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Abstract: A four-channel receiver front-end is designed and implemented for interference-
and jamming-robust global navigation satellite system (GNSS) in a 0.18-µm CMOS technology.
The front-end consists of four identical RF-to-IF signal paths including low-noise amplifiers (LNAs),
mixers and IF amplifiers. In addition, it also includes a phase-locked loop (PLL), which synthesizes the
local oscillator (LO) signal, and a serial peripheral interface (SPI) for parameter adjustment. To improve
the interference and jamming robustness, a novel linearity improvement technology and LO duty
cycle adjustment method are applied in LNA and mixer design, respectively. The receiver achieves a
gain of 40 dB, an input-referred third-order intercept point (IIP3) of −8 dBm and a jammer-to-signal
power ratio (JSR) of 72 dB under 1.8-V and 3.3-V supply, while occupying a 4 × 5 mm2 die area
including the electrostatic discharge (ESD) I/O pads.

Keywords: CMOS; GNSS; wide-range derivative superposition; duty cycle adjustment

1. Introduction

Global navigation satellite system (GNSS) has been utilized to provide the position, velocity and/or
time information in many applications such as aircraft navigation systems, automotive applications and
portable devices [1,2]. With the increasing requirement in position accuracy, coverage and reliability,
the front-end should be well designed to improve the performance of the GNSS receiver.

However, the main drawback for a conventional single-channel GNSS receiver is its poor
performance in a multipath environment [3], which may cause frequency-selective fading.
One promising way to solve this problem is to use multichannel structure. In addition, it may
also benefit from nearby interference cancellation and digital beamforming algorithms to further
suppress unwanted signals and increase the gain in the direction of the target satellites [4,5].

Moreover, the GNSS receiver is extremely vulnerable to various interference in the electromagnetic
environment, which may exceed the allowable signal level of the internal module, thus causing the
failure of positioning. Therefore, the gain is usually widely tunable in a traditional GNSS front-end so
as to suppress unwanted interference and jamming as well as to achieve an optimal signal amplitude
to enhance analog-to-digital converter (ADC) performance [6]. Two methods to control the gain of the
front-end are generally utilized in the state-of-the-art works, one of which is to control through serial
peripheral interface (SPI) manually [7], which is impractical in a commercial device, and the other is
to tune by automatic gain control (AGC) through feedback network automatically [6,8]. However,
the design procedure of AGC is rather complicated. Furthermore, although controlling the gain can
maintain the receiver function under strong interference and jamming, the performance is severely
sacrificed, causing inaccurate positioning analogous to terrible mobile communication under a harsh
environment. In order to obtain precise positioning under such an environment, the design of a GNSS
front-end with almost constant gain is proposed in [4] without sacrificing the performance when the
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power of the signal is much lower than the interference or jammer, scaled by the jammer-to-signal
power ratio (JSR). However, the JSR in [4] remains to be improved.

This manuscript describes the design and implementation of a four-channel GNSS front-end
in a 0.18-µm standard CMOS process with a new linearity improvement technique applied in the
low-noise amplifier (LNA) and with a novel local oscillator (LO) duty cycle adjustment method for a
voltage-driven passive mixer in order to obtain better performance under strong in-band interference
and jamming. Section 2 begins with describing the architecture and system design consideration of
the front-end. Section 3 then presents the circuit implementations in detail. Experimental results are
provided in Section 4, and the manuscript concludes with a summary in Section 5.

2. System Architecture

A detailed block diagram of the four-channel CMOS GNSS receiver is shown in Figure 1.
Each channel of the RF front-end is composed of an off-chip LNA (modeling the GaAs LNA in the
antenna), an off-chip Balun, an on-chip LNA, an off-chip image-rejection filter, a down-conversion
mixer and an IF amplifier (IFA). Two-stage LNA, mixer, IFA of four channels and a PLL are integrated
on a single chip. The received RF signal is first amplified by the two-stage LNA. After filtering by
the image-rejection filter, the signal is down-converted to the IF frequency by the mixer and then
amplified by the IFA. The output of the IFA is capable of driving an ADC with high input impedance.
PLL provides four-channel LO signals for down-conversion. The bandgap reference (BGR) is applied
for independent bias current and voltage required by each module of the system. Parameter adjustment
is achieved by the SPI. An off-chip filter for image rejection of the RF band is employed for each channel,
since an on-chip filter with such high image rejection ratio while meeting a bandwidth requirement
can hardly be implemented for the specific application. The input impedance and output impedance
are both matching to 100 Ω.
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Figure 1. Diagram of the four-channel CMOS global navigation satellite system (GNSS) receiver.

Considering the limited transmitting power of the navigation satellite and the high propagation
loss in space, the input power of the receiver is about −130 dBm [9–11]. The purpose of this work is to
implement an RF front-end that can operate under a maximum in-band interference about −60 dBm,
which corresponds to a JSR of 70 dB. Since the final output power of the receiver front-end has upper
limits, when a strong interference signal enters the receiver, excessive gain will result in output power
saturation. Besides, the extra high-order terms of the interference generated by the nonlinearity of the
RF front-end further deteriorate the receiver performance. Thus, these extra higher-order terms should
not be greater than the equivalent output noise floor of the RF front-end.
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Due to the high dynamic range performance and the requirement to withstand strong interference,
the receiver needs to achieve a low noise figure and a high output third-order intermodulation
distortion (IMD3) with limited gain. In order to make full use of the dynamic range of ADC when
strong interference exists, it is desired to have the ADC operating at full scale, which requires the
output signal range of the IFA to be as large as possible. The corresponding output third-order intercept
point (OIP3) should be considered under the condition of high output power.

3. Circuit Implementations

3.1. LNA

A two-stage LNA with a novel linearity improving method is proposed in this design. The relation
between drain current and gate source voltage of a transistor can be written as id = g1vgs + g2vgs

2 +

g3vgs
3, where g1 and gn (n > 1) stand for the transconductance and the nth order nonlinear coefficient,

respectively. The principle of derivative superposition (DS) technology is to place two or more
transistors in parallel and cancel the third-order derivation with each other to improve the linearity.

Conventional linearization methods are usually applied to improve the small-signal linearity
performance. Figure 2a shows the basic schematic of the conventional derivative superposition
technology [12] with two transistors in parallel, one of which works in weak-inversion region for g3

compensation. However, the total g3 will only approach or equal zero in a narrow region. When the
input power increases, the amplitude of the signal applied to the gates of Mmain and MC will exceed g3

compensation region, which means that large-signal nonlinearity may not be improved.
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Figure 2. The derivative superposition technology with two transistors in parallel. (a) Conventional.
(b) Proposed.

In order to make LNA maintain good linearity under high input power, and allow strong
interference signal to enter LNA, the conventional method of DS cancellation is optimized. Two regions
of g3 curves are chosen, instead of only positive and negative peaks, so that the g3 curve can off-set to
zero within a wide range. To extend the g3 cancellation region, a capacitor CC is added to adjust the
slope of g3 curve of the compensation transistor MC, as shown in Figure 2b. By carefully optimizing
CC, the IMD3 will dramatically increase [13].

The schematic of the proposed LNA is shown in Figure 3. Differential architecture is applied
for better rejection of on-chip interference [14]. The main consideration is noise performance for the
first stage and linearity for the second stage for a typical two-stage LNA. Therefore, the first stage
uses an inductively degenerated cascode stage with fixed gain and input matching performed on-chip.
The second stage uses a cascode amplifier with the wide-range DS technology to further improve
the linearity.
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Figure 3. Circuit-level description of the designed two-stage low-noise amplifier (LNA).

3.2. Mixer

As shown in Figure 4a, a voltage-mode double-balanced passive mixer is applied for better
linearity, power consumption and chip size, considering the requirements of GNSS front-end [15].
In addition, there is no DC current through the switches so that there is no 1/f noise [14]. The LNA
output is coupled to the RF ports of the mixer through a capacitor, and each pair of the four transistors
serves the function of connecting IF ports to the RF ports. M1 and M4 work together and are controlled
by the LO signal generated from the PLL, while M2 and M3 are controlled by the inverse of the LO
signal. A new LO waveform optimization method for a voltage-driven passive mixer is proposed.
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circuit. (c) Thevenin equivalent circuit.

A brief analysis of the double-balanced passive mixer using time-varying conductance equivalent
circuit and Thevenin equivalent circuit shown in Figure 4 is illustrated in [14]. The Thevenin equivalent
voltage vT(t) and Thevenin equivalent impedance gT(t) can be derived using Equations (1) and (2):

vT(t) =
g(t) − g(t− TLO/2)
g(t) + g(t− TLO/2)

vr f (t) = m(t)vr f (t), (1)

gT(t) =
g(t) + g(t− TLO/2)

2
, (2)

where m(t) represents the mixing function, vrf(t) represents the RF port’s voltage, TLO is the time period
of LO signal. Thus, the IF output can be expressed as:

vi f (t) =
ZLgT(t)

ZLgT(t) + 1
m(t)vr f (t), (3)

The following qualitative analysis in [10] is based on the assumption that gTZL << 1, which is
typical for a current-driven passive mixer, where gT is the average transconductance in one cycle
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of gT(t). In contrast, for a voltage-driven passive mixer, when the load capacitance is less than 1pF,
gTZL >> 1 is valid. Under such circumstance, Equation (3) can be simplifed as:

vi f (t) = m(t)vr f (t), (4)

where m(t) can be considered as the conversion gain.
According to the relationship between the overlapping-point voltage Vip of differential LO

waveform and transistor threshold voltage Vth, g(t) and gT(t) are shown in Figure 5a. gT(t) is greater
than or equal to zero in any period, especially when Vip > Vth, which will have a higher value. At the
same time, a higher g(t) can be achieved by increasing the W/L ratio of the transistor in order to obtain
a larger and more stable gT(t).

The constant γ = (Vth − Vip)/ALO is introduced here to represent DC bias of the mixer, where
Vip = VLO – vrf, and ALO is the LO amplitude. Under different overlapping-point voltage, there is a
relationship between m(t) and γ as shown in Figure 5b.
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For a square-wave LO, if the amplitude is large enough, regardless of the duty cycle, the mixer gain
will not change with the amplitude of input signal. Therefore, the linearity of the passive mixer driven
by square-wave LO is ideal. However, the amplitude of the input RF signal can no longer be ignored
for a sinusoidal-wave LO. The mixer may switch between three working states: overlapping-point
voltage is greater than, equal to or less than the transistor threshold voltage. Taylor series expansion
can be further carried out for m(t) under different regions of γ, and the first and third order coefficients
as well as their ratio are calculated. When −1 ≤ γ < 0, the passive mixer will get the best third-order
intercept point. Since γ = (Vth − Vip)/ALO, increasing the LO amplitude can weaken the change of γ
with respect to vrf and improve the gain stability, which indicates better linearity. On the other hand,
by properly setting the overlapping-point voltage Vip, γ can be kept in the range of −1 ≤ γ < 0 under
any voltage range of RF signal, so as to improve the linearity of mixer. Therefore, the proposed LO
driving circuit is able to output full-scale signal with large duty cycle to minimize the change of the
passive mixer gain.

3.3. IFA

As shown in Figure 1, the differential output of the mixer drives the IFA directly. As the distance
between the satellite and receiver is far enough, a wide-range variable gain amplifier is not necessary
here because the movement of signal source may have little influence on the signal power. As the last
stage of the front-end, linearity is indispensable in the IFA design because of its significant influence
on the linearity performance of the whole system.



Electronics 2020, 9, 291 6 of 11

The IFA consists of two stages, as shown in Figure 6. The input stage uses a transconductance
amplifier to convert voltage signal to current signal, as shown in Figure 7. Because the impedance
of PMOS transistor is much higher than an on-chip LC tank operating at intermediate frequency, M5

and M6 are used here as the load so that all the output current is fed into the second stage in order to
improve the linearity performance [16]. R9 and R10 are utilized as source degeneration so as to further
improve linearity.
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The output stage, as shown in Figure 6, is a two-stage amplifier with RC feedback, which consists
of a traditional differential amplifier and a class-A push-pull amplifier to enhance linearity performance,
as shown in Figure 8. The output of the IFA is capable to drive an ADC with high input impedance.
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push–pull amplifier of the second stage.

3.4. PLL

An integer-N PLL is implemented in the front-end in order to generate the LO signals for 1.2 GHz
frequency band as shown in Figure 9, which includes a phase-frequency detector (PFD), a charge pump,
a second-order loop filter, an LC voltage-controlled oscillator (VCO) with current-mode logic (CML)
buffer, a divider chain with a differential to single-ended converter (D2C), a single-modulus counter
divider and a multimodulus pulse-swallow divider. The reference frequency is 2 MHz. The loop
bandwidth is designed to be 100 kHz.
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4. Measurement Results

The four-channel GNSS front-end is fabricated in a 0.18-µm CMOS technology, and the die
microphotograph is shown in Figure 10. The total chip occupies an area of 4 × 5 mm2, including pads.

The chip has been packaged using a standard 80-pin quad-flat no-leads (QFN) package and
mounted on a test board. The RF input is matched with S11 better than −16 dB. The measured phase
noise using spectrum analyzer is shown in Figure 11, which is about −126.26 dBc/Hz at 1 MHz
frequency offset.

The measured maximum voltage gain of the front-end is about 40 dB with 0.14 dB gain ripple for
four channels as shown in Figure 12. The linearity of the front-end is measured with a two-tone IP3
test as shown in Figure 13. The input-referred IIP3 is better than −8 dBm.
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An off-chip LNA with a gain of 18 dB is applied to model the GaAs LNA in the antenna. The input
noise floor can be calculated as −100 dBm using kTB approximately. Since the total gain of the off-chip
LNA and front-end is 58 dB, the noise floor before ADC is −42 dBm. As shown in Figure 12, the
third-order intermodulation is 42 dBc when the output is 0 dBm to make sure that the third-order
harmonic of interference is lower than noise floor. The in-band interference before ADC should be
0 dBm, resulting in a −58 dBm interference for the whole receiver. Generally, the input power of
the receiver is about −130 dBm. Thus, the jammer-to-signal power ratio (JSR) is derived as 72 dB.
Table 1 summarizes the performances of the proposed GNSS receiver and compares it with the
state-of-the-art designs.

Table 1. Comparison with previous works.

This Work [4] [6] [17] [18]

Process (nm) 180 180 180 130 130
Number of Channels 4 4 2 1 1

Frequency (GHz) 1.2 1.57 1.2/1.57 1.57 1.575
Supply (V) 1.8/3.3 1.8/3.3 1.8 1.2 0.25 0.3 0.4
Gain (dB) 40 * 83 110 * 36 * 41.8 42.2 42.5

P-1dB (dBm) −18 −73.5 −42/−39 −31 −48 −47 −45.7
IIP3 (dBm) −8 − − −19 −35.8 −35.2 −34

Phase noise at 1 MHz (dBc/Hz) −126.26 −107 −122/−124 −104 −112.4 −112.5 −113.8
S11 (dB) −16 − −13/−12 <−10 <−10
JSR (dB) 72 45 − − −

Area (mm2) 20 25 2.4 1.5 5.76

* Voltage gain.

5. Conclusions

A four-channel interference-robust GNSS front-end is presented in this manuscript. The proposed
GNSS front-end is implemented in a 0.18-µm CMOS technology with the chip area of 4 × 5 mm2. A new
wide-range derivative superposition technique is proposed for better LNA linearity—An LO waveform
design method is applied to the voltage-driven passive mixer in order to further improve the linearity
performance of the front-end. The proposed RF front-end achieves a gain of 40 dB, an IIP3 better
than −8 dBm, an input S-parameter (S11) better than −16 dB and a phase noise of the on-chip PLL of
about −126.26 dBc/Hz at 1 MHz frequency offset from a 1.8/3.3 V power supply. The jammer-to-signal
power ratio is up to 72 dB. The proposed front-end can work under strong interference and jamming
environments and can be utilized to make a complete GNSS receiver system combined with ADC
and digital signal processor (DSP), which can be integrated into portable and wearable devices for
satellite navigation.
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