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Abstract: To improve the operating performance of electric propulsion ships, the permanent magnet
synchronous motor is commonly used as the propulsion motor. Additionally, position estimation
without sensors can further improve the application range of the propulsion motor and the estimated
results can represent the redundancy of measured values from mechanical sensors. In this paper,
the high-frequency (HF) injection algorithm combined with the second-order generalized integrator
(SOGI) is presented on the basis of analyzing the structure of the electric propulsion ship and the vector
control of the motors. The position and rotor speed were estimated accurately by the approximate
calculation of q-axis currents directly related to the rotor position. Moreover, the harmonics in the
estimated position were effectively reduced by the introduction of the second-order generalized
integrator. Then, the rotor position estimation algorithm was verified in MATLAB/Simulink by
choosing different low speeds including speed reversal, increasing speed, and increasing load torque.
Finally, the correctness of the proposed improved high-frequency injection algorithm based on the
second-order generalized integrator was verified by the experimental propulsion permanent magnet
synchronous motor (PMSM) system at low speed.

Keywords: electrical propulsion ship system; permanent magnet synchronous motor (PMSM);
high-frequency (HF) injection algorithm; second-order generalized integrator (SOGI); at low speed

1. Introduction

The electric propulsion ship has the advantages of compactness, environmental emission reduction,
economic fuel consumption, and superior reliability, which constitute an important developing trend
of the green ship in the future. The selection of propulsion motor and control method, which are
key technologies in the electric propulsion ship system, is considerable [1]. Currently, the propulsion
motors used on electric propulsion ships are mainly the direct-current motor, the asynchronous motor,
and the synchronous motor. The permanent magnet synchronous motor (PMSM) has been widely
used in the electric propulsion ship system due to its small volume, high efficiency, high power density,
and fast dynamic response [2].

The propulsion motor works in harsh environments with high humidity, high salt, high
temperature, and vibration. These rough sea conditions can affect the ship’s heel and trim and
cause traditional mechanical position sensors on the motor shaft to exhibit low reliability, a short
life, and low accuracy [3]. However, accurate rotor position must be obtained in real time to achieve
closed-loop control during motor operation. Therefore, the PMSM’s position sensorless technology in
the propulsion motor control system is necessary [4].

Up until now, many position sensorless methods, such as direct calculation [5], back electromotive
force (back-EMF) [6], extended Kalman filter (EKF) [7], the model reference adaptive system (MRAS) [8],
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and the sliding mode observer (SMO) method [9], have been widely used to estimate the rotor position
of the PMSM. However, the above algorithms were all based on the motor’s fundamental waves
and could only be used to estimate the rotor position at medium and high speeds [10]. At low
and zero speed, fewer fundamental waves make the estimated position unavailable or showing low
accuracy [11]. At present, the high-frequency (HF) injection algorithm is the main method to estimate
rotor positions according to the physical salient pole of its physical structures or the salient pole formed
by saturate inductance [12]. In the PMSM, the HF injection algorithm is insensitive to motor parameter
changes and can obtain accurate rotor position and speed at low and zero speed [13]. However, the HF
injection algorithm’s information process is very complex at medium and high speeds [14]. Therefore,
at present, the HF injection algorithm can only be used to estimate the rotor position of the PMSM at
low and zero speed [15].

During the position estimation based on the HF injection method, the low-pass filter is applied to
filter out the HF signals. However, in the actual system, the nonlinearity and digital control of inverters
introduce many harmonics. The low-order digital filter has a poor filtering effect and the high-order
filter causes a large deviation in the phase angle of the obtained signal. The application of the digital
filter increases the calculation and the complexity of the system [16]. Therefore, the second-order
generalized integrator (SOGI) technology began to develop. The SOGI is a tool used to select or
eliminate specific frequency harmonics, and it can work as both a band-pass filter and a band-stop
filter. It is used in different axes with different roles to eliminate the position estimation errors [17].
In [18], the SOGI was applied to estimate a motor’s medium-to-high speed and it has been successfully
applied in the nonlinear compensation of inverters. An improved self-sensing control strategy of a
surface PMSM based on HF pulsating current injection using SOGIs was presented in [19], and it was
verified in the 1.5 kW surface PMSM self-sensing drive, but the motor was not used experimentally in
the whole control system. Although SOGI use has not been discussed much for low speed, the SOGI
could be considered for application in the HF injection method by referring to the medium-to-high
speed estimated method.

The sensorless control technology has been developed for the single motor, but studies on any
applications to whole control systems in electric propulsion ships are limited. Therefore, we took the
three-phase PMSM commonly used in electric propulsion ships as an example and analyzed the HF
injection sensorless control method at low speed by combining the structures of the electric propulsion
ship system with the basic principle of motor vector control. The improved HF voltage injection
algorithm based on the SOGI was adopted to obtain accurate rotor position and speed by estimating
q-axis currents. Moreover, the introduction of the SOGI reduced the harmonics during the estimation.
The algorithm was verified in MATLAB/Simulink by simulation. Finally, an experimental PMSM setup
in an electric propulsion ship system was built to verify the validity of the proposed position sensorless
control strategy.

2. Model of the Electric Propulsion Ship System

2.1. System Description

The PMSM was used as the prime motor to drive the propeller in the electric propulsion ship
system. The propeller propels the ship forward by the ship hull; this principle is shown in Figure 1. It
can be seen that the propeller input is motor speed and ship velocity, and the load of propulsion is the
ship hull driven by the propeller and the load is impacted by the ocean environment [20].
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Figure 1. Relationship of ship, motor, and propeller.

The thrust P and torque TL of the propeller can be expressed as follows:{
P = KPρn2D4

TL = KMρn2D5 (1)

where ρ is the sea-water density and ρ = 1025 kg/m3; D is the diameter of the propeller and the unit is
meter; n is the speed of the propeller and the unit is r/s; and KP and KM are thrust coefficient and torque
coefficient, respectively, and they are both the function of the advance ratio J. After the completion of
the ship construction, the relationship between J and KP, KM can be determined by the open water
experiment of the ship.

During the operation of the ship, due to the interaction between the hull and water, a wake is
generated, which makes the difference between the advance velocity of propeller vp and the actual
forward velocity of the ship vs. Therefore, the effective thrust Pe and torque TL after considering the
increase of the resistance caused by the water absorption of the propeller can be expressed as follows:{

Pe = (1− t)K′Pρn2D4

TL = K′Mρn2D5 (2)

where t is the thrust deduction coefficient and t = ∆P
P .

When the ship is in motion, the motion equation of its propeller system can be expressed as
follows:

(M + ∆M)
dvs

dt
= Pe −R (3)

where M is the mass of the ship and the unit is kilogram and ∆M is the mass of the water attached to
the ship moving with the ship during movement and usually 5%-15% of the total mass of the hull is
taken as the value.

The main factors affecting ship resistance are ship speed, ship type, and environmental conditions
(wind, wave, current, etc.) during the operation [21]. When the ship type is determined, the resistance
of the ship is only related to the speed of the ship under certain external navigation conditions. The
expression is as follows:

R = rvz
s (4)

where r is the resistance coefficient and z is the index, and when the ship speed is low, z = 2.

2.2. System Mathematical Model

The PMSM is the main power supply in the electric propulsion ship system, whose performance
determines the stability and safety of the whole ship system. We took the three-phase PMSM as
propulsion motor, and the mathematical model in the d-q coordinate system is as follows [22].
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The equations of stator voltage are the following: ud = Rsid +
dψd
dt −ωψq

uq = Rsiq +
dψq
dt +ωψd

(5)

The equations of stator flux linkage are the following:{
ψd = ψf + Ldid
ψq = Lqiq

(6)

The equation of electromagnetic torque is the following:

Te =
3
2

np
(
ψdiq −ψqid

)
=

3
2

np[ψmiq + (Ld − Lq)idiq] (7)

The dynamic equilibrium equation is the following:

Te − TL − Bω =
J

np

dω
dt

(8)

where u is voltage; i is current; L is inductance; ψ is flux and the subscripts d and q represent d-axis and
q-axis; Te is electromagnetic torque; ψm is flux produced by the permanent magnet; np is pole pair
number; Rs is stator resistance; B is damping coefficient; J is moment of inertia; and ω is mechanical
angular velocity.

3. Principle of the High-Frequency Voltage Injection Algorithm Based on the SOGI

The PMSM’s vector control principle is shown in Figure 2. In the traditional motor control, the
closed-loop speed control can be achieved by mechanical sensors on the motor shaft to obtain the
rotor speed and position. On the other hand, in the position sensorless control system, the rotor speed
and position are obtained by calculation and the mechanical sensors are cancelled. The HF voltage
injection algorithm means injecting the HF voltage into the input voltage port of the motors, where
the frequency is 0.5~2k Hz far above the fundamental frequency of motors. Then, the currents are
detected and processed to obtain the rotor salient-pole position and speed.
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Figure 2. Vector control system of a permanent magnet synchronous motor (PMSM) applied in ships.

Thus, Equation (5) can be rewritten as follows:[
ud

uq

]
=

[
Rs + Ldp −ωLq

ωLd Rs + Lqp

][
id
iq

]
+

[
0

ωψm

]
(9)
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where p is the differential operator.
Figure 3 shows the relationships among the different coordinates. It can be seen that α− β is a

two-phase static coordinate system; d-q is a two-phase rotary coordinate system; d̂− q̂ is the estimated
two-phase rotary coordinate system; θr is the actual rotor position; θ̂r is the estimated rotor position
and the deviation is ∆θ = θr − θ̂r.
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After injecting the HF voltage, which is far above the fundamental frequency, the impact of the
permanent magnet flux linkage on HF voltage can be ignored. Thus, Equation (9) can be changed as
follows: [

ud

uq

]
=

[
Rs + Ldp 0

0 Rs + Lqp

][
id
iq

]
=

[
Zd 0
0 Zq

][
id
iq

]
(10)

From Figure 3, the transformation matrix from the d-q coordinate system to the d̂− q̂ coordinate
system can be expressed as follows:

T(∆θ) =
[

cos(∆θ) sin(∆θ)
− sin(∆θ) cos(∆θ)

]
(11)

Thus, the estimated voltages are as follows:[
ûd

ûq

]
= T(∆θ)

[
ud

uq

]
= T(∆θ)

[
Zd 0
0 Zq

][
id
iq

]
= T(∆θ)

[
Zd 0
0 Zq

]
T−1(∆θ)

[
îd
îq

]
(12)

Equation (12) can be transformed and the estimated currents can be obtained as follows: îd
îq

 = T(∆θ)

 1
Zd

0
0 1

Zq

T−1(∆θ)

 ûd

ûq

 = 2
Z2 − ∆Z2

 Z− ∆Z cos(2θ) ∆Z sin(2θ)
∆Z sin(2θ) Z + ∆Z cos(2θ)

 ûd

ûq

 (13)

The injected HF voltage is as follows:[
ûd

ûq

]
= Um

[
cos(ωi t)

0

]
(14)

The estimated currents in d̂− q̂ coordinate are as follows: îd =
2(Z−∆Z cos(2∆θ))

Z2−∆Z2 Um cos(ωit)

îq =
2∆Z sin(2∆θ))

Z2−∆Z2 Um cos(ωit)
(15)

where Z = Zd + Zq, ∆Z = Zd −Zq.
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For the HF inductance, the resistance is small enough and can be cancelled. Thus, Equation (15)
can be simplified as follows:

îd =
2(ωiL−ωi∆L cos(2∆θ))

(ωiL)
2
−(ωi∆L)2 ui sin(ωit) =

ui sin(ωit)
ωi(L2−∆L2)

(L− ∆L cos(2∆θ))

îq =
2ωi∆L sin(2∆θ))
(ωiL)

2
−(ωi∆L)2 ui sin(ωit) =

ui sin(ωit)
ωi(L2−∆L2)

∆L sin(2∆θ))
(16)

when ∆θ = 0, there is a deviation value in îd. It can be seen from the property of the sine function,
îq ∝ ∆θ, and if ∆θ→ 0 , îq → 0 . Therefore, the estimated rotor position can be converged to the real
value by processing the q̂-axis currents [23]. Then, the d-axis and q-axis estimated currents can be
transformed by three-phase currents. The HF components of the q-axis estimated currents are obtained
by bandwidth filters and are then multiplied by the modulating signal sin(ωi t). The input of the
regulator can be obtained by low-pass filter, which is shown in Figure 4. When ∆θ is small enough,
sin(2∆θ) = 2∆θ, and

F̂(∆θ) =
uih∆L

ωi(L2 − ∆L2)
sin(2∆θ) ≈

uih∆L
ωi(L2 − ∆L2)

2∆θ (17)
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Figure 4. Estimation process of rotor position.

The basic structure of the SOGI is shown in Figure 5. It can be seen that the SOGI is formed by
two second-order generalized integrators, which can have output signals that are orthogonal to each
other and do not delay [24]. Equation (18) shows the transfer functions of the three system outputs, y1,
y2, and y3. Among them, the role of y1 is to eliminate the harmonics of frequency ω, the role of y2 is to
extract the harmonics of frequency ω, and the frequency of y3 is ω and it is orthogonal to y2 [25].

y1
x = s2+ω2

s2+kωs+ω2
y2
x = kωs

s2+kωs+ω2
y3
x = kω2

s2+kωs+ω2

(18)
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Figure 5. Basic structure of the second-order generalized integrator (SOGI).

The improved position observer structure combining the SOGI and HF injection is shown in
Figure 6. The rotor position observer includes two components, I and II. The input of part I is the
estimated q-axis voltage. The output y2 is the HF voltage component in the estimated q-axis, which is
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used to extract the HF component in the input q-axis voltage. ωe1 is the frequency of the HF signal to be
extracted. When the HF component ûqh is multiplied by the HF cosine modulation signal cos(ωh t) of
the same phase, it enters part II. The input of the modulated value u′ is the value after modulation ûqh

and cos(ωh t), and the output y1 is the rotor position error information f c(∆θ), which is used to suppress
the harmonic of a specific frequency, so as to extract the rotor position information accurately. In the
control, the filtering effect and response speed should be weighed to determine the parameter values.
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4. Simulation Analysis

The theoretical speed range that the HF injection algorithm with the SOGI can estimate accurately
is 10 r/min to 300 r/min. Therefore, we chose different speeds to verify in the simulation. The rotor
position estimation model of the PMSM and the whole electric propulsion ship system were built in
MATLAB/Simulink according to the vector control principle and the HF voltage injection algorithm
with the SOGI. The required motor simulation parameters are shown in Table 1.

Table 1. Parameters of the PMSM.

Symbol Quantity Values

np number of pole pairs 2
R stator resistance 1.51 Ω
Ld winding inductance 0.0048 mH
Lq winding inductance 0.0134 mH
J rotational inertia 0.000244 kg.m2

B damping coefficient 0.0002517
Ψf rotor flux 0.1073 Wb

Udc direct voltage 380 V
P rated power 1 kW

The motor starts with TN = 2 Nm and the initial speed n = 50 r/min. At t = 1 s, the speed jumps to
100 r/min; at t = 1.5 s, the speed jumps to 150 r/min; and at t = 1.75 s, the speed reverses to −150 r/min.
At n = 150 r/min, the given load jumps to 4 Nm at t = 0.5 s in the second simulation. The simulation
waveforms are shown in Figures 7–9.

Figure 7 gives the waveforms of the d-axis and q-axis currents. The q-axis currents are related to the
torque and estimated rotor position and they fluctuate with the changes of speed from Figure 7b. It can
be seen in Figure 7d that the changes of the q-axis currents agree with the changes of the torque, which
conforms to theoretical analysis. In addition, the current on the d-axis is near zero from Figure 7a,c.

Figure 8 displays the waveforms of rotor speed. It can be seen from Figure 8a,b that actual speed
and estimated speed are very close during the steady operation. There are large deviations only at the
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start, at the moment of load change and speed change. As seen in Figure 8c, the deviations are close to
zero. Furthermore, at n = 50 r/min, the ripples are at 0.4%, at n = 100 r/min, the ripples are at 0.5%, at
n = 150 r/min, the ripples are at 0.53%, and at n = -150r/min, the ripples are at 0.67%. In the second
simulation with torque changes, the speed can also be estimated accurately from Figure 8d–f.
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Figure 7. Waveforms of currents in d-axis and q-axis: (a) d-axis current with speed changes; (b) q-axis
current with speed changes; (c) d-axis current with torque changes; (d) q-axis current with torque changes.
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Figure 8. Waveforms of rotor speed: (a) actual rotor speed with speed changes; (b) estimated rotor
speed with speed changes; (c) errors between actual rotor speed and estimated rotor speed with speed
changes; (d) actual rotor speed with torque changes; (e) estimated rotor speed with torque changes;
(f) errors between actual rotor speed and estimated rotor speed with torque changes.
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Figure 9. Waveforms of rotor position: (a) actual rotor position with speed changes; (b) estimated rotor
position with speed changes; (c) errors between actual rotor position and estimated rotor position with
speed changes; (d) actual rotor position with torque changes; (e) estimated rotor position with torque
changes; (f) errors between actual rotor position and estimated rotor position with torque changes.

Figure 9 are the waveforms of rotor position. It can be seen that actual position and estimated
position are very close and the estimated position slightly lags behind the actual position from
Figure 9a,b,d,e, and there is a large deviation only when the rotor runs a full circle, which is shown
in Figure 9c,f. In the other operation stages, the errors are in the range of 0.05 rad to 0.2 rad from
Figure 9c,f.

A comprehensive simulation model of the electric propulsion ship system is constructed by taking
the output torque of the propeller model as the load torque of the PMSM and the motor speed as the
input of the propeller model. When the propulsion motor is started, the given speed is 100 r/min. At
t = 3 s, the speed jumps to 170 r/min. The estimated rotor position and speed are taken as feedback
signals during operation and the waveforms of the propulsion motor speed and torque are shown in
Figure 10. At the beginning, the motor is in an accelerated state, and the output torque of the propeller
model, namely the load torque of the propulsion motor, increases with the increase of the rotating
speed. After about 0.5 s, the speed stabilizes at 100 r/min. At that time, the load torque of the motor
starts to decrease and gradually stabilizes. After 3 s, with the re-acceleration of the motor, the load
torque also begins to increase. Until the propulsion motor runs stably at 170 r/min, the load torque
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began to decrease and finally stabilizes. The results show that the HF injection position estimation
strategy can be applied to the whole ship system.Electronics 2020, 9, x FOR PEER REVIEW 12 of 15 
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Figure 10. Waveforms of propulsion motor speed and torque: (a) propulsion motor speed; (b) propulsion
motor torque.

From the above simulation waveforms, it can be seen that the HF injection algorithm based on the
SOGI can estimate the rotor speed accurately within acceptable deviations. Furthermore, the whole
electric propulsion ship system can also operate normally with the sensorless control strategy.

5. Experimental Analysis

To further verify the accuracy of the proposed HF injection algorithm based on the SOGI, the
diagram of the system hardware structure and the experimental setup of the electric propulsion ship in
the laboratory are shown in Figure 11, in which the TMS320F28335 DSP was adopted as the digital
controller. The experimental motor parameters are the same as the simulation parameters. The speed
is obtained by speed sensors; the currents are obtained by the current probe and displayed on the
oscilloscope; the torque is calculated according to the measured currents.
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Figure 11. Experimental setup of the PMSM: (a) system hardware structure; (b) experimental PMSM;
(c) control circuit.

The experimental waveforms of rotor position and speed are shown in Figure 12. The actual
position is measured by mechanical sensor and the estimated rotor position is obtained using the
calculation from the HF injection algorithm with the SOGI. It can be seen that the estimated values
fluctuate within a certain range around the actual value.
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To sum up, the HF injection algorithm based on the SOGI can estimate the rotor position and
speed accurately at low speed in the experimental PMSM and it is applicable in the PMSM system.

6. Conclusions

It is inevitable that the electric propulsion ship will replace the traditional diesel engine propulsion
ship, and it is significant to study the control method of the propulsion PMSM in the electric propulsion
ship system. The HF injection position estimation algorithm based on the SOGI is proposed on the
basis of analyzing the structure of the electric propulsion ship system and the vector control of the
PMSM. The algorithm can be used to estimate the rotor position and speed at low speed in the electric
propulsion ship system within acceptable deviations. In fact, the position sensorless control technology
can represent the redundancy of the control system with sensors. Subsequently, when there is a fault in
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the mechanical sensors, the control system can switch to the sensorless operating control mode, which
can further improve the reliability of the electric propulsion ship system.
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