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Abstract: Improving the accuracy of very-short-term (VST) photovoltaic (PV) power generation
prediction can effectively enhance the quality of operational scheduling of PV power plants, and
provide a reference for PV maintenance and emergency response. In this paper, the effects of different
meteorological factors on PV power generation as well as the degree of impact at different time periods
are analyzed. Secondly, according to the characteristics of radiation coordinate, a simple radiation
classification coordinate (RCC) method is proposed to classify and select similar time periods. Based
on the characteristics of PV power time-series, the selected similar time period dataset (include power
output and multivariate meteorological factors data) is reconstructed as the training dataset. Then,
the long short-term memory (LSTM) recurrent neural network is applied as the learning network
of the proposed model. The proposed model is tested on two independent PV systems from the
Desert Knowledge Australia Solar Centre (DKASC) PV data. The proposed model achieving mean
absolute percentage error of 2.74–7.25%, and according to four error metrics, the results show that the
robustness and accuracy of the RCC-LSTM model are better than the other four comparison models.

Keywords: photovoltaic power generation; long short-term memory; very short-term Power
prediction; similarity time period

1. Introduction

Developing renewable energy can effectively reduce dependence on fossil energy and other
burning energy sources, thereby improving the world’s energy and economic security [1,2]. Thus,
the importance of developing new energy sources is increasingly prominent [3,4]. Due to its clean,
safe, and sustainable characteristics, photovoltaic (PV) power generation is still receiving continuous
attention worldwide. PV technology has been improved in material [5] and maintenance strategy [6,7]
in recent years. According to the latest data [8], the global installed capacity of new PV has reached
100 GW in 2018, accumulated to 505 GW. Among them, the newly installed capacity of PV in China,
US, Japan and Germany reached 45 GW, 10.6 GW, 6.5 GW, and 3.0 GW, respectively. However, due
to the power output of the PV power generation system is largely affected by environmental factors,
the economic benefits of the PV plant depend on the flexibility of PV power systems [9]. In order to
improve the flexibility of the demand side and supply side in the PV market, increasing the resolution
and accuracy of PV Power generation predictions becomes critical and urgent [10].
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When there is a high penetration level of PV power energy, the fluctuations caused by PV power
energy and flexible loads degrade the frequency performance of modern power systems [11]. While
the predicting technology related to PV energy can not only provide a reference for the price of
electricity for a PV plant [12], as well as cooperate with power grid dispatching and power load
distribution [13,14], it could also help for the scientific planning and operation of the entire power
system. Nottrott et al. [15] developed a linear programming routine to optimize the energy storage
dispatch schedule for a grid-connected, which is based on PV power and load forecasting. In addition,
Shibani Ghosh et al. propose a local voltage regulation technique that adaptively changes real/reactive
injection/absorption from the PV inverter. This method is based on 15-s PV generation forecasting to
prevent distribution overvoltage [16].

Over the past decade, various technologies for PV generation forecasting have been presented,
which can be roughly separated into physical modeling approaches and data-driven models [17].
The traditional physical modeling approaches focus on studying equivalent circuits of PV cells. And
then deriving the power output based on numerical weather prediction input parameters (includes
temperature, humidity, and global radiation among others) [18]. This kind of method can be applied
to different time scales PV generation forecasting. However, the physical method involves complex
calculations and requires numerous circuit parameters (includes series, shunt resistors, various
temperature coefficients and diode influence factors). Therefore, it’s hard to ensure robustness due to
the diversity of parameters among different power stations, which obstructs the development of the
physical PV forecasting method. On the other hand, the data-driven models have greater feasibility
than the physical method own to the advantages given by artificial intelligence methods, they are now
widely used in different forecasting applications.

According to the raw data used, the data-driven models can be divided into three types: time-series,
sky imaging, and numerical weather prediction (NWP). The time-series models are dependent on
long-term historical data, which are usually applied in long-term or medium-term PV power forecasting.
The most commonly used model is linear models based on the auto-regressive (AR) method which is
simple but inflexible. Li and Su employ the auto-regressive integrated moving average (ARIMA) model
to estimate monthly solar radiation based on the measured radiation and temperatures dataset [19].
In addition, in [20], a partially functional linear regression model (PFLRM) for predicting the daily
production of a PV system is proposed. Furthermore, there are also some nonlinear methods based
on time-series. For example, in [21], based on the historical time-series data-set, the traditional ANN
and support vector regression (SVR) are employed to improves prediction accuracy at a 24-h scale.
Furthermore, in [22], an adaptive learning hybrid model (ALHM) model combine meteorological data
is applied to improve the accuracy of long-term prediction of solar intensity. Compared to the linear
methods, the nonlinear approaches can notably improve the accuracy of forecasting since the ability of
adaptability and self-update.

Moreover, owing to the development of image technology, both the sky imaging methods and
satellite monitoring techniques are applied to the field of PV power prediction [23]. This kind of
model is more suitable for short-term and VST PV power forecasting [24]. Caldas et al. used sky
imaging to monitor cloud motion, then forecasted 1–10 min real-time irradiance value according to the
empirical formula [25]. In addition, Crisosto et al. [26] established a method using the artificial neural
network (ANN) and sky imaging to predict solar irradiance at an hour scale and the result shows the
outstanding prediction performance of the proposed method. However, the image technology-based
model requires more calculation and higher equipment cost and may also encounter camera occlusion
problems, which makes it difficult to further promote.

In addition, PV prediction based on NWP represents one of the most promising research directions
of PV power forecasting [27–29]. The NWP based PV forecasting method usually classify the weather
types [30] and then input the NWP data into the trained model for prediction. A prediction model based
upon the grey relational analysis (GRA) algorithm and support vector machine (SVM) is proposed
in [31]. This model applies the PV power of the similar day sample and the meteorological factor of
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the prediction day as inputs dataset. The medium-range weather forecasting and ANN are employed
to forecast 72 h PV power output [32]. However, the precise of these prediction models rely on the
accuracy of weather prediction results [33], if the weather prediction result is not accurate or the
weather prediction information is difficult to obtain, the applicability and accuracy of such models
may be affected.

Generally, the choice of prediction model often depends on the application scenario. However,
due to the PV power generation being almost entirely determined by environmental factors [34], the
PV power prediction method based on meteorological data has become the main orientation of current
research. The presented models in many recent literatures try to search the nonlinear relationship
between power generation and its influencing factors based on learning networks (LNs) [35,36]. Typical
LNs structures include back propagation neural network (BPNN), radial basis function neural network
(RBFNN), and Elman neural network (Elman) among others. Among them, BPNN is a basic but
widely used neural network [37]. And in [38], the model based on historical power datasets. The GRA
algorithm is applied to classify meteorological types. According to the experiment threshold value to
select similar day samples as the training dataset and the Elman is used as a learning network of the
prediction model, the results verify the reliability of Elman in PV power prediction. RBFNN is also a
network structure with a good learning ability for nonlinear problems [17]. Its excellent performance
in the forecast has been proven in many studies, as the model in [39], it using solar radiation and
panel module temperature combined with two RBFNN networks to predict the daily PV array power
generation in 26 different cities. At the same time, the deep learning network has the powerful ability
to learn and discover potential relationships [40], Mei Fei et al. propose a model based on phase space
reconstruction and deep learning neural network (DLNN) to predict ultra-short-term net load [41].
The prediction of short-term power fluctuations by recurrent neural network LSTM is presented in
recent research [42], which proves the application potential of this model in short-term prediction tasks.
It is evident that the predictive model based on the learning network is the main direction of the future
development of PV power forecasting technology.

With regard to the time horizon, the forecast scales are usually defined as the following types [43]:
(1) Long-term and Medium-term prediction is adopted as a reference for the planning of PV power
plants and the setting of some parameters, the horizon ranged from a week to a year; (2) Short-term
horizon ranged from a few hours to a week: this prediction scale is focused on the PV power generation
grid-connected scheduling and economic dispatching; (3) Very-short-term (VST) PV power forecasting:
the horizon is regarded as several minutes to several hours [44]. This forecasting scale can be employed
as a reference for the power supply market. It also used for the real-time emergency response and
health monitoring of PV systems [45]. With the improvement of computing power and the rise of
5G communication technology in recent years, the rhythm of human social activities has accelerated.
Both the energy application and the supply side hope to obtain updated and accurate real-time data.
This demand drives the development of VST PV real-time prediction technology [46,47], which could
ensure more stable and reliable operation of the PV system.

As previously mentioned, obviously, the learning network models have outstanding performance
on various forecasting tasks [48]. Unlike the physical method, the LNs model does not require a
complete understanding of the photoelectric conversion relationship inside the PV system in advance.
However, the prediction accuracy of the LNs model usually relies on the calculation of higher
dimensions to ensure the effect, which increases the calculation and slows down the prediction speed.
On the other hand, for a real-time VST forecasting model, reasonable training time is required, and
there are two methods that can be applied to solve this contradiction: reducing training sample size
and improving the quality of samples. Thus, the influence of different meteorological parameters on
PV power output in a short period of time is firstly analyzed. Then, in order to reduce the training time
and improve the accuracy of predictions, the dataset of similar time periods is selected according to the
relationship between short-term radiation coordinates and power output. Considering the advantage
and flexibility of LSTM, this model applies LSTM as the learning network. Furthermore, the proposed
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RCC-LSTM model does not require very long-term historical data, which allows the system to forecast
VST PV power generation after a short-period of self-running, and the sliding window enables the
predictive model to be self-updated in real-time and adapt to the natural attenuation of PV systems.

The main achievements of this work can be summarized as follows:
(1) We present a new method for VST PV power forecasting that combines similar time period

collection using the RCC algorithm with neural network learning prediction algorithms. The models
use only the previous PV power data and meteorological data, i.e., solar radiation, temperature, and
humidity. A notable advantage of our method is that it uses only variables that are easily obtainable
(previous PV power and simple weather data). In comparison to other methods, it does not use future
weather predictions that are not always available for all PV plant. or sky images that require special
equipment to be processed and recorded and

(2) On the five minutes time resolution, the correlation between different meteorological data and
power output at different time periods was explored. The specified time point radiation coordinates
which had the highest correlation with power output are further proposed. The similar time period
collected by the RCC method is used as training sample for the prediction model. This method reduces
the calculation cost of the model and enhances the prediction accuracy.

(3) Based on the dataset from two independent PV systems, a comprehensive comparative study
is conducted comparing the proposed method with mainstream data-driven methods, including
RCC-BPNN, RCC-Elman, RCC-RBFNN models and LSTM model on all four seasons. The experimental
results show that the proposed RCC-LSTM model has an obvious advantage in forecasting accuracy.

The rest of the work is organized as follows. Section 2 presents the materials and methods in this
paper. Section 3 describes the proposed methodology in this paper. Section 4 shows the experimental
results and provides an analysis and comparison of the test results. Finally, the conclusions and future
work are presented in Section 5.

2. Materials and Methods

2.1. The Description of The Experimental Data

This paper uses the measured data from the YULARA PV system in Alice Springs, Australia at a
latitude of 22◦79′ S and a longitude of 130◦16′ E. In order to verify the scope and robustness of the
proposed model, two separate systems (i.e., 3A and 4) with different PV technologies and panel ratings
are selected. Figure 1 shows the map of the systems and their power generation ranges are 22.56 KW
and 327.6 KW, respectively. The detailed information of these two systems is shown in Table 1.
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Table 1. The specific information of two systems (3A and 4).

Parameter SITE 3A SITE 4

PV Technology mono-Si poly-Si
Panel rating 327 W 315 W

Number of panels 69 1040
Array rating 22.56 kW 327.6 kW
Panel type SunPower SPR-327NE Jinko Solar JKM315PP

Array Structure Fixed: Roof Mount Fixed: Ground Mount
Inverter size/type SMA STP 25000TL-30 & 20000TL-30 SMA STP 25000TL-30

Installation completed Sat, 19 Mar 2016 Thu, 3 Mar 2016
Array Tilt/Azimuth Tilt = 10, Azi = 0 (Solar North) Tilt = 20, Azi = 0 (Solar North)

The data of the two consecutive years (2017 and 2018) are chosen for this experiment and can be
download from [49]. The resolution of the historical dataset is 5-min, and the data mainly includes
active power (KW), temperature (◦C), relative humidity (%), global horizontal radiation (w/m2

×sr), and
diffuse horizontal radiation (w/m2

×sr).

2.2. General Structure of the Proposed Model

The detailed overall structure of the proposed method is described in Figure 2. To further
understand the details of the method, an additional description of each part is given in this section.
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2.2.1. Data Preprocessing

During the training process of the deep learning network, the quality of the training data will
affect the accuracy of the prediction model. Therefore, the training-data should be preprocessed before
it is transmitted to the network, which includes the cleaning of the abnormal data (such as PV panel
anomalies) and filling in missing data (such as system and equipment failure). After that, in order to
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meet the data requirements of the training network and to avoid the unbalanced data distribution
caused by different unit ranges of the different feature vectors, these types of data are normalized into
the same unit of measurement. Finally, the training dataset is rearranged according to the PV output
sequence and the structure of the neural network.

2.2.2. Radiation Coordinate Classification Method

PV power output is related to many factors [50], including some meteorological factors, type of
PV module, the installation structure, and the working characteristics of the PV module among others
and it is almost impossible to include all the influencing factors. However, it is easy to understand that
the weight of these factors on the PV power output is not constant. They act differently under different
time periods and different weather conditions. Moreover, the natural attenuation of PV systems has a
certain effect on their degree of impact.

This paper selects three random days for analysis in four quarters (includes January 15, February
22, December 20, summer in Australia, April 30, May 20, June 1, Autumn in Australia, July 7, July 18,
August 6, winter in Australia, and September 1, September 22, spring in Australia). Time range from
8:30–17:30, 109-time points in total, four representative and easily available meteorological factors are
selected for comparison. The correlations between different features with power output at different
time period are calculated by ρd,p, and the average of three days was randomly selected.

The ρd,p is defined as follows:

ρX,Y =
N
∑

XY −
∑

X
∑

Y√
N
∑

X2 − (
∑

X)2
√

N
∑

Y2 − (
∑

Y)2
, (1)

where X represents the different meteorological influential factors, Y represents the power generation,
and N represents the number of time points.

The correlation coefficient ranges from 0.8 to 1.0, the representation has a strong correlation, the
strong correlation at 0.6–0.8, the medium correlation between 0.4–0.6, the weak correlation at 0.2–0.4.
And the very weak correlation at 0–0.2. Figure 3 represents the correlation coefficient of four different
meteorological factors with PV power generation at different time periods in different seasons. In
general, it can be seen that the correlation between different impact factors and PV power output
also changes in different seasons. Their respective influences on PV power output are also constantly
changing, which further explains why the linear models are difficult to solve.
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Figure 3. (a) Correlation between PV power and air temperature; (b) Correlation between PV power and
relative humidity; (c) Correlation between PV power and diffuse horizontal radiation; (d) Correlation
between PV power and global horizontal radiation.

Figure 3a illustrates the correlation between temperature and PV power generation over different
hours of the day. It can be seen that there is a certain degree of similarity between the four seasons,
but there are still minor differences, and the correlation varies from −0.75 to 1 during a single day,
this fluctuation is large. At the same time, in Figure 3b. The fluctuation range of correlation between
humility and PV power generation over the different time period is between −1 and 0.75, there are also
subtle differences in four seasons. Moreover, the Figure 3c represents the correlation between diffuse
horizontal radiation and PV power generation. The correlation is in the range from −0.6 to 1 and there
is a kind of regulation within one day, but the degree of correlation in different seasons is quite different.
However, as shown in Figure 3d. The correlation between global horizontal radiation and PV power
output always keeps a high value, most are distributed between 0.8 and 1.0, a few are between 0.4 and
0.7. Thus, it is more reasonable to use global horizontal radiation to collect similar time periods.

Therefore, in order to ensure that the forecasting model can be adapted to different seasons while
learning the slight gaps in different time periods. The method separates the different time periods and
uses the sliding window for VST power prediction.

The range of climate parameters in a short period of time is small, and climate change is relatively
stable in the northwestern region of the PV generation. It may work to speculate on the climate of the
predicted point by analyzing the climate situation before the predicted point. On this basis, set the
origin (0,0,0) as the reference point, and select the global horizontal radiation which has the highest
correlation with power output. By setting the global radiation in the time period for different time
points to the coordinates of the start, mean, and end values, Euclidean distance can be calculated
between these coordinates and the origin as follows:

di =

√
(Gstart_i)

2+(Gmean_i
)2
+(Gend_i)

2, (2)

where Gstart_i, Gmean_i and Gend_i are the start, average, and end values of the global horizontal radiation
for the time period (i-n, i-1) before the predicted time point, respectively. n is the number of time point
in the selected time period. Five conditions with n equal to 2, 3, 4, 5, and 6 are selected for verification.
i represents the number of times during the day of the test.

Calculate the correlation between d and p.

ρd,p =

N∑
i=1

dipi −
N∑

i=1
di

N∑
i=1

pi√
N∑

i=1
d2

i − (
N∑

i=1
di)

2
√

N∑
i=1

p2
i − (

N∑
i=1

pi)
2

, (3)
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where p is the PV power output value at time-step i.
As shown in Table 2. The correlation between the d of different scale radiation coordinates and the

PV power output p at the next moment is obtained. In Figure 4, it can be observed that they have high
correlation value, more than that, the ρd,p mean value and standard deviation of different time-steps
are shown in Figure 4a,b, and when the time point is 4, the correlation is higher and the stability is
better. Thus, the 4-time points before the prediction point are selected as the analysis time period.

Table 2. The correlation between the d and p under different seasons and different time scales.

Time-steps(n)
Seasons

Spring Summer Autumn Winter

2 0.9936 0.8569 0.9896 0.9950
3 0.9937 0.8729 0.9914 0.9958
4 0.9928 0.8842 0.9924 0.9954
5 0.9901 0.8821 0.9919 0.9937
6 0.9881 0.8784 0.9905 0.9909

Electronics 2020, 9, x FOR PEER REVIEW 8 of 19 

 

As shown in Table 2. The correlation between the d of different scale radiation coordinates and 
the PV power output p at the next moment is obtained. In Figure 4, it can be observed that they have 
high correlation value, more than that, the ρd,p mean value and standard deviation of different time-
steps are shown in Figure 4a,b, and when the time point is 4, the correlation is higher and the stability 
is better. Thus, the 4-time points before the prediction point are selected as the analysis time period. 

Table 2. The correlation between the d and p under different seasons and different time scales. 

                   Seasons 
Time-steps(n) Spring Summer Autumn Winter 

2 0.9936  0.8569  0.9896  0.9950  
3 0.9937  0.8729  0.9914  0.9958  
4 0.9928  0.8842  0.9924  0.9954  
5 0.9901  0.8821  0.9919  0.9937  
6 0.9881  0.8784  0.9905  0.9909  

 

2 3 4 5 6
Number of time-steps

0.958

0.959

0.96

0.961

0.962

0.963

0.964

0.965

0.966

0.967
Average value

C
or

re
la

tio
n

 
2 3 4 5 6

Number of time-steps

Standard deviation

0.046

0.048

0.05

0.052

0.054

0.056

0.058

0.06
St

an
da

rd
 d

ev
ia

tio
n

 
(a) (b) 

Figure 4. (a) The mean value of ρd,p in different time-steps; (b) Standard deviation of ρd,p in different 
time-steps. 

According to the above-mentioned characteristics, the radiation coordinate classification (RCC) 
method is proposed as the classification method for selecting similar time periods. The corresponding 
data of a similar time obtained is reconstructed into a training data set. After training, input the 
corresponding data of this period to predict power output. The specific process is as follows: 

Firstly, collect the data in the same time period of the last 30 days before the day, and the first 
two time periods before the target time point. Reconstitute these data into a feature array A which is 
composed of (Pt, Tt, Ht, Gt, Dt, Pt+1). The structure of array A is shown below: 

d 30

d 29

d-1

d

A
A

A
A
A

−

−

 
 
  =  
 
 
  


, 

t-4 t-4 t-4 t-4 t-4 t -3

t-3 t-3 t-3 t-3 t-3 t-2

t-2 t-2 t-2 t-2 t-2 t-1

t-1 t-1 t-1 t-1 t-1 t

P T H G D P
P T H G D P
P T H G D P
P T H G D P

dA

 
 
 =  
 
  

, (4) 

Then, the power and meteorological parameters in the feature array are normalized. The 
normalization formula is defined as: 

min
_

max min

kl k
kl new

k k

A AA
A A

−
=

− , 
(5) 

where Akl_new represents the data obtained after normalization, Akl is the specific value of the power 
and meteorological data, k represents the star, mean or end value listed, l indicates the number of 
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According to the above-mentioned characteristics, the radiation coordinate classification (RCC)
method is proposed as the classification method for selecting similar time periods. The corresponding
data of a similar time obtained is reconstructed into a training data set. After training, input the
corresponding data of this period to predict power output. The specific process is as follows:

Firstly, collect the data in the same time period of the last 30 days before the day, and the first
two time periods before the target time point. Reconstitute these data into a feature array A which is
composed of (Pt, Tt, Ht, Gt, Dt, Pt+1). The structure of array A is shown below:

A =



Ad−30

Ad−29
...

Ad−1

Ad


, Ad =


Pt−4 Tt−4 Ht−4 Gt−4 Dt−4 Pt −3

Pt−3 Tt−3 Ht−3 Gt−3 Dt−3 Pt−2

Pt−2 Tt−2 Ht−2 Gt−2 Dt−2 Pt−1

Pt−1 Tt−1 Ht−1 Gt−1 Dt−1 Pt

, (4)

Then, the power and meteorological parameters in the feature array are normalized. The
normalization formula is defined as:

Akl_new =
Akl −Akmin

Akmax −Akmin
, (5)

where Akl_new represents the data obtained after normalization, Akl is the specific value of the power
and meteorological data, k represents the star, mean or end value listed, l indicates the number of hours
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in the unit time period, Akmin and Akmax are the minimum and maximum values of the meteorological
data in the feature column.

Secondly, by defining the radiation classification feature coordinates as (Gstart, Gmean, Gend), the
definition of each parameter is the same as above.

Combine the 32 time periods into corresponding three-dimensional vectors. Calculate the
Euclidean distance λ between these 32 feature coordinates and the target period feature coordinates.
The formula is defined as:

λ =

√
(G′start −Gstart)

2 + (G′mean −Gmean)
2 + (G′end −Gend)

2, (6)

where G’start, G’mean, and G’end represent the start, mean, and end values of global horizontal radiation
for a specified time period before the predicted time, respectively.

Compare them with the value of λ, set the experience threshold λ’ and select the time period
which λ is less than λ’. The meteorological and power data corresponding to these time periods are
used as the dataset for training network.

The data include the temperature (Tt), relative humidity (Ht), global horizontal radiation (Gt),
diffusion horizontal radiation (Dt), PV power output (Pt), and PV power output at the next time point
Pt+1 of each step. These data have been normalized, and they are arranged from far to near as the
training set of the prediction network according to the distance from the target time period.

2.2.3. LSTM Recurrent Neural Network

As one of the most advanced recurrent neural networks, the Long Short-term Memory (LSTM)
recurrent neural network has shown remarkable results in numerous time-series learning tasks [51,52].
Unlike the neurons of traditional recurrent neural networks, the LSTM has memory blocks connected
by successive layers, and it enables the network to selectively memorize the input training data through
a unique three-gate structure. These structures ensure that the network structure can learn multivariate
influences of nonlinear tasks. In addition, the cascade structure of the LSTM makes it has an excellent
performance in time series problems. For example, there are some good examples of forecasting work
based on LSTM. Wang et al. [53] establish a hybrid day-ahead PV power forecasting model based
on CNN and LSTM. This model uses CNN first extracts local features of data and applies LSTM to
extracts the overall timing features of data, and the prediction performance is outstanding.

Fundamentally, there are three logic gate structures in every single cell, including forgetting gate,
input gate and the output gate. And each operation process mainly includes four sub-operations, as
shown in Figure 5.
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The formula corresponding to each part of the operation is as follows [54]:
Forget gate:

ft = σ
(
W f ·[ht−1, xt] + b f

)
, (7)

Input gate:
it = σ(Wt·[ht−1, xt] + bi), (8)

C̃t = tanh(WC·[ht−1, xt] + bC), (9)

Merge process:
Ct = ft ∗Ct−1 + it ∗ C̃t, (10)

Output gate:
ot = σ(Wo[ht−1, xt] + bo), (11)

ht = ot ∗ tanh(Ct), (12)

The cell cascade structure is shown in Figure 6 [51]:
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where, ht is Pt+1, represents the power output at the next moment, Xt is an eigenvector composed
of (Tt, Ht, Gt, Dt, Pt), and Tt, Ht, Gt, Dt present four multivariate meteorological factors at time point t,
while Pt presents power output at time point t. The training process of LSTM is shown in Figure 7.
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2.3. Error (Evaluation) Metrics

To prove the stability of the present RCC-LSTM based PV output prediction method, the coefficient
of determination (R2), the mean absolute percentage error (MAPE) and the root mean square error
(RMSE) metrics are calculated, respectively. The definitions of these error metrics are shown below [1].

The R2 is defined as:

R2 =

(
N

N∑
i=1

Pf,iPa,i −
N∑

i=1
Pf,i

N∑
i=1

Pa,i

)2

N
N∑

i=1
Pf,i

2
−

(
N∑

i=1
Pf,i

)2N
N∑

i=1
Pa,i

2
−

(
N∑

i=1
Pa,i

)2
, (13)
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The MAPE is defined as:

MAPE =
1
N

N∑
i=1

∣∣∣∣∣∣Pf,i − Pa,i

pa,i

∣∣∣∣∣∣
× 100, (14)

pa,i =
1
N

N∑
i=1

pa,i, (15)

The MAE is defined as:

MAE =
1
N

N∑
i=1

∣∣∣p f,i−pa,i

∣∣∣∣, (16)

The RMSE is defined as:

RMSE =

√√√√
1
N

N∑
i=1

(
P f ,i − Pa,i

)2

, (17)

In this study, forecast results of the model run for a whole day are evaluated. Pf,i and Pa,i represent
the predicted and real PV output at i time-point, respectively. pa,i is the average value of actual PV
output, and N is the prediction sample point numbers. N equals to 109 in this study.

3. Proposed Methodology

In order to describe the method more intuitively, the implementation procedure of the prediction
method is shown in Figure 8. The detailed steps of the RCC-LSTM prediction model are shown below:Electronics 2020, 9, x FOR PEER REVIEW 12 of 19 
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Step 1: Collect historical PV power output and multivariate meteorological factors datasets. The
meteorological factors include air temperature, relative humidity, global horizontal radiation and
diffuse horizontal radiation.

Step 2: Preprocess the data, including abnormal data and normalization.
Step 3: According to the meteorological characteristic values of the time period before the

forecasting point. RCC algorithm is used to determine the similarity time periods of the forecasting
time period in the sample sets. By setting the threshold λ’ in RCC, the data of the first 10 time periods
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with smaller λ values are selected as the training dataset of the neural network if there are fewer than
10 samples.

Step 4: Determine the cell numbers of the LSTM, and initialize the threshold values and weights
of LSTM RNN, respectively.

Step 5: The LSTM neural network is trained by using similarity time period samples, and then the
prediction model is obtained.

Step 6: Input the power output and the values of the meteorological factors of the specific time
period before forecasting time points into the prediction model to forecast the power output value.

4. Results and Discussion

To verify the validity of the proposed RCC-LSTM model, several typical networks, including
RCC-BPNN, RCC-RBFNN [47], RCC-Elman, and LSTM-RNN [55] are chosen to make comparison,
and the test are conducted in four seasons and two different PV systems. In addition, four different
evaluation metrics (RMSE, MAPE, MAE, and R2) are applied to verify the prediction accuracy of
the RCC-LSTM model. Figures 9 and 10 represent the forecasting result curves obtained by running
different prediction models on two random days, respectively.
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To further test the performance of the proposed RCC-LSTM model in different seasons, several
days in different seasons are chosen to expand the validation sample set, three random days in each
season. The detail information about different evaluation metrics is shown below.

The metrics results of the RMSE in SITE 3A and SITE 4 are shown in Figures 11 and 12, respectively.
The RCC-LSTM model has the best prediction accuracy: the mean value of RMSE is 0.94 KW (in
SITE 3A), which is the minimum for all models, compare with other models, the enhancement is
24.79%, 23.25%, 45.83, and 8.23%, respectively. In SITE 4, the RMSE has 12.58 KW mean value, and the
enhancement is 38.38%, 28.18%, 55.33%, and 16.08%, respectively. However, due to the limit of data
set, in RMSE, the standard deviation performance of LSTM is slightly lower than RCC-LSTM.
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As seen in Figures 13 and 14, and compared with four other models, in SITE 3A, the average
MAPE of the presented model reduced by 28.70%, 23.30%, 43.40%, and 9.67%, respectively. In SITE 4,
the presented model’s average MAPE improvement relative to the compared four models is 44.04%,
31.31%, 53.11%, and 18.40%, respectively.
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Figures 15 and 16 show the MAE results of two PV systems, in SITE 3A, the presented model’s
average MAE improvement relative to the compared four models is 27.30%, 23.15%, 41.93%, and 9.34%,
respectively. In SITE 4, the presented model’s average MAE improvement relative to the compared
four models is 45.29%, 32.10%, 53.83%, and 19.06%, respectively.
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In addition to the RMSE, MAPE, and MAE, R2 is also a meaningful parameter to evaluate
prediction models, the average value of R2 (in %) and the standard deviation of different forecasting
models are presented in Figure 17. Owning to the self-update time window, these models have good
correlation performance, while the results of the proposed model are still better than others. In SITE 4,
the mean value and the standard deviation of R2 are 0.9747 and 0.0176, respectively. They are both the
best among all models. Further, the situation in SITE 3A is the same as SITE 4.
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Therefore, the RCC-LSTM model has outstanding performance in the VST prediction of PV
generation, especially in desert areas where the weather changes are more moderate. As the data set
accumulates, the forecasting result of cloudy weather will also be improved.

The environment framework of this experiment is TensorFlow, which is implemented based
on Python3.6 and a 64-bit operating system personal computer with Intel (R) Core (7M) i5-7300HQ
CPU@2.50GHZ 2.50GHZ and 8.00GB of RAM. As shown in Figure 18, the average training time-cost
at the different time points and the average runtime of every time point are shown in Figure 18a,b,
respectively. Owing to the same time periods collection strategy of the training set, the dataset of
training is small. Thus, every real-time predict step only requires a few seconds, which is acceptable in
practical applications. Furthermore, due to the training dataset of RCC-LSTM that selected by RCC,
compared with LSTM model, the RCC-LSTM not only improves the accuracy of the prediction but also
reduces the training time cost of the prediction model. The average training time-cost of RCC-LSTM
is 28.84% lower than that LSTM, and the runtime will be much lower by improving the hardware
environments or optimizing code.Electronics 2020, 9, x FOR PEER REVIEW 16 of 19 
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5. Conclusions and Future work 

A simple and effective RCC-LSTM model for VST PV power forecasting is proposed in this 
paper. The proposed method applies the RCC method as a tool for collecting similar time periods 
and employs the LSTM to extract features from the time series photovoltaic power data and to learn 
long-term information in sequence. Based on the dataset from two independent PV systems located 
in Central Australia. In five-minute forecasting horizons, a comprehensive comparative study is 
conducted to compare the proposed RCC-LSTM method with available four data-driven methods, 
including RCC-BPNN, RCC-Elman, RCC-RBFNN, and LSTM. Then, four error metrics are calculated 
and compared. The average daily RMSE, MAPE, and MAE of the RCC-LSTM model in site 3A are 
0.940 kW, 5.053% and 0.587 KW, respectively, and those of site 4 are 12.58 kW, 4.449% and 7.590 KW, 
respectively. Compared with other methods, the average enhancement of RMSE, MAPE, MAE and 
R2 is 30.01%, 31.49%, 31.50%, and 2.152%, respectively, which illustrates the superior performance of 
the proposed method. In addition, the average prediction time-cost of the RCC-LSTM is 28.84% lower 
than the basic LSTM. Therefore, it is proven that the proposed model can be used to predict VST PV 
power generation for PV power plants. 

In future work, the proposed model can be improved in terms of its architecture and training 
data, and a more flexible selection of the threshold values should be implemented. Also, the cell 
number can be adjusted to be applied to different weather conditions. 
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5. Conclusions and Future Work

A simple and effective RCC-LSTM model for VST PV power forecasting is proposed in this
paper. The proposed method applies the RCC method as a tool for collecting similar time periods
and employs the LSTM to extract features from the time series photovoltaic power data and to learn
long-term information in sequence. Based on the dataset from two independent PV systems located
in Central Australia. In five-minute forecasting horizons, a comprehensive comparative study is
conducted to compare the proposed RCC-LSTM method with available four data-driven methods,
including RCC-BPNN, RCC-Elman, RCC-RBFNN, and LSTM. Then, four error metrics are calculated
and compared. The average daily RMSE, MAPE, and MAE of the RCC-LSTM model in site 3A are
0.940 kW, 5.053% and 0.587 KW, respectively, and those of site 4 are 12.58 kW, 4.449% and 7.590 KW,
respectively. Compared with other methods, the average enhancement of RMSE, MAPE, MAE and R2

is 30.01%, 31.49%, 31.50%, and 2.152%, respectively, which illustrates the superior performance of the
proposed method. In addition, the average prediction time-cost of the RCC-LSTM is 28.84% lower
than the basic LSTM. Therefore, it is proven that the proposed model can be used to predict VST PV
power generation for PV power plants.

In future work, the proposed model can be improved in terms of its architecture and training data,
and a more flexible selection of the threshold values should be implemented. Also, the cell number can
be adjusted to be applied to different weather conditions.
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