the provisional
labeling and the calculation of final labels are performed concurrently on different input data. By
comparing the activity diagrams in Figure 2, it is clear that the benefit attainable over a conventional
design in terms of computational time is quite significant. To achieve the above advantages, label
equivalences recognized during the provisional labeling are properly collected within two data
structures, namely the translator LUT (TL) and the equivalence memory (EM), which allow the
proposed architecture to operate in a pipeline fashion. At the end of the provisional labeling, the
equivalences recorded in EM are stored into a buffer memory (BUFF) within a time depending just
on the maximum number of labels (NLAB) manageable by the CCL architecture, as established at the
design time. As visible in Figure 2b, this operation overlaps with the one-DMA configuration. Then,
the buffer is read to assign the final correct labels, and, in the meantime, the next input image is
provisionally labeled.

In Section 3.1, the proposed approach is detailed. Some examples are provided for both the four-
connected and the eight-connected neighborhoods. For the latter, the further advantage of preventing
the presence of more than two colliding labels is also achieved.

3.1. The Basic Rules

The provisional labeling assigns the label zero to each background pixel within the input binary
image and associates with each foreground pixel P(i,j) the proper label depending on its
neighborhood. The proposed approach manages the three possible conditions occurring for a
foreground pixel as explained below.
1. If P(i,j) is surrounded by background pixels, it receives a new label Ln (with Ln = 1, …, NLAB − 1),

and this event is recorded in TL by storing TL(Ln) = Ln and, at the same time, EM(Ln) = Ln.

Initialisation 11
Configure DMAs 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

Stream binary pixels to CCL 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
Provisional labelling 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

Send provisional labels to external memory 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
Configure DMAs 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

Copy EM into BUFF X
Stream provisional labels to CCL 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

Resolve collisions and produce final labels 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
Send final labels to external memory 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

Stream binary pixels to CCL 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
Provisional labelling 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

Send provisional labels to external memory 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
Post-labelling

Configure DMAs 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
Copy EM into BUFF X

Stream provisional labels to CCL 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
Resolve collisions and produce final labels 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

Send final labels to external memory 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
Stream binary pixels to CCL 11 11

Provisional labelling 11 11
Send provisional labels to external memory 11 11

Post-labelling
t

Activity

X= Extra activities required
by the novel approach

Figure 2. Activities as performed by (a) a conventional two-scan connected component labeling (CCL),
and (b) the new parallel CCL.

3. The Proposed Labeling Architecture

The novel labeling architecture here proposed is designed to scan the input image in raster
order. For simplicity, the case in which it elaborates couples of adjacent binary pixels to assign two
adjacent provisional labels contemporaneously is detailed below. However, the novel approach can
support even higher parallelism levels in accordance with the hardware platform used. As shown
later, collisions are managed on the fly and the labels equivalences are updated, preventing long
collision chains. In contrast to state-of-the-art two-scan methods, the novel approach is characterized
by a collision resolution step that is pattern-independent, thus being much faster than traditional
methods. Moreover, as illustrated in the activity diagram reported in Figure 2b, the provisional labeling
and the calculation of final labels are performed concurrently on different input data. By comparing
the activity diagrams in Figure 2, it is clear that the benefit attainable over a conventional design in
terms of computational time is quite significant. To achieve the above advantages, label equivalences
recognized during the provisional labeling are properly collected within two data structures, namely
the translator LUT (TL) and the equivalence memory (EM), which allow the proposed architecture
to operate in a pipeline fashion. At the end of the provisional labeling, the equivalences recorded in
EM are stored into a buffer memory (BUFF) within a time depending just on the maximum number
of labels (NLAB) manageable by the CCL architecture, as established at the design time. As visible in
Figure 2b, this operation overlaps with the one-DMA configuration. Then, the buffer is read to assign
the final correct labels, and, in the meantime, the next input image is provisionally labeled.

In Section 3.1, the proposed approach is detailed. Some examples are provided for both the
four-connected and the eight-connected neighborhoods. For the latter, the further advantage of
preventing the presence of more than two colliding labels is also achieved.

3.1. The Basic Rules

The provisional labeling assigns the label zero to each background pixel within the input binary
image and associates with each foreground pixel P(i,j) the proper label depending on its neighborhood.
The proposed approach manages the three possible conditions occurring for a foreground pixel as
explained below.

1. If P(i,j) is surrounded by background pixels, it receives a new label Ln (with Ln = 1, . . . , NLAB − 1),
and this event is recorded in TL by storing TL(Ln) = Ln and, at the same time, EM(Ln) = Ln.

Electronics 2020, 9, 292 6 of 19

2. If the current neighborhood contains just one foreground pixel already labeled as Lx, then P(i,j) is
provisionally labeled with TL(TL(Lx)), without updating TL and EM.

3. If the neighbors are associated with two colliding labels Lu and Ll, P(i,j) is provisionally labeled
with Lmin = TL(min(TL(Lu),TL(Ll))). Moreover, the newly identified equivalence is recorded
in TL by storing TL(max(TL(Lu),TL(Ll))) = min(TL(Lu),TL(Ll)). At the same time, with Lmax =

TL(max(TL(Lu),TL(Ll))), the equivalences EM(Lmax) and EM(Lmin) are resumed to update EM by
storing both EM(EM(Lmax)) = EM(Lmin) and EM(Lu) = EM(Lmin).

It is worth noting that the above rules allow a label equivalence to be always immediately
propagated and complex chains of colliding labels to be prevented. More exactly, independently of the
processed frame, at the end of the provisional labeling, the annotated chains of collisions can never be
longer than two. To better explain how the proposed provisional labeling runs, let us suppose that
the binary image illustrated in Figure 3a, where foreground and background pixels are colored grey
and white, respectively, is being labeled referring to the four-connected neighborhood. The pixels
preceding P(4,6) are provisionally labeled as visible in Figure 3a by applying the rules above given
for cases 1 and 2. When pixel P(4,6) is reached, TL contains the information reported in Figure 3b.
The neighborhood of P(4,6) contains two foreground pixels associated with the colliding labels Ll = 3
and Lu = 2 that are yet to collide with other labels and, therefore, TL(TL(Ll)) = 3 and TL(TL(Lu)) = 2.
As ruled above for case 3, P(4,6) is provisionally labeled with TL(2) = 2, and TL is updated by storing
TL(3) = 2. Similar conditions occur for all the subsequent collisions highlighted with bold characters.
At the end of the image scan, TL contains the information reported in Figure 3c. The latter clearly shows
that, as expected, the most complex chains of colliding labels annotated during the provisional labeling
into TL are no longer than two. As an example, this is the case for the chains 8→7→1 (i.e., the label 8 is
equivalent to the label 7, which in turn is equivalent to the label 1), 3→2→1, and so on. During the
provisional labeling, EM also has to be initialized and updated. When the first collision is encountered
at the pixel P(4,6), since Lu = 2 and Ll = 3, Lmax = TL(3) = 3 and Lmin = TL(2) = 2. Therefore, as shown
in Figure 3d, EM is updated by storing EM(EM(3)) = 2 and EM(2) = 2. The need for also updating the
value EM(Lu) becomes clear upon analyzing the last collision occurring for the pixel P(8,10). When
it is reached, TL and EM contain the equivalences reported in Figure 3e and must be then updated.
Since Lu = 8, Ll = 1, Lmax = 7, and Lmin = 1, label 1 is written in both entries TL(7) and EM(EM(7)) =

EM(5), thus immediately propagating the newly recognized equivalence. By updating EM(Lu) with
EM(Lmin), i.e., making EM(8) equal to 1, the collision chain 8→7→5→1 is resolved on the fly and the
simple chain 8→1 is annotated in its place. At the end of the provisional labeling, EM contains the
labels equivalences visible in Figure 3f, with the longest collision chain being 7→5→1. This result
clearly differs from that achievable by the previously described traditional two-scan algorithm. Indeed,
when the latter is executed on the same benchmark image of Figure 3a, at the end of the provisional
labeling, the worst unresolved collisions chain is six equivalences long.

Now, let us consider the binary image illustrated in Figure 4a and let us suppose that it is being
labeled referring to the eight-connected neighborhood. The pixels preceding P(3,3) are provisionally
labeled as visible in Figure 4a. When the pixel P(3,3) is reached, TL and EM contain the information
reported in Figure 4b. The colliding labels Ll = 1 and Lu = 2 are yet to collide with other labels and,
therefore, TL(TL(Ll)) = 1 and TL(TL(Lu)) = 2. As ruled above for case 3, P(3,3) is provisionally labeled
with TL(1) = 1. Consequently, TL and EM are updated as shown in Figure 4c. When the pixel P(3,5) is
reached, the labels L1 = 1, L2 = 2, and L3 = 3 are within the neighborhood. However, since TL(2) = 1,
just the two labels Ll = 1 and Lu = 3 actually collide. Therefore, TL and EM are updated as illustrated
in Figure 4d. It is worth noting that, in this case, a conventional provisional labeling should manage
three colliding labels.

Electronics 2020, 9, 292 7 of 19

Electronics 2020, 9, x FOR PEER REVIEW 7 of 19

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 00 11 22 55 44 44 55 55 1 55
1 1 1
2 1 1 1 1
3 2 2 55 1
4 3 3 2 2 2 2 2 1
5 4 1 5 5
6 6 6 1 7 7 5
7 1 8 7 7 7 5
8 9 1 1 1 1 1 1 1 1 1 1

(a) (b)

Ln TL(Ln)
0 0
1 1
2 1
3 2
4 2
5 5
6 2
7 1
8 7
9 1

(c) (d)

(e) (f)

(g)

Figure 3. Example of CCL: (a) the input binary image; (b) content of translator LUT (TL) when P(4,6)
is reached; (c) content of TL at the end of the first scan; (d) content of equivalence memory (EM) when
P(4,6) is reached; (e) content of TL and EM when P(8,10) is reached; (f) content of EM at the end of
provisional labeling; (g) content of buffer memory (BUFF).

Ln TL(Ln)
0 0
1 1
2 2
3 3
4 -
5 -
6 -
7 -
8 -
9 -

Ln EM(Ln)
0 0
1 1
2 2
3 2
4 -
5 -
6 -
7 -
8 -
9 -

Ln TL(Ln) EM(Ln)
0 0 0
1 1 1
2 1 1
3 2 1
4 2 1
5 5 5
6 2 1
7 5 5
8 7 7
9 1 1

Ln EM(Ln)
0 0
1 1
2 1
3 1
4 1
5 1
6 1
7 5
8 1
9 1

Ln Buff(Ln)
0 0
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1

Figure 3. Example of CCL: (a) the input binary image; (b) content of translator LUT (TL) when P(4,6) is
reached; (c) content of TL at the end of the first scan; (d) content of equivalence memory (EM) when
P(4,6) is reached; (e) content of TL and EM when P(8,10) is reached; (f) content of EM at the end of
provisional labeling; (g) content of buffer memory (BUFF).

Electronics 2020, 9, 292 8 of 19

Electronics 2020, 9, x FOR PEER REVIEW 8 of 19

 00 1 2 3 4 5 6 7
0 1 11 22 55 44 44 55
1 1 2
2 1 2 3 3
3 1 1 1 1 1 1 22

Ln TL(Ln) EM(Ln)
0 0 0
1 1 1
2 2 2
3 3 3
4 - -

(a) (b)
Ln TL(Ln) EM(Ln)
0 0 0
1 1 1
2 1 1
3 3 3
4 - -

Ln TL(Ln) EM(Ln)
0 0 0
1 1 1
2 1 1
3 1 1
4 - -

(c) (d)
Ln Buff(Ln)
0 0
1 1
2 1
3 1
4 -

(e)

Figure 4. Example of CCL: (a) the input binary image; (b) content of TL and EM when P(3,3) is
reached; (c) content of TL and EM when P(3,5) is reached; (d) content of TL and EM at the end of
provisional labeling; (e) content of BUFF.

In order to improve the achievable throughput, the memory BUFF is exploited. It stores the final
equivalent labels obtained as EM(EM(Ln)), with Ln ranging from 0 to NLAB − 1. Figures 3g and 4e
illustrate its final content for the above examples. In this way, the second scan for the final labeling
of an input frame can be performed in parallel with the provisional labeling of the subsequent frame.

As discussed below, the above-described labeling strategy can also be parallelized, and multiple
labeled pixels can be output at each clock cycle. When two pixels are processed contemporaneously,
taking into account all the above considerations, it can be affirmed that the proposed parallel CCL
approach completes the connected component labeling over an n × m binary image within only n × m
+ NLAB clock cycles. × images are needed to perform the provisional labeling; NLAB cycles are

required to store the final equivalent labels in the memory BUFF; finally, × cycles are spent to
complete the final labeling. Consequently, a throughput close to two pixels per clock cycle is
expected.

Figure 5 illustrates benchmark images much more critical than that previously examined.
Patterns shown in Figure 5a,b contain complex single connected components with very long collision
chains. On the contrary, patterns depicted in Figure 5c,d require a high number of labels (NL) to be
assigned during the provisional labeling and/or a high number of collisions (NC) to be managed.

In general, for an n × m input image, NL is at most equal to × [2], while, when four-

connected neighborhoods are referenced, NC can be equal at most to × . However, these critical
conditions can occur only separately and in the presence of artificial images. As a nice side effect, the
novel parallel CCL approach allows reducing both NL and NC, thus allowing complex connected
components to be treated, restricting both depth and width of TL, EM, and BUFF.

Figure 4. Example of CCL: (a) the input binary image; (b) content of TL and EM when P(3,3) is reached;
(c) content of TL and EM when P(3,5) is reached; (d) content of TL and EM at the end of provisional
labeling; (e) content of BUFF.

In order to improve the achievable throughput, the memory BUFF is exploited. It stores the final
equivalent labels obtained as EM(EM(Ln)), with Ln ranging from 0 to NLAB − 1. Figures 3g and 4e
illustrate its final content for the above examples. In this way, the second scan for the final labeling of
an input frame can be performed in parallel with the provisional labeling of the subsequent frame.

As discussed below, the above-described labeling strategy can also be parallelized, and multiple
labeled pixels can be output at each clock cycle. When two pixels are processed contemporaneously,
taking into account all the above considerations, it can be affirmed that the proposed parallel CCL
approach completes the connected component labeling over an n ×m binary image within only n ×m +

NLAB clock cycles. n×m
2 images are needed to perform the provisional labeling; NLAB cycles are required

to store the final equivalent labels in the memory BUFF; finally, n×m
2 cycles are spent to complete the

final labeling. Consequently, a throughput close to two pixels per clock cycle is expected.
Figure 5 illustrates benchmark images much more critical than that previously examined. Patterns

shown in Figure 5a,b contain complex single connected components with very long collision chains.
On the contrary, patterns depicted in Figure 5c,d require a high number of labels (NL) to be assigned
during the provisional labeling and/or a high number of collisions (NC) to be managed.

In general, for an n × m input image, NL is at most equal to n
2 ×

m
2 [2], while, when four-connected

neighborhoods are referenced, NC can be equal at most to n × m
3 . However, these critical conditions can

occur only separately and in the presence of artificial images. As a nice side effect, the novel parallel
CCL approach allows reducing both NL and NC, thus allowing complex connected components to be
treated, restricting both depth and width of TL, EM, and BUFF.

Electronics 2020, 9, 292 9 of 19
Electronics 2020, 9, x FOR PEER REVIEW 9 of 19

(a) (b)

(c) (d)

Figure 5. Example of patterns that maximize (a,b) the length of collision chains, and (c,d) the number
of labels and/or collisions.

3.2. Introducing the Parallelism

As anticipated above, the proposed architecture is able to elaborate two adjacent input pixels
(P(i,j) and P(i,j + 1)) per clock cycle and to produce two labeled output pixels without requiring
irregular accesses to the external memory. To perform such a parallel action, the neighborhoods of
two adjacent input pixels illustrated in Figure 6 are processed concurrently. Obviously, if both P(i,j)
and P(i,j + 1) are background pixels, both output labels are set to zero. All other possible cases,
occurring within a four-connected neighborhood, are treated as shown in Table 1. There Lu1, Lu2,
and Ll are the provisional labels already assigned to the neighboring pixels; L(i,j) and L(i,j + 1) are the
two provisional labels currently assigned to the input pixels; finally, Update TL and Update EM are
the operations performed to update TL and EM, respectively.

It can be seen that, if P(i,j) is a background pixel, L(i,j) is certainly zeroed and L(i,j + 1) depends
on the label Lu2; thus, only cases 1 and 2, listed in Section 3.1, can occur around P(i,j + 1). On the
contrary, when P(i,j) and P(i,j + 1) are foreground and background pixels, respectively, a collision can
also take place. Even though, as illustrated in Figure 6a, the analyzed neighborhood contains three
labels, only two of them (i.e., the bolded and underlined ones in Table 1) can actually collide. In fact,
being adjacent, the labels Lu1 and Lu2 are either equal or they differ from each other with one of them
being zero, thus causing either case 3 or case 2 of Section 3.1 to occur. The same consideration can be
done for the cases in which both P(i,j) and P(i,j + 1) are foreground pixels.

By applying the proposed method to the benchmark pattern of Figure 3a, the resulting
provisionally labeled output appears quite different. It is depicted in Figure 7a, where different colors
are used to highlight couples of labels elaborated in parallel. It can be easily observed that, due to the
parallel action, the number NL of provisional labels used is seven instead of nine, and the number NC
of collisions encountered is six instead of eight. At the end of the provisional labeling, TL and EM
contain the information depicted in Figure 7b. The final labels are then collected in BUFF.

Table 2 collects the possible cases occurring when two adjacent eight-connected neighborhoods
are processed in parallel. In this case, the labels Lcl and Lcr are also taken into account, since, as
depicted in Figure 6b, they are associated with the pixels P(i − 1,j − 1) and P(i − 1,j + 2), respectively.
Moreover, the symbol x is used to indicate the “do not care” condition. It can be seen that, since the
labels equivalences recognized during the provisional labeling are immediately propagated, as
within two adjacent eight-connected neighbourhoods, at most two colliding labels can be
encountered.

Figure 5. Example of patterns that maximize (a,b) the length of collision chains, and (c,d) the number
of labels and/or collisions.

3.2. Introducing the Parallelism

As anticipated above, the proposed architecture is able to elaborate two adjacent input pixels
(P(i,j) and P(i,j + 1)) per clock cycle and to produce two labeled output pixels without requiring
irregular accesses to the external memory. To perform such a parallel action, the neighborhoods of two
adjacent input pixels illustrated in Figure 6 are processed concurrently. Obviously, if both P(i,j) and
P(i,j + 1) are background pixels, both output labels are set to zero. All other possible cases, occurring
within a four-connected neighborhood, are treated as shown in Table 1. There Lu1, Lu2, and Ll are the
provisional labels already assigned to the neighboring pixels; L(i,j) and L(i,j + 1) are the two provisional
labels currently assigned to the input pixels; finally, Update TL and Update EM are the operations
performed to update TL and EM, respectively.

It can be seen that, if P(i,j) is a background pixel, L(i,j) is certainly zeroed and L(i,j + 1) depends
on the label Lu2; thus, only cases 1 and 2, listed in Section 3.1, can occur around P(i,j + 1). On the
contrary, when P(i,j) and P(i,j + 1) are foreground and background pixels, respectively, a collision can
also take place. Even though, as illustrated in Figure 6a, the analyzed neighborhood contains three
labels, only two of them (i.e., the bolded and underlined ones in Table 1) can actually collide. In fact,
being adjacent, the labels Lu1 and Lu2 are either equal or they differ from each other with one of them
being zero, thus causing either case 3 or case 2 of Section 3.1 to occur. The same consideration can be
done for the cases in which both P(i,j) and P(i,j + 1) are foreground pixels.

By applying the proposed method to the benchmark pattern of Figure 3a, the resulting provisionally
labeled output appears quite different. It is depicted in Figure 7a, where different colors are used to
highlight couples of labels elaborated in parallel. It can be easily observed that, due to the parallel
action, the number NL of provisional labels used is seven instead of nine, and the number NC of
collisions encountered is six instead of eight. At the end of the provisional labeling, TL and EM contain
the information depicted in Figure 7b. The final labels are then collected in BUFF.

Table 2 collects the possible cases occurring when two adjacent eight-connected neighborhoods are
processed in parallel. In this case, the labels Lcl and Lcr are also taken into account, since, as depicted
in Figure 6b, they are associated with the pixels P(i − 1,j − 1) and P(i − 1,j + 2), respectively. Moreover,
the symbol x is used to indicate the “do not care” condition. It can be seen that, since the labels
equivalences recognized during the provisional labeling are immediately propagated, as within two
adjacent eight-connected neighbourhoods, at most two colliding labels can be encountered.

Electronics 2020, 9, 292 10 of 19
Electronics 2020, 9, x FOR PEER REVIEW 10 of 19

(a) (b)

Figure 6. The neighborhoods of two adjacent input pixels: (a) four-connected; (b) eight-connected.

Table 1. Rules to apply to four-connected neighborhoods for labeling two adjacent pixels in parallel.

P(i,j) P(i,j + 1) Ll Lu1 Lu2 L(i,j) L(i,j + 1) Update TL Update EM
0 1 0 0 0 0 NewLab TL(L(i,j + 1)) = NewLab EM(L(i,j + 1)) = NewLab
0 1 0 0 >0 0 TL(TL(Lu2)) - -
0 1 0 >0 0 0 NewLab TL(L(i,j + 1)) = NewLab EM(L(i,j + 1))=NewLab
0 1 0 >0 >0 0 TL(TL(Lu2)) - -
0 1 >0 0 0 0 NewLab TL(L(i,j + 1)) = NewLab EM(L(i,j + 1)) = NewLab
0 1 >0 0 >0 0 TL(TL(Lu2)) - -
0 1 >0 >0 0 0 NewLab TL(L(i,j + 1)) = NewLab EM(L(i,j + 1)) = NewLab
0 1 >0 >0 >0 0 TL(TL(Lu2)) - -
1 0 0 0 0 NewLab 0 TL(L(i,j)) = NewLab EM(L(i,j)) = NewLab
1 0 0 0 >0 NewLab 0 TL(L(i,j)) = NewLab EM(L(i,j)) = NewLab
1 0 0 >0 0 TL(TL(Lu1)) 0 - -
1 0 0 >0 >0 TL(TL(Lu1)) 0 - -
1 0 >0 0 0 TL(TL(Ll)) 0 - -
1 0 >0 0 >0 TL(TL(Ll)) 0 - -

1 0 >0 >0 0
TL(Min(TL(Ll),

TL(Lu1)))
0

TL(Max(TL(Ll),TL(Lu1)) =
Min(TL(Ll), TL(Lu1))

EM(EM(TL(Max(TL(Ll),TL(Lu1)))) =
EM(Min(TL(Ll), TL(Lu1)));

EM(Lu1) = EM(Min(TL(Ll), TL(Lu1)));

1 0 >0 >0 >0
TL(Min(TL(Ll),

TL(Lu1)))
0

TL(Max(TL(Ll),TL(Lu1)) =
Min(TL(Ll), TL(Lu1))

EM(EM(TL(Max(TL(Ll),TL(Lu1)))) =
EM(Min(TL(Ll), TL(Lu1)));

EM(Lu1) = EM(Min(TL(Ll), TL(Lu1)));
1 1 0 0 0 NewLab NewLab TL(L(i,j)) = NewLab EM(L(i,j)) = NewLab
1 1 0 0 >0 TL(TL(Lu2)) TL(TL(Lu2)) - -
1 1 0 >0 0 TL(TL(Lu1)) TL(TL(Lu1)) - -
1 1 0 >0 >0 TL(TL(Lu1)) TL(TL(Lu1)) - -
1 1 >0 0 0 TL(TL(Ll)) TL(TL(Ll)) - -

1 1 >0 0 >0 TL(Min(TL(Ll),
TL(Lu2)))

TL(Min(TL(Ll),
TL(Lu2)))

TL(Max(TL(Ll),TL(Lu2)) =
Min(TL(Ll),TL(Lu2))

EM(EM(TL(Max(TL(Ll),TL(Lu2)))) =
EM(Min(TL(Ll), TL(Lu2)));

EM(Lu2) = EM(Min(TL(Ll), TL(Lu2)));

1 1 >0 >0 0
TL(Min(TL(Ll),

TL(Lu1)))
TL(Min(TL(Ll),

TL(Lu1)))
TL(Max(TL(Ll),TL(Lu1)) =

Min(TL(Ll),TL(Lu1))

EM(EM(TL(Max(TL(Ll),TL(Lu1)))) =
EM(Min(TL(Ll), TL(Lu1)));

EM(Lu1) = EM(Min(TL(Ll), TL(Lu1)));

1 1 >0 >0 >0
TL(Min(TL(Ll),

TL(Lu1)))
TL(Min(TL(Ll),

TL(Lu1)))
TL(Max(TL(Ll),TL(Lu1)) =

Min(TL(Ll),TL(Lu1))

EM(EM(TL(Max(TL(Ll),TL(Lu1)))) =
EM(Min(TL(Ll), TL(Lu1)));

EM(Lu1) = EM(Min(TL(Ll), TL(Lu1)));

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 00 02 1 s1 02 2 3 1 4 4 4 7
1 1 1 00 9 1 1 9 9 1 1 9 1 1 9
2 00 1 1 2 a2 33 33 1 1 1 1 4 7
3 1 1 00 9 1 1 2 2 aa aa 1
4 3 3 2 2 2 2 1 1 6 6 8
5 4 1 5 5
6 6 1 1 7 7 5
7 1 7 7 7 7 5
8 1 1 1 1 1 1 1 1 1 1 1

(a) (b)

Figure 7. Example of parallel CCL: (a) the provisionally labeled image; (b) content of TL, EM, and
BUFF.

P(i,j) P(i,j + 1)

 Lu1 Lu2

 Ll

Lcl Lu1 Lu2 Lcr

Ll P(i,j) P(i,j + 1)

Ln TL(Ln)
0 0
1 1
2 1
3 2
4 2
5 1
6 2
7 1

Ln EM(Ln)
0 0
1 1
2 1
3 1
4 1
5 1
6 1
7 1

Ln BUFF(Ln)

0 0
1 1
2 1
3 1
4 1
5 1
6 1
7 1

Figure 6. The neighborhoods of two adjacent input pixels: (a) four-connected; (b) eight-connected.

Table 1. Rules to apply to four-connected neighborhoods for labeling two adjacent pixels in parallel.

P(i,j) P(i,j + 1) Ll Lu1 Lu2 L(i,j) L(i,j + 1) Update TL Update EM

0 1 0 0 0 0 NewLab TL(L(i,j + 1)) = NewLab EM(L(i,j + 1)) = NewLab
0 1 0 0 >0 0 TL(TL(Lu2)) - -
0 1 0 >0 0 0 NewLab TL(L(i,j + 1)) = NewLab EM(L(i,j + 1)) = NewLab
0 1 0 >0 >0 0 TL(TL(Lu2)) - -
0 1 >0 0 0 0 NewLab TL(L(i,j + 1)) = NewLab EM(L(i,j + 1)) = NewLab
0 1 >0 0 >0 0 TL(TL(Lu2)) - -
0 1 >0 >0 0 0 NewLab TL(L(i,j + 1)) = NewLab EM(L(i,j + 1)) = NewLab
0 1 >0 >0 >0 0 TL(TL(Lu2)) - -
1 0 0 0 0 NewLab 0 TL(L(i,j)) = NewLab EM(L(i,j)) = NewLab
1 0 0 0 >0 NewLab 0 TL(L(i,j)) = NewLab EM(L(i,j)) = NewLab
1 0 0 >0 0 TL(TL(Lu1)) 0 - -
1 0 0 >0 >0 TL(TL(Lu1)) 0 - -
1 0 >0 0 0 TL(TL(L1)) 0 - -
1 0 >0 0 >0 TL(TL(L1)) 0 - -

1 0 >0 >0 0 TL(Min(TL(Ll),
TL(Lu1))) 0 TL(Max(TL(Ll),TL(Lu1)) =

Min(TL(Ll), TL(Lu1))

EM(EM(TL(Max(TL(Ll),TL(Lu1)))) =
EM(Min(TL(Ll), TL(Lu1)));

EM(Lu1) = EM(Min(TL(Ll), TL(Lu1)));

1 0 >0 >0 >0 TL(Min(TL(Ll),
TL(Lu1))) 0 TL(Max(TL(Ll),TL(Lu1)) =

Min(TL(Ll), TL(Lu1))

EM(EM(TL(Max(TL(Ll),TL(Lu1)))) =
EM(Min(TL(Ll), TL(Lu1)));

EM(Lu1) = EM(Min(TL(Ll), TL(Lu1)));
1 1 0 0 0 NewLab NewLab TL(L(i,j)) = NewLab EM(L(i,j)) = NewLab
1 1 0 0 >0 TL(TL(Lu2)) TL(TL(Lu2)) - -
1 1 0 >0 0 TL(TL(Lu1)) TL(TL(Lu1)) - -
1 1 0 >0 >0 TL(TL(Lu1)) TL(TL(Lu1)) - -
1 1 >0 0 0 TL(TL(L1)) TL(TL(L1)) - -

1 1 >0 0 >0 TL(Min(TL(Ll),
TL(Lu2)))

TL(Min(TL(Ll),
TL(Lu2)))

TL(Max(TL(Ll),TL(Lu2)) =
Min(TL(Ll),TL(Lu2))

EM(EM(TL(Max(TL(Ll),TL(Lu2)))) =
EM(Min(TL(Ll), TL(Lu2)));

EM(Lu2) = EM(Min(TL(Ll), TL(Lu2)));

1 1 >0 >0 0 TL(Min(TL(Ll),
TL(Lu1)))

TL(Min(TL(Ll),
TL(Lu1)))

TL(Max(TL(Ll),TL(Lu1)) =
Min(TL(Ll),TL(Lu1))

EM(EM(TL(Max(TL(Ll),TL(Lu1)))) =
EM(Min(TL(Ll), TL(Lu1)));

EM(Lu1) = EM(Min(TL(Ll), TL(Lu1)));

1 1 >0 >0 >0 TL(Min(TL(Ll),
TL(Lu1)))

TL(Min(TL(Ll),
TL(Lu1)))

TL(Max(TL(Ll),TL(Lu1)) =
Min(TL(Ll),TL(Lu1))

EM(EM(TL(Max(TL(Ll),TL(Lu1)))) =
EM(Min(TL(Ll), TL(Lu1)));

EM(Lu1) = EM(Min(TL(Ll), TL(Lu1)));

Electronics 2020, 9, x FOR PEER REVIEW 10 of 19

(a) (b)

Figure 6. The neighborhoods of two adjacent input pixels: (a) four-connected; (b) eight-connected.

Table 1. Rules to apply to four-connected neighborhoods for labeling two adjacent pixels in parallel.

P(i,j) P(i,j + 1) Ll Lu1 Lu2 L(i,j) L(i,j + 1) Update TL Update EM
0 1 0 0 0 0 NewLab TL(L(i,j + 1)) = NewLab EM(L(i,j + 1)) = NewLab
0 1 0 0 >0 0 TL(TL(Lu2)) - -
0 1 0 >0 0 0 NewLab TL(L(i,j + 1)) = NewLab EM(L(i,j + 1))=NewLab
0 1 0 >0 >0 0 TL(TL(Lu2)) - -
0 1 >0 0 0 0 NewLab TL(L(i,j + 1)) = NewLab EM(L(i,j + 1)) = NewLab
0 1 >0 0 >0 0 TL(TL(Lu2)) - -
0 1 >0 >0 0 0 NewLab TL(L(i,j + 1)) = NewLab EM(L(i,j + 1)) = NewLab
0 1 >0 >0 >0 0 TL(TL(Lu2)) - -
1 0 0 0 0 NewLab 0 TL(L(i,j)) = NewLab EM(L(i,j)) = NewLab
1 0 0 0 >0 NewLab 0 TL(L(i,j)) = NewLab EM(L(i,j)) = NewLab
1 0 0 >0 0 TL(TL(Lu1)) 0 - -
1 0 0 >0 >0 TL(TL(Lu1)) 0 - -
1 0 >0 0 0 TL(TL(Ll)) 0 - -
1 0 >0 0 >0 TL(TL(Ll)) 0 - -

1 0 >0 >0 0
TL(Min(TL(Ll),

TL(Lu1)))
0

TL(Max(TL(Ll),TL(Lu1)) =
Min(TL(Ll), TL(Lu1))

EM(EM(TL(Max(TL(Ll),TL(Lu1)))) =
EM(Min(TL(Ll), TL(Lu1)));

EM(Lu1) = EM(Min(TL(Ll), TL(Lu1)));

1 0 >0 >0 >0
TL(Min(TL(Ll),

TL(Lu1)))
0

TL(Max(TL(Ll),TL(Lu1)) =
Min(TL(Ll), TL(Lu1))

EM(EM(TL(Max(TL(Ll),TL(Lu1)))) =
EM(Min(TL(Ll), TL(Lu1)));

EM(Lu1) = EM(Min(TL(Ll), TL(Lu1)));
1 1 0 0 0 NewLab NewLab TL(L(i,j)) = NewLab EM(L(i,j)) = NewLab
1 1 0 0 >0 TL(TL(Lu2)) TL(TL(Lu2)) - -
1 1 0 >0 0 TL(TL(Lu1)) TL(TL(Lu1)) - -
1 1 0 >0 >0 TL(TL(Lu1)) TL(TL(Lu1)) - -
1 1 >0 0 0 TL(TL(Ll)) TL(TL(Ll)) - -

1 1 >0 0 >0 TL(Min(TL(Ll),
TL(Lu2)))

TL(Min(TL(Ll),
TL(Lu2)))

TL(Max(TL(Ll),TL(Lu2)) =
Min(TL(Ll),TL(Lu2))

EM(EM(TL(Max(TL(Ll),TL(Lu2)))) =
EM(Min(TL(Ll), TL(Lu2)));

EM(Lu2) = EM(Min(TL(Ll), TL(Lu2)));

1 1 >0 >0 0
TL(Min(TL(Ll),

TL(Lu1)))
TL(Min(TL(Ll),

TL(Lu1)))
TL(Max(TL(Ll),TL(Lu1)) =

Min(TL(Ll),TL(Lu1))

EM(EM(TL(Max(TL(Ll),TL(Lu1)))) =
EM(Min(TL(Ll), TL(Lu1)));

EM(Lu1) = EM(Min(TL(Ll), TL(Lu1)));

1 1 >0 >0 >0
TL(Min(TL(Ll),

TL(Lu1)))
TL(Min(TL(Ll),

TL(Lu1)))
TL(Max(TL(Ll),TL(Lu1)) =

Min(TL(Ll),TL(Lu1))

EM(EM(TL(Max(TL(Ll),TL(Lu1)))) =
EM(Min(TL(Ll), TL(Lu1)));

EM(Lu1) = EM(Min(TL(Ll), TL(Lu1)));

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 00 02 1 s1 02 2 3 1 4 4 4 7
1 1 1 00 9 1 1 9 9 1 1 9 1 1 9
2 00 1 1 2 a2 33 33 1 1 1 1 4 7
3 1 1 00 9 1 1 2 2 aa aa 1
4 3 3 2 2 2 2 1 1 6 6 8
5 4 1 5 5
6 6 1 1 7 7 5
7 1 7 7 7 7 5
8 1 1 1 1 1 1 1 1 1 1 1

(a) (b)

Figure 7. Example of parallel CCL: (a) the provisionally labeled image; (b) content of TL, EM, and
BUFF.

P(i,j) P(i,j + 1)

 Lu1 Lu2

 Ll

Lcl Lu1 Lu2 Lcr

Ll P(i,j) P(i,j + 1)

Ln TL(Ln)
0 0
1 1
2 1
3 2
4 2
5 1
6 2
7 1

Ln EM(Ln)
0 0
1 1
2 1
3 1
4 1
5 1
6 1
7 1

Ln BUFF(Ln)

0 0
1 1
2 1
3 1
4 1
5 1
6 1
7 1

Figure 7. Example of parallel CCL: (a) the provisionally labeled image; (b) content of TL, EM, and BUFF.

Electronics 2020, 9, 292 11 of 19

Table 2. Rules to apply to 8-connected neighbourhoods for labelling two adjacent pixels in parallel.

P(i,j) P(i,j + 1) Ll Lcl Lu1 Lu2 Lcr L(i,j) L(i,j + 1) Update TL Update EM

0 1 x 0 x 0 0 0 NewLab TL(L(i,j + 1)) = NewLab EM(L(i,j + 1)) = NewLab
x 0 x >0 0 0 TL(TL(Lu2)) - -

0 1 x >0 0 0 0 0 NewLab TL(L(i,j + 1)) = NewLab EM(L(i,j + 1)) = NewLab
x >0 0 >0 0 0 TL(TL(Lu2)) - -
x >0 >0 x 0 0 TL(TL(Lu1)) - -

0 1 x x 0 0 >0 0 TL(TL(Lcr)) - -
x x x >0 >0 0 TL(TL(Lu2)) - -

x x >0 0 >0 0 TL(Min(TL(Lcr),
TL(Lu1)))

TL(Max((TL(Lcr),TL(Lu1)) =
Min(TL(Lcr), TL(Lu1))

EM(EM(TL(Max((TL(Lcr),TL(Lu1)))) =
EM(Min(TL(Lcr), TL(Lu1)));

1 0 0 0 0 x 0 NewLab 0 TL(L(i,j)) = NewLab EM(L(i,j)) = NewLab
x 0 >0 x 0 TL(TL(Lu1)) 0 - -

>0 0 0 x 0 TL(TL(L1)) 0 - -
1 0 x >0 0 0 0 TL(TL(Lcl)) 0 - -

x >0 >0 x 0 TL(TL(Lu1)) 0 - -

x >0 0 >0 0 TL(Min(TL(Lcl),
TL(Lu2))) 0 TL(Max(TL(Lcl),TL(Lu2)) =

Min(TL(Lcl), TL(Lu2))
EM(EM(TL(Max(TL(Lcl),TL(Lu2)))) =

EM(Min(TL(Lcl), TL(Lu2)));
1 0 0 0 0 0 >0 NewLab 0 TL(L(i,j)) = NewLab EM(L(i,j)) = NewLab

x 0 0 >0 >0 TL(TL(Lu2)) 0 - -
x 0 >0 x >0 TL(TL(Lu1)) 0 - -

>0 0 0 0 >0 TL(TL(L1)) 0 - -
1 0 x >0 x 0 >0 TL(TL(Lcl)) 0 - -

x >0 0 >0 >0 TL(Min(TL(Lcl),
TL(Lu2))) 0 TL(Max(TL(Lcl),TL(Lu2)) =

Min(TL(Lcl), TL(Lu2))
EM(EM(TL(Max(TL(Lcl),TL(Lu2)))) =

EM(Min(TL(Lcl), TL(Lu2)));
x >0 >0 >0 >0 TL(TL(Lu1)) 0 - -

1 1 0 0 0 0 0 NewLab NewLab TL(L(i,j)) = NewLab EM(L(i,j)) = NewLab
0 0 x >0 0 TL(TL(Lu2)) TL(TL(Lu2)) - -
0 0 >0 0 0 TL(TL(Lu1)) TL(TL(Lu1)) - -

>0 0 0 0 0 TL(TL(L1)) TL(TL(L1)) - -

>0 0 0 >0 0 TL(Min(TL(Ll),
TL(Lu2)))

TL(Min(TL(Ll),
TL(Lu2)))

TL(Max(TL(Ll),TL(Lu2)) =
Min(TL(Ll), TL(Lu2))

EM(EM(TL(Max(TL(Ll),TL(Lu2)))) =
EM(Min(TL(Ll), TL(Lu2)));

EM(Lu2) = EM(Min(TL(Ll), TL(Lu2)));
>0 0 >0 x 0 TL(TL(L1)) TL(TL(L1)) - -

1 1 x >0 0 0 0 TL(TL(Lcl)) TL(TL(Lcl)) - -
x >0 >0 x 0 TL(TL(Lu1)) TL(TL(Lu1)) - -

x >0 0 >0 0 TL(Min(TL(Lcl),
TL(Lu2)))

TL(Min(TL(Lcl),
TL(Lu2)))

TL(Max(TL(Lcl),TL(Lu2)) =
Min(TL(Lcl), TL(Lu2))

EM(EM(TL(Max(TL(Lcl),TL(Lu2)))) =
EM(Min(TL(Lcl), TL(Lu2)));

1 1 0 0 0 x >0 TL(TL(Lcr)) TL(TL(Lcr)) - -

>0 0 0 x >0 TL(Min(TL(Ll),
TL(Lcr)))

TL(Min(TL(Ll),
TL(Lcr)))

TL(Max(TL(Ll),TL(Lcr)) =
Min(TL(Ll), TL(Lcr))

EM(EM(TL(Max(TL(Ll),TL(Lcr)))) =
EM(Min(TL(Ll), TL(Lcr)));

EM(Lcr) = EM(Min(TL(Ll), TL(Lcr)));
0 0 x >0 >0 TL(TL(Lcr)) TL(TL(Lcr)) - -

x 0 >0 0 >0 TL(Min(TL(Lu1),
TL(Lcr)))

TL(Min(TL(Lu1),
TL(Lcr)))

TL(Max(TL(Lu1),TL(Lcr)) =
Min(TL(Lu1), TL(Lcr))

EM(EM(TL(Max(TL(Lu1),TL(Lcr)))) =
EM(Min(TL(Lu1), TL(Lcr)));

>0 0 >0 >0 >0 TL(TL(Lcr)) TL(TL(Lcr)) - -

4. The Hardware Architecture of the Novel Parallel Labeling Approach

This section presents a hardware accelerator purpose-designed to exploit the novel parallel
labeling method with four-connected neighborhoods. Figure 8 illustrates the top-level architecture of
the proposed parallel CCL core. The main computational modules PrLab and FinLab are responsible
for the provisional and the final labeling steps, respectively. The finite state machine (FSM) orchestrates
the overall running, by dispatching to the computational modules the proper control signals that,
based on the communication protocol adopted to manage input and output data transfers, validate
input and output data and flag that the incoming (out coming) datum is the last one, and so on.

Electronics 2020, 9, x FOR PEER REVIEW 12 of 19

Figure 8. Top-level architecture of the proposed hardware design.

In Figure 8, it is assumed that two pixels are processed contemporaneously. However, the
maximum parallelism level, exploitable without compromising the throughput actually achieved,
could be increased in accordance with the resources and the transfer capability provided by the used
realization platform. As an example, in the implementations carried out using the Xilinx XC7Z020
and XC7Z045 devices, the proposed design streams output at most two 10-bit labeled pixels paired
within a 20-bit word at each clock cycle (this happens when 1024 labels are handled). In this case, the
capability supported on-chip [34] to transfer data to/from the external memory would allow up to six
labeled pixels to be furnished in parallel at each clock cycle, achieving the maximum throughput rate.
Conversely, more than six labeled pixels would be packed within data words wider than 64-bit, thus
making multiple clock cycles necessary for each data transfer [34]. Obviously, this means that a
parallelism higher than six would not yield the expected benefits, since the actual throughput would
not be maximized. Similar considerations also apply to other hardware platforms.

The proposed architecture can be integrated as a custom accelerator within state-of-the-art
FPGA-based SoCs, like that depicted in Figure 1. In such an implementation platform, the binary
input image to be labeled is stored in the raster order within the off-chip memory. Each pixel is
accommodated in an 8-bit word memory location. Therefore, to accomplish the parallel input data
flow, two adjacent input pixels (i.e., two contiguous memory locations) have to be resumed per clock
cycle. For this purpose, a proper software configuration of the DMAs is necessary to set the input
data word to 16-bit. In a similar way, the DMAs can be configured to transfer toward the external
memory two adjacent labeled pixels packed within one 2 × 𝑛𝑏-bit word, with 𝑛𝑏 = ⌈𝑙𝑜𝑔 (𝑁)⌉)
and NLAB being the maximum number of manageable labels established at the design time. The two
adjacent labels are then automatically stored within contiguous memory locations.

The hardware architecture of the PrLab module includes the portion implementing the
translator LUT update and the equivalence memory management system illustrated in Figures 9 and
10, respectively. These circuits use a proper amount of registers (Regs) to execute their actions in a
pipeline fashion.

Both TL and EM exploit multiport memory banks with proper access policies. In fact, to comply
with the process described in Section 3.1, TL must sustain two read and one write accesses,
concurrently. Conversely, to update EM, two accesses in read mode and two in write mode are
needed. To support such an activity, EM consists of two mirror stages (EM1 and EM2). They share
the signals driving the read ports, while each one receives its own signals to drive the address write
ports.

To implement both TL and EM, distributed memory resources based on LUT primitives were
exploited. Indeed, they allow multiple asynchronous read and one synchronous write operations to
be performed in the same clock cycle [35]. Figure 9a sketches how the Very high-speed integrated
circuits Hardware Description Language (VHDL) code manages the multiple accesses to TL. It can
be seen that the read-first access policy is adopted to solve eventual read–write conflicts.

From Figure 9b, it can be seen that, with i being the currently scanned image row, the First-In
First-Out (FIFO) module is used to locally store the provisional labels already assigned to the pixels
belonging to the (i − 1)-th row, thus ensuring that the neighborhoods of the current input pixels P(i,j)

PrLab P(i,j + 1)

P(i,j)

L(i,j)

L(i,j + 1)
FinLab

FSM

FL(i,j)

FL(i,j + 1)

Protocol signals

Protocol signals for provisional labels
Protocol signals for final labels

PL(i,j) PL(i,j + 1)

Figure 8. Top-level architecture of the proposed hardware design.

Electronics 2020, 9, 292 12 of 19

In Figure 8, it is assumed that two pixels are processed contemporaneously. However, the maximum
parallelism level, exploitable without compromising the throughput actually achieved, could be
increased in accordance with the resources and the transfer capability provided by the used realization
platform. As an example, in the implementations carried out using the Xilinx XC7Z020 and XC7Z045
devices, the proposed design streams output at most two 10-bit labeled pixels paired within a 20-bit
word at each clock cycle (this happens when 1024 labels are handled). In this case, the capability
supported on-chip [34] to transfer data to/from the external memory would allow up to six labeled pixels
to be furnished in parallel at each clock cycle, achieving the maximum throughput rate. Conversely,
more than six labeled pixels would be packed within data words wider than 64-bit, thus making
multiple clock cycles necessary for each data transfer [34]. Obviously, this means that a parallelism
higher than six would not yield the expected benefits, since the actual throughput would not be
maximized. Similar considerations also apply to other hardware platforms.

The proposed architecture can be integrated as a custom accelerator within state-of-the-art
FPGA-based SoCs, like that depicted in Figure 1. In such an implementation platform, the binary
input image to be labeled is stored in the raster order within the off-chip memory. Each pixel is
accommodated in an 8-bit word memory location. Therefore, to accomplish the parallel input data
flow, two adjacent input pixels (i.e., two contiguous memory locations) have to be resumed per clock
cycle. For this purpose, a proper software configuration of the DMAs is necessary to set the input data
word to 16-bit. In a similar way, the DMAs can be configured to transfer toward the external memory
two adjacent labeled pixels packed within one 2 × nb-bit word, with nb = [log2(NLAB)]) and NLAB
being the maximum number of manageable labels established at the design time. The two adjacent
labels are then automatically stored within contiguous memory locations.

The hardware architecture of the PrLab module includes the portion implementing the translator
LUT update and the equivalence memory management system illustrated in Figures 9 and 10,
respectively. These circuits use a proper amount of registers (Regs) to execute their actions in a
pipeline fashion.

Both TL and EM exploit multiport memory banks with proper access policies. In fact, to comply
with the process described in Section 3.1, TL must sustain two read and one write accesses, concurrently.
Conversely, to update EM, two accesses in read mode and two in write mode are needed. To support
such an activity, EM consists of two mirror stages (EM1 and EM2). They share the signals driving the
read ports, while each one receives its own signals to drive the address write ports.

To implement both TL and EM, distributed memory resources based on LUT primitives were
exploited. Indeed, they allow multiple asynchronous read and one synchronous write operations to be
performed in the same clock cycle [35]. Figure 9a sketches how the Very high-speed integrated circuits
Hardware Description Language (VHDL) code manages the multiple accesses to TL. It can be seen that
the read-first access policy is adopted to solve eventual read–write conflicts.

From Figure 9b, it can be seen that, with i being the currently scanned image row, the First-In
First-Out (FIFO) module is used to locally store the provisional labels already assigned to the pixels
belonging to the (i − 1)-th row, thus ensuring that the neighborhoods of the current input pixels P(i,j)
and P(i,j + 1) are correctly formed. Since two adjacent pixels are processed in parallel, and then two
adjacent nb-bit provisional labels are assigned at the same time, the FIFO must stack m

2 × (2× nb)-bit
words. The modules SELECT label are used to exploit the property for which adjacent pixels are either
equally labeled or one of them is zero-labeled. Therefore, only Lu and Ll are actually processed instead
of the labels Lu1, Lu2, Ll1, and Ll2 (where Ll2 and Ll1 are the provisional labels assigned to P(i,j − 2)
and P(i,j − 1) at the previous step), thus removing redundant operations.

Electronics 2020, 9, 292 13 of 19

Electronics 2020, 9, x FOR PEER REVIEW 13 of 19

and P(i,j + 1) are correctly formed. Since two adjacent pixels are processed in parallel, and then two
adjacent nb-bit provisional labels are assigned at the same time, the FIFO must stack × (2 × 𝑛𝑏)-bit
words. The modules SELECT label are used to exploit the property for which adjacent pixels are
either equally labeled or one of them is zero-labeled. Therefore, only Lu and Ll are actually processed
instead of the labels Lu1, Lu2, Ll1, and Ll2 (where Ll2 and Ll1 are the provisional labels assigned to
P(i,j − 2) and P(i,j − 1) at the previous step), thus removing redundant operations.

(a)

(b)

Figure 9. The hardware architecture of the PrLab module: (a) VHDL code of TL; (b) the schematic.

Before being input to the decision logic, the provisional labels Lu and Ll are translated to
immediately exploit already known labels equivalences. In order to do this, Lu and Ll are used to
access TL through the read ports A and B. On the basis of the nb-bit label TL(Ll) and the previously
received pixels P(i,j − 1) and P(i,j − 2), the simple circuit M1 forms the two nb-bit translated labels
TL(Ll1) and TL(Ll2) that are delivered toward the FIFO and the decision logic module. In the case of
a collision, the minimum and maximum values min and max between TL(Lu) and TL(Ll) are computed
by the module update min/max. Then, they are used to update the labels equivalences through the
write port C. Conversely, when Ll is a new label, the module update min/max furnishes min = max,
thus storing TL(Ll) = Ll. Finally, the module recouple reconstructs the two nb-bit labels provisionally
assigned to the processed pixels on the basis of TL(dLl) and taking into account that adjacent labels

process(clk)
begin
 if(rising_edge(clk)) then
 if (WE ='1') then
 TL(to_integer(unsigned(AddrC)))<=DinC;
 end if;
 end if;
end process;

DoA<=TL(to_integer(unsigned(AddrA)));
DoB<=TL(to_integer(unsigned(AddrB)));
DoD<=TL(to_integer(unsigned(AddrD)));
DoE<=TL(to_integer(unsigned(AddrE)));
DoF <=TL(to_integer(unsigned(AddrF)));
AddrC<=max;

AddrC
DinC

AddrA DoA
AddrB DoB
AddrD DoD
AddrE DoE
AddrF DoF

 clk

WE

TRANSLATOR

LUT

max

P(i,j) P(i,j + 1)

 FIFO z
Lu1
Lu2

 SELECTz
 Labelz
 z
 SELECT
 Labelz

z

Ll2

Ll1

Lu

Ll l

AddrC
DinC

AddrA DoA

AddrB DoB

AddrD DoD

AddrE DoE
AddrF DoF

TRANSLATOR
 LUT

 Regz

TL(Lu)

TL(Ll)
Ll

TL(Ll1)

M1

dLl

DECISION L(i,j)
 LOGIC
 (Table I) L(i,j + 1)

P(i,j)

P(i,j + 1)
 Regg

 Regg

P(i,j − 2)

P(i,j − 1)

0
P(i,j − 1)

P(i,j − 2)

TL(Ll2)

Recouple

TL(dLl)
P(i,j − 2)

P(i,j − 1)

L(i,j)

L(i,j + 1)

max
min Regg

 Regg
Ll

 Update
 Min/Maxz

Lmax

Lmin

ddLu

TLLab

 Regg

 Regg

 Regg

 SELECT
 Min/Maxz

 Regg

 Regg

 Regg

 Regg

 Regg

 Regg

 Regg

 Regg

 Regg

Figure 9. The hardware architecture of the PrLab module: (a) VHDL code of TL; (b) the schematic.

Before being input to the decision logic, the provisional labels Lu and Ll are translated to
immediately exploit already known labels equivalences. In order to do this, Lu and Ll are used to
access TL through the read ports A and B. On the basis of the nb-bit label TL(Ll) and the previously
received pixels P(i,j − 1) and P(i,j − 2), the simple circuit M1 forms the two nb-bit translated labels
TL(Ll1) and TL(Ll2) that are delivered toward the FIFO and the decision logic module. In the case of a
collision, the minimum and maximum values min and max between TL(Lu) and TL(Ll) are computed
by the module update min/max. Then, they are used to update the labels equivalences through the
write port C. Conversely, when Ll is a new label, the module update min/max furnishes min = max,
thus storing TL(Ll) = Ll. Finally, the module recouple reconstructs the two nb-bit labels provisionally
assigned to the processed pixels on the basis of TL(dLl) and taking into account that adjacent labels
either are equal or differ, with one of them being zero. Conversely, the provisional label TLLab and
the labels Lmax, Lmin, and ddLu are forwarded to the subsequent module to initialize and update EM.
The provisional labels L(i,j) and L(i,j + 1) are delivered toward the external memory to be subsequently
uploaded for the final labeling.

Electronics 2020, 9, 292 14 of 19

Figure 10 illustrates the equivalence memory management circuit. When TLLab is a valid
propagated label assigned without encountering a collision, the values EM(Lmin) and EM(Lmax),
resumed through the ports A and B of EM1 and EM2, are made available as the signals minA and
minB, respectively. The ports B of both EM1 and EM2 are then used in write mode to set EM(Lmax) =

EM(Lmin) (i.e., EM(Lmax) is made equal to minA). However, since, in the above-examined case, TLLab
is not the result of a collision, Lmax and Lmin are certainly equal. Thus, the content of EM remains
unchanged. Otherwise, in the presence of a collision, Lmax and Lmin differ from each other. In this
case, the write operations performed through the ports B of EM1 and EM2 change the values stored in
the entries EM(Lmax) and EM(ddLu), respectively, thus actually updating EM as expected.

Electronics 2020, 9, x FOR PEER REVIEW 14 of 19

either are equal or differ, with one of them being zero. Conversely, the provisional label TLLab and
the labels Lmax, Lmin, and ddLu are forwarded to the subsequent module to initialize and update EM.
The provisional labels L(i,j) and L(i,j + 1) are delivered toward the external memory to be
subsequently uploaded for the final labeling.

Figure 10 illustrates the equivalence memory management circuit. When TLLab is a valid
propagated label assigned without encountering a collision, the values EM(Lmin) and EM(Lmax),
resumed through the ports A and B of EM1 and EM2, are made available as the signals minA and
minB, respectively. The ports B of both EM1 and EM2 are then used in write mode to set EM(Lmax) =
EM(Lmin) (i.e., EM(Lmax) is made equal to minA). However, since, in the above-examined case, TLLab
is not the result of a collision, Lmax and Lmin are certainly equal. Thus, the content of EM remains
unchanged. Otherwise, in the presence of a collision, Lmax and Lmin differ from each other. In this
case, the write operations performed through the ports B of EM1 and EM2 change the values stored
in the entries EM(Lmax) and EM(ddLu), respectively, thus actually updating EM as expected.

Figure 10. The hardware architecture of the equivalence memory EM.

At the end of the provisional labeling, EM is scanned, and the resolved equivalences are stored
within the buffer memory BUFF contained in the FinLab module depicted in Figure 11. The signal
AddrScan is used to access BUFF in write mode. As visible in Figure 10, the AddrScan signal reaches,
through M2, the ports A of EM1 and EM2 that are used in read mode to resume EM(AddrScan), which
is made available as the signal minA. The latter is then used to read EM1 and EM2 through the ports
C, thus uploading EM(EM(AddrScan)) on the signal minC.

When all the above steps are completed, the second scan that assigns the final labels to recognize
connected components is performed. During this phase, the FinLab module receives two adjacent
provisional labels PL(i,j) and PL(i,j + 1) in parallel as input and the module SELECT label simply
establishes which one must feed the address port for reading BUFF. The final labels FL(i,j) and FL(i,j
+ 1) are then provided by the module recouple that, on the basis of PL(i,j) and PL(i,j + 1), establishes
whether FL(i,j) and FL(i,j + 1) are equal or one of them is zero.

TLLab

Lmin AddrA DoA

DinB EM1

AddrB DoB

AddrC DoC

 SELECT
 Min

M2

Lmax
M2

AddrA DoA

DinB EM2

AddrB DoB

AddrC DoC

M3ddLu

 SELECT
 Min

 SELECT
 Min

DECISION
 LOGIC

EQUIVALENCE
MEMORY

dTLLab

minC

minB

AddrScan

M4

minA

EM(EM(AddrScan))

 Regg

 Regg

 Regg

Figure 10. The hardware architecture of the equivalence memory EM.

At the end of the provisional labeling, EM is scanned, and the resolved equivalences are stored
within the buffer memory BUFF contained in the FinLab module depicted in Figure 11. The signal
AddrScan is used to access BUFF in write mode. As visible in Figure 10, the AddrScan signal reaches,
through M2, the ports A of EM1 and EM2 that are used in read mode to resume EM(AddrScan), which
is made available as the signal minA. The latter is then used to read EM1 and EM2 through the ports C,
thus uploading EM(EM(AddrScan)) on the signal minC.

Electronics 2020, 9, x FOR PEER REVIEW 15 of 19

Figure 11. The FinLab module.

5. Results

The core of the above architecture was designed in VHDL. It was endowed with the auxiliary
circuitry required to comply with the AXI4 protocol [33]. Therefore, it can be directly included within
image processing embedded systems realized with state-of-the-art Xilinx [34] or Intel [36] FPGA-
based SoCs. Xilinx devices were chosen for the purpose of prototyping, and they are referenced
below.

Speed performances and resources requirements were analyzed for image sizes ranging from
640 × 480 to 2k × 2k with NLAB varying between 64 and 8192. Table 3 summarizes the obtained results
in comparison with state-of-the-art competitors. Several implementations were characterized on
various devices in terms of running frequency, number of pixels labeled per clock cycle (ppcc), frame
rate (fps), and resource requirements. For purposes of comparison, two specific implementations that
exploit the design principle demonstrated in Reference [18] were also realized and characterized.

Table 3. Comparison results.

Ref
n × m

Device NLAB MHz ppcc fps
LUTs

FFs RAM
(bits)

ResEFF
Logic RAM ShiftReg Total

[14] 1,2

640 × 480
XC4VLX160 4096 49.7 0.499 79.8 - - - 649 641

1142k +
560k 1.2

[30]

704 × 480
XC2VP100-6 - 140 1.387 574.4 - - - 3300 - 272k -

[22] 3

2k × 2k
EP1S25 1024 61.6 0.954 14.7 - - - 10k 400k 1.71

[29] 1,4

1280 × 720
0.35 um 4096 100 1.328 143.7 - - - 522 1434 9486k 0.57

[19] 1

1k × 1k XC6VLX240T - 185 ≤0.5 ≤88.21 - - - - - 108k -

[18]
640 × 480

XC7Z020 64 142.8 0.954 464.8 - - - 17,861 4964 0 0.054
XC7Z045 128 225 0.954 732 - - - 76,622 17,396 0 0.025

[15] 5
2k × 1.5k

XC7VX1140T 7156 300 ≤0.39 ≤39 - - - 1329 1076 2592k ≤1

New
640 × 480

XC7Z020 64 91.3 1.906 594.2 271 80 130 481 566 0.375k 3.93

XC7Z020 128 88.3 1.906 574.4 365 184 150 699 599 0.875k 5.40

XC7Z045 128 159.2 1.882 1036 382 184 150 716 599 0.875k 5.21
XC7Z020 256 79.3 1.904 515.4 470 432 170 1072 632 2k 7
XC7Z020 512 71.4 1.9 463.3 597 912 190 1699 665 4.5k 8.73
XC7Z020 1024 63.6 1.895 411.3 936 2080 210 3226 726 10k 9.14

New
2k × 2k

XC7Z020 64 97.3 1.908 46.4 288 80 416 784 1255 0.375k 2.41
XC7Z020 128 80.5 1.904 38.4 364 184 480 1028 1288 0.875k 3.67
XC7Z020 256 77.1 1.908 36.8 463 432 544 1439 1321 2k 5.24
XC7Z020 512 72.6 1.906 34.6 593 912 608 2113 1354 4.5k 7.08
XC7Z020 1024 63.6 1.906 30.3 936 2080 672 3688 1415 10k 8.07

New
2k × 1.5k XC7VX1140T 8192 73.2 1.902 46.4 6518 21,504 864 28,886 2469 104k 8.15

1 The referred implementation is a standalone design. 2 The additional 560 kbits of RAM are related
to 35 instances of the FIFO16 primitive. 3 The resources requirements are provided in terms of logic
elements and on-chip RAM. 4 The LUTs were estimated considering that one LUT4 corresponds to 15
equivalent gates [35]. 5 The achieved throughput and frame rate are pattern-dependent, and their
maximum values are reported.

Recouple FL(i,j + 1)

FL(i,j)

PL(i,j)
PL(i,j + 1)

PL(i,j) PL(i,j + 1)

SELECT Label

PLx

Addr DoA

 BUFF
DinA

AddrScan

EM(EM(AddrScan))

 Regg

 Regg

Figure 11. The FinLab module.

When all the above steps are completed, the second scan that assigns the final labels to recognize
connected components is performed. During this phase, the FinLab module receives two adjacent
provisional labels PL(i,j) and PL(i,j + 1) in parallel as input and the module SELECT label simply
establishes which one must feed the address port for reading BUFF. The final labels FL(i,j) and FL(i,j +

1) are then provided by the module recouple that, on the basis of PL(i,j) and PL(i,j + 1), establishes
whether FL(i,j) and FL(i,j + 1) are equal or one of them is zero.

Electronics 2020, 9, 292 15 of 19

5. Results

The core of the above architecture was designed in VHDL. It was endowed with the auxiliary
circuitry required to comply with the AXI4 protocol [33]. Therefore, it can be directly included within
image processing embedded systems realized with state-of-the-art Xilinx [34] or Intel [36] FPGA-based
SoCs. Xilinx devices were chosen for the purpose of prototyping, and they are referenced below.

Speed performances and resources requirements were analyzed for image sizes ranging from
640 × 480 to 2k × 2k with NLAB varying between 64 and 8192. Table 3 summarizes the obtained results
in comparison with state-of-the-art competitors. Several implementations were characterized on
various devices in terms of running frequency, number of pixels labeled per clock cycle (ppcc), frame
rate (fps), and resource requirements. For purposes of comparison, two specific implementations that
exploit the design principle demonstrated in Reference [18] were also realized and characterized.

Table 3. Comparison results.

Ref
n × m

Device NLAB MHz ppcc fps
LUTs

FFs
RAM
(bits)

ResEFF
Logic RAM ShiftReg Total

[14] 1,2

640 × 480
XC4VLX160 4096 49.7 0.499 79.8 - - - 649 641

1142k
+

560k
1.2

[30]
704 × 480 XC2VP100-6 - 140 1.387 574.4 - - - 3300 - 272k -

[22] 3

2k × 2k
EP1S25 1024 61.6 0.954 14.7 - - - 10k 400k 1.71

[29] 1,4

1280 × 720
0.35 um 4096 100 1.328 143.7 - - - 522 1434 9486k 0.57

[19] 1

1k × 1k
XC6VLX240T - 185 ≤0.5 ≤88.21 - - - - - 108k -

[18]
640 × 480

XC7Z020 64 142.8 0.954 464.8 - - - 17,861 4964 0 0.054
XC7Z045 128 225 0.954 732 - - - 76,622 17,396 0 0.025

[15] 5

2k × 1.5k
XC7VX1140T 7156 300 ≤0.39 ≤39 - - - 1329 1076 2592k ≤1

New
640 × 480

XC7Z020 64 91.3 1.906 594.2 271 80 130 481 566 0.375k 3.93
XC7Z020 128 88.3 1.906 574.4 365 184 150 699 599 0.875k 5.40
XC7Z045 128 159.2 1.882 1036 382 184 150 716 599 0.875k 5.21
XC7Z020 256 79.3 1.904 515.4 470 432 170 1072 632 2k 7
XC7Z020 512 71.4 1.9 463.3 597 912 190 1699 665 4.5k 8.73
XC7Z020 1024 63.6 1.895 411.3 936 2080 210 3226 726 10k 9.14

New
2k × 2k

XC7Z020 64 97.3 1.908 46.4 288 80 416 784 1255 0.375k 2.41
XC7Z020 128 80.5 1.904 38.4 364 184 480 1028 1288 0.875k 3.67
XC7Z020 256 77.1 1.908 36.8 463 432 544 1439 1321 2k 5.24
XC7Z020 512 72.6 1.906 34.6 593 912 608 2113 1354 4.5k 7.08
XC7Z020 1024 63.6 1.906 30.3 936 2080 672 3688 1415 10k 8.07

New
2k × 1.5k XC7VX1140T 8192 73.2 1.902 46.4 6518 21,504 864 28,886 2469 104k 8.15

1 The referred implementation is a standalone design. 2 The additional 560 kbits of RAM are related to 35 instances
of the FIFO16 primitive. 3 The resources requirements are provided in terms of logic elements and on-chip RAM.
4 The LUTs were estimated considering that one LUT4 corresponds to 15 equivalent gates [35]. 5 The achieved
throughput and frame rate are pattern-dependent, and their maximum values are reported.

As expected, even though the multiple asynchronous memory accesses performed per clock cycle
to update TL and EM limit the running frequency, the gain due to the parallel actions at both the
pixel and frame level allowed frame rates significantly higher than the referenced counterparts to be
achieved. This result was obtained with very limited resource requirements. From Table 3, it is easy to
verify that the requirement of on-chip RAM and the amount of LUTs configured either as logic or as
RAM only depend on NLAB. Conversely, the amounts of FFs and LUTs configured as shift registers
mainly depend on the input image size.

To fairly compare the various architectures, the resource efficiency metric ResEFF was evaluated,
as given in Equation (1) [6]. There, the amount of occupied logic resources (Res) is expressed in terms
of the kbits required to account the contributions of LUTs, FFs, and Block RAMs (BRAMs). It was
calculated considering that the Xilinx Series-7 and the Virtex-6 technologies provide six-input LUTs,

Electronics 2020, 9, 292 16 of 19

whereas Virtex-2, Virtex-4, and Stratix EP1S25 devices provide four-input LUTs. Obviously, a higher
ResEFF results in a more efficient circuit.

ResEFF =
NLAB × ppcc× 1024

Res
. (1)

Just as an example, let us compare the behavior of the design presented in Reference [22] with the
corresponding implementation proposed here and realized on the XC7Z020 device. Both operate on 2k
× 2k input images and manage 1024 labels. Despite a similar clock frequency, the novel design reaches
a frame rate more than double with respect to Reference [22], by using only 10 kbits of RAM instead of
the 400 kbits required in Reference [22]. Therefore, the corresponding ResEFF ratio is ~4.72.

For comparison with the system proposed in Reference [14], the novel CCL architecture was
prototyped using the same XC7VX1140T device for the input image resolution of 2k × 1.5k. The circuit
in Reference [15] manages at most 7156 labels, operates at the 300 MHz clock frequency, thus achieving
a maximum frame rate of ~39 fps, and requires 2592 kbits of RAM. The novel architecture runs at
73.2 MHz, achieves a frame rate ~19% higher than Reference [15], and requires only 104 kbits of RAM,
thus exhibiting a ResEFF more than eight times higher.

Similar conclusions can be drawn for other competitors. It is worth noting that some of them were
realized as standalone modules; thus, their figures do not account for auxiliary communication circuitry.

Several hardware tests performed using the ZedBoard prototyping board [37] confirmed the
correct running of the novel CCL accelerator. Post-implementation results show that, as an example,
with the hardware accelerator and the application software running at the 88 MHz and the 666 MHz
operating frequency, respectively, when NLAB = 128, a 640 × 480 input image is completely labeled
within less than 1.75 ms. In this case, the novel CCL accelerator dissipates only ~7.5 mW.

It is finally remarkable that the proposed CCL approach can be exploited to realize a hardware
accelerator compatible with the 4 K Ultra High Definition (4K/UHD) video stream. In this case,
a high-end platform, like the UltraScale+ [38] should be used to sustain the 60-fps frame rate. A draft
evaluation showed that, using the Xilinx Zynq UltraScale+ ZU3EG MPSoC device, the operating
frequency reached when NLAB = 8192 would be slightly higher than 150 MHz. Therefore, a parallelism
level equal to four would allow completely labeling a 3840 × 2160 input frame within only 13.8 ms,
which suffices to reach the target 60 fps.

To provide the reader with a “big picture”, the peculiar characteristics of some representative
one-scan CCA methods are also collected in Table 4. It can be seen that the architectures presented in
References [6] and [9] are able to extract the area (i.e., the number of pixels) of connected components
within the input image, whereas the designs proposed in References [7] and [8] provide their coordinates,
i.e., the bounding boxes (BBs). The referred CCA solutions support different number of manageable
labels, and they show different resource requirements and speed performances. The design presented
in Reference [8] achieves the highest frame rate, but it occupies a significant amount of hardware
resources to manage just 64 labels. On the other hand, the competitors manage more labels and achieve
appreciable speeds with reasonable resource occupancy.

Table 4. Characteristics of state-of-the-art one-scan implementations.

Reference
N × m

Device NLAB Feature MHz fps
LUTs

FFs RAM(bits)
Logic RAM ShiftReg Total

[6]
640 × 480 XC7Z020 256 Area 100 325.5 228 352 180 760 787 0

[7]
640 × 480 XC2V3000 320 BB 97.07 316 n.a. n.a. n.a. 654 227 92k

[8]
2k × 1k XC6VLX240T 64 BB 137.9 870.4 n.a. n.a. n.a. 42,792 17,376 2664k

[9]
640 × 480 XC2V6000 128 Area 40.63 105.8 1361 384 12 1757 600 72k

Electronics 2020, 9, 292 17 of 19

6. Conclusions

This paper presented a novel two-scan labeling approach, able to parallelize operations at both
pixel level and frame level, as well as its custom hardware architecture. The proposed design elaborates
two input binary pixels in parallel and provides two labeled pixels at once. Furthermore, to maximize
the achievable throughput, the custom architecture allows overlapping the two scans across consecutive
frames. Different implementation platforms, input image sizes, and number of treatable labels were
referenced for purposes of comparison with most relevant prior works. Obtained results demonstrated
that the proposed parallel CCL architecture can process up to 1.908 pixels per clock cycle, exhibiting a
resource efficiency at least 4.7 times higher than existing counterparts. The proposed CCL architecture
was accommodated within a complete heterogeneous embedded SoC processing high-resolution
images. The performed tests demonstrated that at least 30.3 frames are processed per second, thus
improving the frame rates achieved by state-of-the-art competitors, at a parity of image size, by ~51.5%.

Author Contributions: Conceptualization, S.P., F.S., and P.C.; formal analysis, S.P., F.S., and P.C.; investigation, S.P.,
F.S., and P.C.; writing—review and editing, S.P., F.S., and P.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Ronsen, C.; Denjiver, P.A. Connected Components in Binary Images: The Detection Problem; Research Studies
Press: New York, NY, USA, 1984.

2. He, L.; Ren, X.; Gao, Q.; Zhao, X.; Yao, B.; Chao, Y. The connected-component labelling problem: A review of
state-of-the-art algorithms. Pattern Recognit. 2017, 70, 25–43. [CrossRef]

3. Kong, B.Y.; Lee, J.; Park, I.C. A Low-Latency Multi-Touch Detector Based on Concurrent Processing of
Redesigned Overlap Split and Connected Component Analysis. IEEE Trans. Circ. Syst. I: Reg. Papers
2019, 1–11. [CrossRef]

4. He, Y.; Hu, T.; Zeng, D. Scan-Flood Fill (SCAFF): An Efficient Automatic Precise Region Filling Algorithm for
Complicated Regions. In Proceedings of the 2019 International Conference on Image Processing, Computer
Vision, and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019.

5. Hennequin, A.; Lacassagne, L.; Cabaret, L.; Meunier, Q. A new Direct Connected Component Labelling
and Analysis Algorithms for GPUs. In Proceedings of the 2018 Conference on Design and Architectures for
Signal and Image Processing, Porto, Portugal, 10–12 October 2018.

6. Spagnolo, F.; Perri, S.; Corsonello, P. An Efficient Hardware-Oriented Single-Pass Approach for Connected
Component Analysis. Sensors 2019, 19, 3055. [CrossRef] [PubMed]

7. Tang, J.W.; Shaikh-Husin, N.; Sheikh, U.U.; Marsono, M.N. A linked list run-length-based single-pass
connected component analysis for real-time embedded hardware. J. Real Time Image Process. 2018, 15, 197–215.
[CrossRef]

8. Klaiber, M.J.; Bailey, D.G.; Simon, S. A single-cycle parallel multi-slice connected components analysis
hardware architecture. J. Real Time Image Process. 2019, 16, 1165–1175. [CrossRef]

9. Ma, N.; Bailey, D.G.; Johnston, C.T. Optimised single pass connected components analysis. In Proceedings of
the International Conference on Computer and Electrical Engineering, Taipei, Taiwan, 8–10 December 2008.

10. Grana, C.; Borghesani, D.; Cucchiara, R. Optimized Block-based Connected Components Labelling with
Decision Trees. IEEE Transact. Image Process. 2010, 19, 1596–1609. [CrossRef] [PubMed]

11. Di Stefano, L.; Bulgarelli, A. A simple and efficient connected component labelling algorithm. In Proceedings
of the 10th International Conference on Image Analysis and Processing, Venice, Italy, 27–29 September 1999.

12. Zhao, C.; Duan, G.; Zheng, N. A Hardware-Efficient Method for Extracting Static Information of Connected
Component. J. Signal Process. Syst. 2017, 88, 55–65. [CrossRef]

13. Asano, T.; Buzer, L.; Bereg, S. A new algorithm framework for basic problems on binary image.
Discr. Appl. Mathem. 2017, 216, 376–392. [CrossRef]

http://dx.doi.org/10.1016/j.patcog.2017.04.018
http://dx.doi.org/10.1109/TCSI.2019.2946584
http://dx.doi.org/10.3390/s19143055
http://www.ncbi.nlm.nih.gov/pubmed/31373307
http://dx.doi.org/10.1007/s11554-016-0590-2
http://dx.doi.org/10.1007/s11554-016-0610-2
http://dx.doi.org/10.1109/TIP.2010.2044963
http://www.ncbi.nlm.nih.gov/pubmed/20227983
http://dx.doi.org/10.1007/s11265-016-1126-5
http://dx.doi.org/10.1016/j.dam.2016.02.025

Electronics 2020, 9, 292 18 of 19

14. Appiah, K.; Hunter, A.; Dickinson, P.; Meng, H. Accelerated hardware video object segmentation: From
foreground detection to connected components labelling. Comput. Vis. Image Underst. 2010, 114, 1282–1291.
[CrossRef]

15. Zhao, C.; Gao, W.; Nie, F. A Memory-Efficient Hardware Architecture for Connected Component Labelling
in Embedded System. IEEE Trans. Circ. Syst. Video Tech. 2019. [CrossRef]

16. Teich, J. Hardware/Software Codesign: The Past, the Present and Predicting the Future. Proc. IEEE 2012, 100,
1411–1430. [CrossRef]

17. Farhat, W.; Faiedg, H.; Souani, C.; Besbes, K. Real-time embedded system for traffic sign recognition based
on ZedBoard. J. Real Time Image Process. 2017, 1–11. [CrossRef]

18. Spagnolo, F.; Frustaci, F.; Perri, S.; Corsonello, P. An Efficient Connected Component Labelling Architecture
for Embedded Systems. J. Low Power Electron. Appl. 2018, 8, 7. [CrossRef]

19. Schwenk, K.; Huber, F. Connected Component Labelling Algorithm for very complex and high resolution
images on FPGA platform. Proc. SPIE 2015, 9646, 1–14.

20. Chang, F.; Chen, C.J. A component-labelling algorithm using contour tracing technique. Comput. Vis.
Image Underst. 2004, 93, 206–220. [CrossRef]

21. Hedberg, H.; Kristensen, F.; Owall, V. Implementation of a labelling algorithm based on contour tracing
with feature extraction. In Proceedings of the 2007 International Symposium on Circuits and Systems, New
Orleans, USA, 27–30 May 2007; pp. 1101–1104.

22. Ito, Y.; Nakano, K. Low-Latency Connected Component Labelling Using an FPGA. Int. J. Found. Comput. Sci.
2010, 21, 405–425. [CrossRef]

23. Appiah, K.; Hunter, A.; Dickinson, P.; Owens, J. A Run-Length Based Connected Component Algorithm for
FPGA Implementation. In Proceedings of the International Conference on Field Programmable Technology
(FTP 2008), Taipei, Taiwan, 7–10 December 2008; pp. 177–184.

24. Tekleyohannes, M.; Sadri, M.; Klein, M.; Siegrist, M. An Advanced Embedded Architecture for Connected
Component Analysis in Industrial Applications. In Proceedings of the 2017 Design, Automation & Test in
Europe Conference & Exhibition (DATE 2017), Lausanne, Switzerland, 27–31 March 2017; pp. 734–735.

25. Malik, A.W.; Thörnberg, B.; Cheng, X.; Lawal, N. Real-time Component Labelling with Centre of Gravity
Calculation on FPGA. In Proceedings of the Sixth International Conference on Systems (ICONS 2011),
St. Maarten, The Netherlands Antilles, 23–28 January 2011; pp. 39–43.

26. Ciarach, P.; Kowalczyk, M.; Przewlocka, D.; Kryjak, T. Real-Time FPGA Implementation of Connected
Component Labelling for a 4K Video Stream. In Proceedings of the International Symposium on Applied
Reconfigurable Computing (ARC2019), Dormstadt, Germany, 9–11 April 2019.

27. Chen, C.W.; Wu, Y.T.; Tseng, S.Y.; Wang, W.S. Parallelization of Connected-Component Labelling on TILE64
Many-Core Platform. J. Signal Process. Syst. 2014, 75, 169–183. [CrossRef]

28. Cabaret, L.; Lacassagne, L.; Etiemble, D. Parallel Light Speed Labelling and efficient connected component
algorithm for labelling and analysis on multi-core processors. J. Real Time Image Process. 2018, 15, 173–196.
[CrossRef]

29. Lin, C.Y.; Li, S.Y.; Tsai, T.H. A scalable parallel hardware architecture for Connected Component Labelling.
In Proceedings of the 2010 IEEE 17th International Conference on Image Processing, Hong Kong, China,
26–29 September 2010; pp. 3753–3756.

30. Flatt, H.; Blume, S.; Hesselbarth, S.; Schunemann, T.; Pirsch, P. A Parallel Hardware Architecture for Connected
Component Labelling Based on Fast Label Merging. In Proceedings of the International Conference on
Application-Specific Sytems, Architectures and Processors, Leuven, Belgium, 2–4 July 2008; pp. 144–149.

31. Yang, S.W.; Sheu, M.H.; Wu, H.H.; Chien, H.E.; Weng, P.K.; Wu, Y.Y. VLSI Architecture Design for a Fast
Parallel Label Assignment in Binary Image. In Proceedings of the 2005 International Symposium on Circuits
and Systems, Kobe, Japan, 23–26 May 2005; pp. 2393–2396.

32. HajiRassouliha, A.; Taberner, A.J.; Nash, M.P.; Nielsen, P.M.F. Suitability of recent hardware accelerators
(DSPs, FPGAs and GPUs) for computer vision and image processing algorithms. Sign. Proc. Image Commun.
2018, 68, 101–119. [CrossRef]

33. AMBA 4 AXI4, AXI4-Lite, and AXI4-Stream Protocol Assertions User Guide. Available online: http:
//infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022d/index.html (accessed on 18 December 2019).

34. Zynq-7000 SoC Technical Reference Manual UG585 (v1.12.2). 2018. Available online: https://www.xilinx.
com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf (accessed on 18 December 2019).

http://dx.doi.org/10.1016/j.cviu.2010.03.021
http://dx.doi.org/10.1109/TCSVT.2019.2937189
http://dx.doi.org/10.1109/JPROC.2011.2182009
http://dx.doi.org/10.1007/s11554-017-0689-0
http://dx.doi.org/10.3390/jlpea8010007
http://dx.doi.org/10.1016/j.cviu.2003.09.002
http://dx.doi.org/10.1142/S0129054110007337
http://dx.doi.org/10.1007/s11265-013-0780-0
http://dx.doi.org/10.1007/s11554-016-0574-2
http://dx.doi.org/10.1016/j.image.2018.07.007
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022d/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022d/index.html
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

Electronics 2020, 9, 292 19 of 19

35. 7 Series FPGAs Configurable Logic Block User Guide UG474 (v.1.8). 2016. Available online: www.xilinx.com
(accessed on 18 December 2019).

36. Arria 5/10 SoC FPGAs. Available online: www.intel.com (accessed on 18 December 2019).
37. ZedBoard (Zynq™Evaluation and Development) Hardware User’s Guide, Version 1.1. August 2012. Available

online: https://www.xilinx.com/products/boards-and-kits/1-elhabt.html (accessed on 18 December 2019).
38. UltraScale Architecture Configuration User’s Guide, UG570 Version 1.11. September 2019. Available online:

https://www.xilinx.com/support/documentation/user_guides/ (accessed on 20 January 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

www.xilinx.com
www.intel.com
https://www.xilinx.com/products/boards-and-kits/1-elhabt.html
https://www.xilinx.com/support/documentation/user_guides/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Works
	The Proposed Labeling Architecture
	The Basic Rules
	Introducing the Parallelism

	The Hardware Architecture of the Novel Parallel Labeling Approach
	Results
	Conclusions
	References

