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Abstract: This paper presents a comprehensive feasibility study of an interleaving approach for
a quasi-Z-source inverter. The state-of-the-art approach revealed that an interleaving approach is often
used to improve the efficiency and power density that can overcome the problem of oversized passive
elements of quasi-Z-source-based converters. The focus is on the application of the interleaving
approach in terms of the comparison of several important parameters of a quasi-Z-source inverter. Our
analysis includes losses, capacitor and inductor sizes, as well as semiconductor costs. The theoretical
comparison is based on the quasi-Z-source inverter model and the losses model. Simulation and
experimental verification of theoretical statements are provided. It was found that a 40% reduction
of inductor volume, along with 15–20% of efficiency improvements, are achievable. The results are
discussed in the conclusion.

Keywords: impedance-source inverter; shoot-through; dc–dc converter; dc-ac converter

1. Introduction

The Google Little Box Challenge (GLBC) revealed extremely high interest in the topic of high-power
density inverters for photovoltaic (PV) applications. It was demonstrated that the extremely high-power
density of a power electronics converter is achievable [1,2]. The finalists demonstrated a similar
approach using an interleaved full-bridge inverter, wide bandgap (WBG) semiconductors and an active
power decoupling circuit [3–5]. However, this competition was intended for a converter designed
with a narrow input voltage regulation range, whereas string solar inverters commonly have a wide
input voltage regulation range. Most of the market solutions have two stages of energy conversion.
Advances in WBG materials and their role in power electronics manufacturing have been phenomenal
in the last decade. Large-scale manufacturing is also bringing overall costs down, and improving
performance handling capability [6].

A Z-source inverter (ZSI) was introduced in 2003 [7] as a single-stage alternative. It was claimed
that the converter overcomes the conceptual and theoretical barriers and limitations of the traditional
voltage source inverter (VSI) and current source inverter (CSI). ZSIs utilize the shoot-through (ST)
cross-conduction states to boost the input dc-voltage by switching on both the top and bottom switches
of at least one inverter leg. These inverters can provide maximum power point tracking (MPPT) without
any extra dc–dc converter. Their application in various fields is discussed in many papers [8–17].

At the same time, several papers [18–21] have disclosed the problems of Z-source networks.
In particular, passive component size and overall efficiency are considered a bottleneck in Z-source-
based solutions.
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Our goal is to study the feasibility of the interleaving approach for a Z-source-based inverter with
WBG semiconductors. Our specific aim is to find out if it is reasonable to use approaches applied in
the GLBC competition for a Z-source-based inverter.

2. Description of a Case Study System with a Quasi-Z-Source Inverter

The solution in Figure 1 consists of an interleaved 2-level quasi-Z-source inverter (qZSI). Each part
includes the quasi-Z-source (qZS) network represented by L1, D1, C1, L2 and C2 for the first branch and
L3, D2, C3, L4 and C4 for the second branch. It also has full-SiC 2-level full-bridge inverters represented
by switches S1–S8; the output filter LF1–LF4; CF; and Lg1 and Lg2 feeding the load or connected to
the grid.
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Figure 1. The 2-level interleaved quasi-z-source inverter (qZSI).

The 2-level qZSI is described in [22] as a three-phase PV inverter, while the 2-level solution is
compared with the 3-level NPC for a single-phase application in [23]. According to the study, a full-SiC
2-level qZSI solution has a clear advantage over the 3-level NPC qZSI solution with Si MOSFETs,
in terms of higher efficiency, along with the lower volume of the heatsink, while the volume of passive
elements remains the same.

The interleaved 2-level qZSI for a single-phase PV application and the control approaches,
including different modulation techniques, are discussed in detail in [23–27]. Our work is devoted to
the feasibility study of the interleaving approach in terms of size, efficiency and the overall cost of
the converter.

The parameters of the reference system are given in Table 1. The input voltage range is considered
from 200 V to 600 V, and the converter was assumed to operate with a rated input current of up to 5 A.
In this case, low-frequency (LF) power ripples are mitigated by means of the conventional decoupling
capacitor CPV. Many other decoupling techniques are available for this purpose [28–32]. The active
power decoupling circuits are relevant for consideration in terms of power density improvements, but
are still not effective in terms of the cost. A decoupling capacitor of up to 10 mF can provide the input
current ripple of about 10–15% for string solar inverters, which in turn results in the PV panel’s voltage
ripple being no higher than 3–4% [33]. These numbers are sufficient to yield an MPPT efficiency of
99%, which is the industrial standard.
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Table 1. System parameters.

System Parameters Values

Nominal power Pnom, W 1800
Nominal input voltage Vnom, V 200–600
Nominal input current Inom, A 5
Output RMS voltage Vload, V 230

Output current THD, % <3
Input current ripple ∆I, % <10

3. Component Selection and Comparison

In order to provide correct comparison, the passive and active components were selected according
to the predefined parameters. The passive element values of the qZS network for both cases were
calculated to provide the desired current and voltage ripple. Usually, the design procedure takes into
account the high-frequency (HF) and LF ripple analysis [12]. In this case, the LF ripple is assumed to
be eliminated by the input decoupling capacitor CPV. At the same time, the value of the decoupling
capacitor is considered to be the same for a single and an interleaved qZSI, and it has no direct impact
on the interleaving study. In conclusion, it is required to select the passive components for proper HF
ripple mitigation. In the case of a single qZSI, the inductors were selected for the continuous current
mode in the basic operating points, which is taken into account in the following equation

L1 = L2 > =
2 ∗V2OUT ·TS

KL·P
·

VIN
(
VCREF −VIN

)
VCREF ·

(
2·VCREF −VIN

) (1)

where L1, L2 are the values of the qZS network inductance, VOUT is the output voltage, VIN is the input
voltage, TS is the switching period, KL is the assumed HF ripple of the input current, P is the output
power and VC_REF is the reference capacitor voltage. A similar approach was applied for capacitor
estimation

C1 =
P·TS

2·KC1·V2OUT
·

V2CREF

VIN·
(
2·VCREF −VIN

) (2)

C2 =
P·TS

2·KC2·V2OUT
·

VPL·
(
VCREF −VIN

)
VIN·

(
2·VCREF −VIN

) (3)

where C1, C2 are the values of the qZS network capacitors, and KC1, KC2 are an assumed HF ripple
of the capacitor voltage. Passive component values must be large enough to provide the demanded
output current quality, converter controllability and low input current ripple in PV applications. Table 2
shows the values selected for our simulation and experimental verification.

Table 2. Passive elements selection.

Interleaved qZSI Single qZSI

HF current ripple, % 70 35
qZS inductance L1, L2, mH 0.9 0.9

Maximum current across inductance, A 3.4 5.9
Voltage ripple across C1, % <1 <1

qZS capacitor C1, mF 0.68 1.36
Maximum voltage across capacitor C1, V 500

Voltage ripple across C2, % <1 <1
qZS capacitor C2, mF 1.5 3

Maximum voltage across capacitor C2, V 250
Switching frequency, kHz 60
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As can be seen in the interleaved solution, the values of the inductances are the same, but the
relative current ripple is increasing. This is explained by an average current decreasing by splitting the
current between the two qZS channels. In this case, capacitor values can be selected twice smaller due
to the power flow splitting.

The next task is to select proper active components. Splitting power flow between the two channels
with the same resistance may reduce conduction losses up to two times. As a result, interleaving is
an approach that enables converter design with extremely high efficiency and power density by means
of N channel utilization [34,35]. Evidently, however, this leads to an increase in cost.

Our goal is to specify whether it is possible to design a cost-effective solution using the interleaving
approach for the qZSI. Table 3 presents the selected active components and their main parameters.
The distributed price was selected as a reference.

Table 3. Active elements selection.

Interleaved qZSI Single qZSI

Transistors

Type C2M0160120D C2M0080120D

Blocking voltage, V 1200
Total Gate Charge, nC 34 62

Diode reverse recovery charge, nC 192 105
Turn-on delay time, ns 9 11

Rise time, ns 11 20
Turn-off time delay, ns 16 23

Fall time, ns 10 19
Rds, mOhms 160 80

Cost, Euro 7.5 15

Diodes

Type C4D05120A C4D10120A

Blocking voltage, V 1200
Forward voltage drop, V 1.9 2.2

Reverse recovery charge, nC 23 45
Diode reverse recovery time - -

Current, A 5 10
Cost, Euro 5.04 10.13

As can be seen, all the semiconductors have the same blocking voltage. The nominal rated current
is different, but the overall cost of active components is the same. In particular, C2M01612D is twice
cheaper than C2M0080120D, but has twice larger drain-source resistance. This means that overall
conduction losses in the transistors are expected to be the same.

At the same time, attention should be paid to the different dynamic characteristics. Table 2 shows
that semiconductors with a smaller current rate have significantly better dynamic characteristics.

Figure 2 shows a comparative diagram for the estimation of the pros and cons of the interleaving
approach for the qZSI. The method of comparison is described in several papers [18,21]; here, we used
a modified version. Five parameters were used for comparison: weighted summarized losses of
transistors TL, weighted summarized losses of diodes DL, weighted inductors volume VolL, weighted
capacitors volume VolC and the weighted cost of semiconductors.

Summarized losses of the single transistor can be estimated by a simplified equation [36,37]

PMOSFET = f ·
( tdon + tr + tdoff + t f

2
IDSVDS +

5
4

QrrVDS

)
+ I2

RMS·RDS (4)
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where IDS is a peak current of the transistor averaged over a fundamental cycle, VDS is an averaged
peak drain-source voltage at the moment of switching, tdon is a turn-on delay time, tr is a rise time,
tdoff is a turn-off time delay, tf is a fall time, RDS is the resistance of the switch open channel, IRMS is the
root mean square current value of transistor for one period of the output voltage and Qrr is a reverse
recovery charge.

In a similar way, the summarized losses of the single diode can be estimated as in [38]

PDIODE = IF·VF + f ·VDR·(Qr + tR·I) (5)

where VF is the forward voltage drop of the diode, IF is the average current of the diode, VDR is the
diode reverse voltage, tR is the diode reverse recovery time and Qr is the reverse recovery charge.

The weighted values of losses are recalculated in the p.u. system, where the largest value of all
values is taken as a unit. All the other values are converted through this reference unit. It relates to all
other parameters shown in Figure 2.
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It is assumed that the volume of the magnetic elements is proportional to the maximum energy
that can be accumulated. The same is true for the capacitors.

The total maximum energy that can be accumulated in the inductors is calculated as

EL =

NL∑
i=1

Li·I2
MAXi

2
(6)

where Li is the inductance value and IMAXi is the maximum current value through the inductor.
The total maximum energy that can be accumulated in the capacitors is calculated as

ECW =

NC∑
i=1

Ci·V2
MAXi

2
(7)

where Ci is the capacitance value and VMAXi is the maximum voltage value across the capacitor.
The weighted values of volumes are also recalculated in the p.u. system. It can be seen that the use

of the interleaving approach leads to the reduction of the inductor volume. According to Equation (1),
the inductance value of the single and the interleaved qZSI remains the same. On the one hand, in the
interleaved approach, the power flow through each qZS network is decreased twice, while on the other
hand it is assumed that the HF ripple of each inductor in the interleaving approach can be up to two
times higher. Phase shifting between the currents of each channel compensates for the ripple increasing.
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Despite the inductance value of each single inductor being the same for both solutions, according to
Equation (6), the maximum energy of the interleaved inductors can be significantly smaller, due to the
split current between the two channels.

Furthermore, Figure 2 shows that the interleaving approach may not only provide smaller magnetic
elements, but also better efficiency due to the improved dynamic parameters of the semiconductors.
It shows that the reduction of losses in active components is expected to be about 30%. These data
correspond to the 200 V input voltage and the total input power of 1800 W.

4. Simulation and Experimental Study

In order to verify the theoretical statements, we conducted a simulation and an experimental
study. The parameters of the selected topologies are shown in Tables 2 and 3. The main goal of
the simulation study was to verify the calculation of the passive elements and to demonstrate the
interleaving approach for ripple cancellation. In all cases, the switching frequency was about 60 kHz.

PSIM software was used as a simulation tool. Figure 3 shows our simulation results with the ST
implementation at the 200 V input voltage and 1800 W total power. The input current of each channel,
along with the summarized input current in the interleaved qZSI solution, are shown in Figure 3a.
On the right side (Figure 3b), the input current of a single qZSI is shown. The figure shows that in
the interleaved solution, the input current is slightly smaller than in the single solution. Figure 3c,d
show output current waveforms, and how the output current is distributed between the two channels.
Taking into account the maximum currents through the inductors and corresponding maximum energy
accumulated in the inductors, we can claim that the interleaved solution enables a size reduction of
about 40%.
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At the same time, the most important outcomes are found in the experimental study. A detailed
experimental study of a single qZSI is presented in [23]. In the experimental study, we focused on the
interleaved qZSI and its comparison with the single 2-level qZSI.

Figure 4 shows the experimental setup of the interleaved qZSI. It comprises two independent
channels. The experimental setup also includes measurement equipment, such as the programmable
DC power supply (PV array simulator) Chroma 62150H-1000S, a power analyzer YOKOGAVA WT1800
and an oscilloscope Tektronix MSO 4034B.
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Figure 4. Experimental setup of the interleaved qZSI.

The dependence of the experimentally measured efficiency on the input voltage with constant input
current is illustrated in Figure 5. This shows that the interleaved qZSI has higher efficiency than the
single qZSI, which corresponds to the theoretical expectation. At the same time, the improvement of the
efficiency is lower than that which was theoretically predicted. This can be explained by non-optimized
prototyping and additional losses in the passive components, including wires and connectors.

Electronics 2020, 9, 277 7 of 11 

 

 

Figure 4. Experimental setup of the interleaved qZSI. 

The dependence of the experimentally measured efficiency on the input voltage with constant 

input current is illustrated in Figure 5. This shows that the interleaved qZSI has higher efficiency than 

the single qZSI, which corresponds to the theoretical expectation. At the same time, the improvement 

of the efficiency is lower than that which was theoretically predicted. This can be explained by non-

optimized prototyping and additional losses in the passive components, including wires and 

connectors.  

 

Figure 5. Efficiency evaluation of the single qZSI and the interleaved qZSI under different input 

voltage and constant input current. 

Experimental data in Figure 6 finalize the verification. The first case (Figure 6a, b) corresponds 

to the dc source input voltage.  

The figures show the input current of each channel, along with the output voltage. A significant 

double frequency ripple can be seen in both qZSI channels, which is not fully compensated by the 

interleaving approach. Further double-frequency ripple mitigation is assumed to be achieved by a 

decoupling capacitor. 

On the other hand, in the second case (Figure 6b), the advantage of the interleaving approach is 

much more obvious, and also has influence on the double frequency ripple. Figure 6c shows the 

common output current and the distribution between the channels. However, the current distribution 

between the qZSI channels is not symmetrical, which is explained by the limited tolerance of 

magnetic components that were essential in the open loop test. 

2 coupled qZS 
inductors

Interleaved full-
bridges with qZS 

capacitors

Output filters

80

82

84

86

88

90

92

94

96

98

100

180 230 280 330 380 430 480

Single qZSI efficiency

Interleaved qZSI
efficiency

VIN, V

%

Figure 5. Efficiency evaluation of the single qZSI and the interleaved qZSI under different input voltage
and constant input current.

Experimental data in Figure 6 finalize the verification. The first case (Figure 6a, b) corresponds to
the dc source input voltage.

The figures show the input current of each channel, along with the output voltage. A significant
double frequency ripple can be seen in both qZSI channels, which is not fully compensated by the
interleaving approach. Further double-frequency ripple mitigation is assumed to be achieved by
a decoupling capacitor.

On the other hand, in the second case (Figure 6b), the advantage of the interleaving approach
is much more obvious, and also has influence on the double frequency ripple. Figure 6c shows the
common output current and the distribution between the channels. However, the current distribution
between the qZSI channels is not symmetrical, which is explained by the limited tolerance of magnetic
components that were essential in the open loop test.
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The loss distribution in the interleaved qZSI is shown in Figure 6d. It corresponds to the same
operation point with 200 V input voltage and 1 kW input power. As can be seen, significant losses
come from the qZS diodes.
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As can be seen, significant losses come from the qZS diodes whose heatsink is the hottest point
(about 70 ◦C). The analysis of the thermal picture, along with the current measurements, compose the
background for the analysis of loss distribution.

5. Conclusions

This work is devoted to the feasibility study of the interleaving approach for the qZSI, taking into
account losses, the size of the components and semiconductor costs.

It was demonstrated that the interleaving approach may significantly reduce inductor size and
cost by up to 40%. It is also shown that better efficiency can be achieved at the same cost of power
semiconductor components. In our case study system, the losses were reduced by 15–20%.

However, these benefits do not guarantee a competitive advantage in mass industrial production.
It is necessary to take into account the cost of auxiliary components and the need to control the
symmetry of each channel, which will lead to an increase in the number of current sensors. A reliable
conclusion can only be obtained in preparation for industrial production, taking into account the cost
of all components.
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