
electronics

Article

Trajectory Planning Algorithm of UAV Based on
System Positioning Accuracy Constraints

Hao Zhou 1,4 , Hai-Ling Xiong 1,2,*, Yun Liu 3, Nong-Die Tan 1 and Lei Chen 1

1 College of Computer and Information Science, Southwest University, Chongqing 400715, China;
zhouhao19@email.swu.edu.cn (Z.H.); tnd1201@email.swu.edu.cn (N.-D.T.);
chenlei0207@email.swu.edu.cn (L.C.)

2 Business College, Southwest University, Chongqing 402460, China
3 College of Artificial Intelligence, Southwest University, Chongqing 400715, China; yunliu@swu.edu.cn
4 College of Big Data and Artificial Intelligence, Chizhou University, Chizhou 247000, China
* Correspondence: xionghl@swu.edu.cn; Tel.: +86-023-46752718

Received: 27 December 2019; Accepted: 29 January 2020; Published: 3 February 2020
����������
�������

Abstract: This paper describes a novel trajectory planning algorithm for an unmanned aerial vehicle
(UAV) under the constraints of system positioning accuracy. Due to the limitation of the system
structure, a UAV cannot accurately locate itself. Once the positioning error accumulates to a certain
degree, the mission may fail. This method focuses on correcting the error during the flight process of
a UAV. The improved genetic algorithm (GA) and A* algorithm are used in trajectory planning to
ensure the UAV has the shortest trajectory length from the starting point to the ending point under
multiple constraints and the least number of error corrections.

Keywords: unmanned aerial vehicle; UAV; trajectory planning; GA; A*; multiple constraints

1. Introduction

An unmanned aerial vehicle (UAV) is an aircraft capable of completing missions with the
autonomous flight capability. UAVs are currently widely used in vision systems, such as cargo
transfer [1], object detection [2–4], and vision-assisted navigation [5–7].

The idea for scientists to develop UAVs is to fly autonomously and accomplish specific tasks.
In modern warfare, the air defense system is constantly improving, and air defense technology is
becoming more and more advanced. Thus, improving the autonomy of unmanned aerial vehicles is
an important trend for the future. Trajectory planning is a key technology to improve the autonomy
of a UAV and an effective means to implement flight missions. It has important significance in both
theoretical and practical applications. The aircraft path planning can effectively ensure the operational
performance of a UAV, which provides technical support for a UAV to successfully complete the flight
mission, realize the autonomous control of a UAV, and to complete the autonomous flight.

Trajectory planning refers to the planning of an optimal flight path of the aircraft between the
starting point and the ending point, considering factors such as fuel consumption, maneuverability,
arrival time, flight area, and threat level. Trajectory planning is an important guarantee for the
successful completion of a UAV and one of the key technologies for mission planning systems.

Due to technical limitations, in the early 1980s, trajectory planning relied heavily on manual
operations by technicians. With the continuous development and improvement of the prevention
and control system and technology, the accuracy requirements of a UAV for planning the trajectory
are getting higher and higher, and artificial path planning has become more and more difficult to
meet the requirements. With the rapid development of communication technology, various methods
for detecting flight environment information have emerged endlessly, which makes the information
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obtained by the trajectory planners more and more abundant. In order to improve flight accuracy,
the planned trajectory should satisfy the requirements of terrain following, terrain avoidance, and
threat avoidance while satisfying the performance constraints of the aircraft. Due to the complexity
and variety of these constraints, it is difficult to handle and complete such complex tasks in manually.

In order to realize the autonomous trajectory planning under different planning environments,
scientists have carried out in-depth research on the trajectory planning of an UAV, and proposed
various algorithms, such as the Voronoi diagram method [8–11], A* algorithm [12–14], particle swarm
optimization (PSO) algorithm [15–17], genetic algorithm [18–20], neural network algorithm [21,22],
artificial potential field method [23–25], simulated annealing algorithm [26], and so on.

The process of finding the best trajectory includes consideration of constraints. The optimal path
must produce an optimal objective function and satisfy multiple constraints. However, conventional
methods can only handle one objective function at a time, and they cannot handle optimization
problems involving two or more objective functions. Thus, a combined objective function is formed
by mathematically aggregating two or more separate objective functions. The weighted values are
introduced into the combined objective function formula to reflect its relative importance. In this
work, we propose a trajectory path planning algorithm of a UAV based on genetic algorithm and A*
algorithm under multiple constraints, and then satisfied the system positioning accuracy conditions.

The paper is organized as follows: Section 2 provides the necessary background: problem
statement, model assumptions, and multiple constraints. Section 3 describes in detail an UAV trajectory
planning Problem 1 based on positioning accuracy constraints, and uses an improved genetic algorithm
to design a trajectory planning algorithm, and finally get the results of the trajectory planning. Section 4
describes in detail an UAV trajectory planning Problem 2 based on Problem 1, and uses an improved A*
algorithm to design a trajectory planning algorithm, and finally get the results of the trajectory planning.
Section 5 presents the performance comparison of the proposed algorithm with the traditional swarm
intelligence algorithm. Section 6 concludes the paper and gives the further work.

2. Background

2.1. Problem Statement

In practical applications, the planning scope is often up to one million square kilometers, and the
planning area environment is very complicated. In addition to the topographical factors, the planning
process needs to consider various constraints such as aircraft maneuverability, penetration requirements,
and flight missions. This research is a simplified version of the actual problem, without considering
the aircraft’s maneuverability, penetration requirements, threats, and many other factors. However,
there are multiple constraints.

In this research, we mainly consider the trajectory error correction problem of an UAV based on
system positioning accuracy constraints. Due to system structure limitations, the positioning system of
such aircraft cannot accurately locate itself. Once the positioning error accumulates to a certain extent,
the task may fail. Therefore, correcting the positioning error during flight is an important task in
UAV trajectory planning. The trajectory planning problem of an UAV is a complex multi-constrained
optimization problem. UAV trajectory planning refers to considering the positioning error during
the flight due to a series of factors such as the environment and weather during the flight. Therefore,
some safe positions are assumed in the flight area (called correction points) for safety correction.
In order to enable a UAV to follow the original trajectory planning from the starting point to the ending
point, several correction points are needed in the flight area to correct the trajectory error of an UAV.

Under the premise of many constraints, the correct point is selected to correct the error of a UAV,
and the best flight path from the starting point to the ending point is planned for an UAV, so that the
number of times a UAV is corrected by the correct points during the flight is as small as possible, and the
trajectory length is as small as possible. How to ensure that a UAV meets the various constraints and
the optimal trajectory requirements, and to quickly and accurately obtain the true flight trajectory is
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the problem that needs to be solved urgently. In the aircraft trajectory planning problem, the standard
planning problem is usually to establish a flight trajectory with the optimal cost function value through
a pre-set cost function.

2.2. Model Assumptions and Multiple Constraints

The aim of this study is to find the best optimal trajectory planning for an UAV under the limit of the
positional accuracy of a UAV system, which is a multi-constraint combinatorial optimization problem.

Assume that the flight area of an UAV and the safe positions is as shown in Figure 1. The starting
point is A and the ending point is B. The constraints of its trajectory are as follows:

(1) A UAV needs real-time positioning during flight, and its positioning error includes vertical
error and horizontal error. For every 1m flight, the vertical error and horizontal error will be increased
by δ dedicated units, respectively. The vertical error and horizontal error should be less than θ units
when reaching the ending point, and for the sake of simplification, assume that when the vertical error
and the horizontal error are both less than θ units, an UAV can still follow as the planned trajectory
to fly.

(2) A UAV needs to correct the positioning error during flight. There are some safety positions in
the flight area (called correction points) can be used for error correction. The type of the correction
point includes horizontal and vertical correction points. If a UAV reaches the correct point, the error
can be corrected based on the type of the correct points, assuming that the safety positions in the
flight area (i.e., the position of the correction points) is determined before flight trajectory planning.
Figure 1 is a schematic diagram of a certain trajectory. If the vertical error and the horizontal error
can be corrected in time, a UAV can fly according to the predetermined trajectory, and finally reaches
the destination.
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Figure 1. Schematic diagram of an UAV trajectory planning area. The yellow points are the horizontal
error correction point, the blue points are the vertical error correction point, the starting point is point
A, and the destination is point B. The black curve represents a trajectory.

(3) At the starting point A, the vertical and horizontal error of an UAV are both zero.
(4) After the correction of the vertical error correction point, the vertical error will become zero

and the horizontal error will remain unchanged.
(5) After the correction of the horizontal error correction point, the horizontal error will become

zero and the vertical error will remain unchanged.
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(6) Vertical error correction can be performed when the vertical error of the aircraft is not greater
than α1 units and the horizontal error is not greater than α2 units.

(7) Horizontal error correction can be performed when the vertical error of the aircraft is not
greater than β1 units and the horizontal error is not greater than β2 units.

(8) An UAV is limited by the structure and control system during the turn and cannot complete
the immediate turn (i.e., the direction of an UAV cannot be changed abruptly), if the minimum turning
radius of an UAV is 200 m [27].

3. Problem 1

To plan a trajectory for an UAV from point A to point B, for the above-mentioned conditions (1) to
(7), and comprehensively consider the following optimization goals: (A) the trajectory length is as
small as possible; (B) the number of corrections through the correct points is as small as possible.

If the above-mentioned parameters of the data are:
α1 = 25, α2 = 15, β1 = 20, β2 = 25, θ = 30, δ = 0.001.
A data set contains the location and type of correction points. Table 1 shows some data of the

data set. The unit of the coordinate is meter. There are 613 points in the data set. The number 0 is the
starting point, the number 612 is the ending point, and the rest is correction points. The spatial position
of each correction point is determined by the three-coordinate information of x, y, and z. For the type
of the correction points, 0 represents the horizontal error correction point and 1 represents the vertical
error correction point.

Table 1. Some data of the data set [27].

The Number of the
Correction Points X-Coordinate Y-Coordinate Z-Coordinate The Type of the

Correction Points

0 0.00 50,000.00 5000.00 The Starting Point
1 33,070.83 2789.48 5163.52 0
2 54,832.89 49,179.22 1448.30 1
3 77,991.55 63,982.18 5945.82 0
4 16,937.18 84,714.34 5360.29 0
5 339.69 14,264.46 3857.85 1
6 3941.93 74,279.86 9702.92 1
7 45,474.01 26,849.48 6411.72 1
8 86,806.90 5351.31 4409.85 0
9 23,602.88 68,460.10 88.47 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
610 14,870.60 95,939.17 8248.84 0
611 93,009.57 4549.33 7882.61 1
612 100,000.00 59,652.34 5022.00 The Ending Point

3.1. Multi-Constraints Optimization Problem

The focus of this research is to plan a trajectory for an UAV from the starting point to the ending
point, and finding the optimal trajectory satisfied with the multi-constraints in Problem 1, so we build
mathematical models of the problem.

3.1.1. Correction Area

The trajectory planned by a UAV is three-dimensional, and it is a space with many correction
points. (x, y, z) is defined as the coordinates of correction point in the correction area, where x is the
error in the horizontal direction, y is the error in the vertical direction, and z indicates the altitude.
The physical space of the trajectory planning can be expressed as a set:

S =
{
(x, y, z)

∣∣∣0 ≤ x ≤ Xmax, 0 ≤ y ≤ Ymax, 0 ≤ z ≤ Zmax
}

(1)
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where Xmax,Ymax and Zmax refer to the maximum values of the corresponding coordinates, which can
be obtained from the data set. Moreover, from the data set, we can dram the vertical error correction
point and the horizontal error correction point in three-dimensional space. Figure 2 is the result we
have drawn with MATLAB.
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3.1.2. Objective Function

Two objective optimization functions are proposed for minimizing the trajectory length of a UAV
and the number of times an UAV has been corrected:

F1 = min(
m∑

i=1

(ηi + λi + hi)) (2)

F2 = min(
m∑

i=1

(ai + bi)) (3)

where F1 represents the trajectory length of an UAV from the starting point A to the ending point B,
F2 represents the number of times an UAV has been corrected through the correction area, m represents
the total number of corrections of an UAV throughout the flight, ηi represents the distance of an
UAV’s i-th flight, λi represents the correction distance of the i-th flight to the vertical error correction
point, hi represents the correction distance of the i-th flight to the horizontal error correction point,
ai represents an UAV’s i-th flight reaches the vertical error correction point, and bi represents a UAV’s
i-th flight at the horizontal error correction point.
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3.1.3. Multi-Constraints

The vertical and horizontal errors will increase by δ units when a UAV flies one meter each
time. The vertical and horizontal errors should be less than θ units when the ending point is reached.
Therefore, the total value of the vertical and horizontal errors of an UAV during the entire flight must
be less than θ, and the distance ηi of each flight of a UAV will not exceed the displacement lAB of the
entire trajectory:

m∑
i=1

aiηiδ < θ (4)

m∑
i=1

biηiδ < θ (5)

0 ≤ ηi ≤ lAB (6)

For the correction distance λi meters of a UAV’s i-th flight to the vertical error correction point,
when a UAV reaches the vertical error correction point, it is assumed that a UAV’s i-th flight, ηi meters
will increase its vertical error by δηi units:

λi = aiηiδ, i = 1, . . . , m (7)

For the correction distance hi meters of an UAV’s i-th flight to the vertical error correction point,
when a UAV reaches the horizontal error correction point, it is assumed that a UAV’s i-th flight, ηi meters
will increase its horizontal error by δηi units:

hi = biηiδ, i = 1, . . . , m (8)

During the flight, a UAV is either corrected after reaching the vertical error correction point or
reaching the horizontal error correction point. In order to perform error correction more accurately
according to the type of error correction of the correction point, for the i-th flight, the binary variables
ai and bi are introduced. The vertical error correction can be performed when a UAV’s vertical error is
not greater than α1 units and the horizontal error is not greater than α2 units. The horizontal error
correction can be performed when a UAV’s vertical error is not greater than β1 units and the horizontal
error is not greater than β2 units. The binary variables ai and bi can be expressed as follows:

ai =

{
1, when UAV reaches the vertical error correction point,

0, when UAV does not reach the vertical error correction point,
(9)

bi =

{
1, when UAV reaches the horizontal error correction point,

0, when UAV does not reach the horizontal error correction point,
(10)

Then, the objective function should also meet the following constraints, which must be satisfied
when an UAV performs vertical error correction:

λi ≤ α1, hi ≤ α2 (11)

Further, the objective function must be satisfied when an UAV performs horizontal error correction:

λi ≤ β1, hi ≤ β2 (12)

where λi is the corrected distance of an UAV to the vertical correction point on the i-th flight, hi is the
corrected distance of an UAV to the horizontal correction point on the i-th flight, α1, β1 is the vertical
error of an UAV, and α2, β2 is the horizontal error of an UAV.
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For Problem 1, the objective function is to make the times of corrections through the correction
area as small as possible while the trajectory length is as small as possible.

In summary, we get a two-objective optimization model with multiple constraints:

F1 = min(
m∑

i=1
(ηi + λi + hi))

F2 = min(
m∑

i=1
(ai + bi))

s.t.



m∑
i=1

aiηiδ < θ

m∑
i=1

biηiδ < θ

0 ≤ ηi ≤ lAB
λi = aiηiδ,
hi = biηiδ,
ai, bi = 0, 1,
ai + bi = 1,

λi ≤ α1, hi ≤ α2,
λi ≤ β1, hi ≤ β2,

, i = 1, . . . , m

(13)

3.2. Trajectory Planning Algorithm for the Problem 1

In order to solve the two-objective optimization model, it should be transformed into a
single-objective programming model. In order to weigh the optimization goals of F1 and F2, we can
choose a combination that takes into account both of them. The two are given a weight α(α ≤ 1), and α
is called a preference coefficient. So, the objective function F can be expressed as:

F = min(α
m∑

i=1

(λi + ηi + hi) + (1− α)
m∑

i=1

(ai + bi)),α ≤ 1 (14)

We have successfully established the objective function and constraints for Problem 1, and we
will begin to solve it. The trajectory planning problem is a nonlinear programming problem with
multiple constraints, which needs to consider the overall optimization, and to minimize the calculation
amount while avoiding falling into a local optimum, and our study is to find the optimal flight path
of an UAV from the starting point to the destination in three-dimensional space. Then we use the
genetic algorithm. The basic idea of a genetic algorithm is to simulate the evolutionary process of
biological genetics. Based on the principles of “survival of the fittest”, with the help of selection,
crossing, and mutation, the problem to be solved approaches the optimal solution step by step from the
initial solution. In trajectory planning, each chromosome (individual) of a genetic algorithm represents
the trajectory of a UAV. The coding method of genes is also the coding method of trajectory nodes.
The fitness function is changed by the cost function.

In this research, a UAV trajectory planning problem is combined with the idea of the genetic
algorithm, and the real number gene coding method and specific genetic operator are used to meet the
flight path trajectory of various constraint parameters to achieve the approximate optimal solution.
The specific operation process is as follows:

The first step: using the real number gene coding. Use the fixed-length real number gene coding
method showed in Figure 3 to convert the position information of an UAV in three-dimensional space
into the chromosomal gene structure (as shown in Figure 4). Each gene of the chromosome contains
the three-dimensional spatial coordinate (x, y, z) information of the gene, which records the following
information of the spatial gene: one is whether the gene is feasible, and the other is whether the
connecting line segment between the gene and the next gene is feasible. This gene sequence is only
feasible if the above conditions are acceptable.
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Figure 5 shows the generation process of the trajectory node when i = 0: the starting point A to the
ending point B can determine the slope of the line, and then find the function equation of the four sides
of the area, use the Random function to generate the random number x of the specific area, and then
in the three cases, the Random function is used again to combine the functions of the four sides to
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generate y, and then the height z of a UAV is generated within a specific range, thereby obtaining the
first gene of the trajectory, which is calculated in turn, and will be obtained at that time. For the last
gene of the trajectory, we save these genes one by one and form the gene sequence of the trajectory,
then the gene sequence is a chromosome. In the next work, this method is used to cycle through,
thus completing the entire trajectory initialization work.

The third step: determine the trajectory fitness function. Suppose that A can determine that the
trajectory of B is represented by z1, and its cost function is composed of optimization item f1(z1) and
penalty item f2(z1), so:

f (z1) = f1(z1) + f2(z1) (15)

Among them, the optimization term of the trajectory cost function:

f1(z1) = ω1[g1(z1)] +ω2[g2(z1)] (16)

where g1(z1) denotes the cost function value of the horizontal error on the arc of the trajectory A
to B, g2(z1) denotes the cost function value of the vertical error on the arc of the trajectory A to B,
ω1 represents the weight of the horizontal error in the total cost of the horizontal error and the vertical
error, w2 represents the weight of the vertical error in the total cost of the horizontal error and the
vertical error, they should satisfy ω1 +ω2 = 1 and the weight distributions of ω1 and ω2 are similar.

The penalty of the trajectory cost function:

f2(z1) = ω1[p1(z1)] +ω2[p2(z1)] (17)

where p1(z1) denotes the trajectory which the flight height of an UAV exceeds the maximum flight
altitude of an UAV, p2(z1) denotes the trajectory which an UAV trajectory length is greater than the
maximum range of an UAV, pi denotes a penalty function for the i-th term, and ωi denotes a penalty
factor for the i-th term, i = 1, 2.

Take the trajectory fitness function:

f itness(z1) =
1

f (z1)
(18)

where f (z1) represents the cost of the trajectory chromosome z1, that is to say, the trajectory planning
problem will be transformed from the cost minimization problem to the trajectory fitness maximization
problem in genetic evolution.

The fourth step: Solve the fitness value of the formula of the fitness function, as shown in Figure 6.
Figure 6 shows the process of solving the fitness value of the trajectory population. First, each

trajectory in the population is extracted in turn, and the trajectory is segmented. Each trajectory is
equally divided by 10 points, and the actual length of the trajectory segment and all penalty items is
calculated. Ten points respectively ask for the penalty value and are accumulated for averaging. Then,
calculate the length, vertical error, and horizontal error of the trajectory segment, and combine the
constraints determined by the adjacent trajectory nodes to meet the requirements of each segment. Then,
calculate the cost function and punishment for the trajectory segment. The values are accumulated.
If the current trajectory is calculated, we need to save their value and penalty value separately,
then calculate each trajectory in turn, and finally, when all the trajectories are calculated, find the fitness,
which is the maximum value of the cost. The given constraints are used to determine if the trajectory is
feasible and to save it.
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The fifth step: determination of crossover probability and mutation probability. To prevent the
genetic algorithm from converging prematurely, an improved adaptive genetic algorithm is used to
solve the optimal flight path. The improved adaptive genetic algorithm adjusts the corresponding
cross-probability Pr and genetic probability Pm according to the change of fitness during the evolution
process. In the improved adaptive genetic algorithm, Pr and Pm are adaptively adjusted as follows:

Pr =

 Pr1 −
(Pr1 − Pr2)( f ∗ − f)

fmax− f
, f ∗ ≥ f

Pr1, f ∗ ≤ f
(19)

Pm =

 Pm1 −
(Pm1 − Pm2)( f − f)

fmax − f

Pm1, f ≤ f
, f ≥ f (20)

where fmax represents the maximum value of the population fitness, f represents the average value
of the current population fitness, f ∗ represents the fitness value of the larger of the two individuals
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currently used to cross, and f represents the fitness value of the individual which needs to perform
mutation operation. The improved adaptive genetic algorithm mainly makes the Pr, Pm of the optimal
individual in the early stage of evolution not zero, and it is not easy to fall into the local optimal
solution, as shown in Figure 7:

Electronics 2020, 9, x FOR PEER REVIEW 11 of 23 

 

The fifth step: determination of crossover probability and mutation probability. To prevent the 
genetic algorithm from converging prematurely, an improved adaptive genetic algorithm is used to 
solve the optimal flight path. The improved adaptive genetic algorithm adjusts the corresponding 
cross-probability 𝑃  and genetic probability 𝑃  according to the change of fitness during the 
evolution process. In the improved adaptive genetic algorithm, 𝑃  and 𝑃  are adaptively adjusted as 
follows: 

𝑃 = ⎩⎪⎨
⎪⎧𝑃 − (𝑃 − 𝑃 ) 𝑓∗ −𝑓 − , 𝑓∗ ≥ −𝑓𝑃 , 𝑓∗ ≤ −𝑓  (19)

𝑃 = ⎩⎪⎨
⎪⎧𝑃 − (𝑃 − 𝑃 )(𝑓 − )𝑓 −𝑃 , 𝑓 ≤ −𝑓 , 𝑓 ≥ −𝑓  (20)

where 𝑓  represents the maximum value of the population fitness,  represents the average value 
of the current population fitness, 𝑓∗ represents the fitness value of the larger of the two individuals 
currently used to cross, and  𝑓 represents the fitness value of the individual which needs to perform 
mutation operation. The improved adaptive genetic algorithm mainly makes the 𝑃 , 𝑃  of the 
optimal individual in the early stage of evolution not zero, and it is not easy to fall into the local 
optimal solution, as shown in Figure 7: 

 
Figure 7. Improved adaptive crossover probability and mutation probability. 

Because adaptive adjustment may cause the population to fall into a local optimal solution, we 
adopt an improved method to improve 𝑃 , 𝑃  so that the optimal individuals 𝑃 , 𝑃  in the early 
evolution stage are not zero. The specific improvement process is to increase the population’s 
maximum fitness value 𝑃  to 𝑃  and 𝑃  to 𝑃 . As shown in Figure 6, this will make the 
individual with the largest fitness value in the initial stage of evolution in a constant state, and check 
and mutate according to the size of 𝑃 , 𝑃 . 

The above five steps are an UAV trajectory planning algorithm process of Problem 1. The overall 
algorithm flow can be expressed in Figure 8. 

Figure 7. Improved adaptive crossover probability and mutation probability.

Because adaptive adjustment may cause the population to fall into a local optimal solution,
we adopt an improved method to improve Pr, Pm so that the optimal individuals Pr, Pm in the early
evolution stage are not zero. The specific improvement process is to increase the population’s maximum
fitness value Pr to Pr1 and Pm to Pm1. As shown in Figure 6, this will make the individual with the
largest fitness value in the initial stage of evolution in a constant state, and check and mutate according
to the size of Pr1, Pm1.

The above five steps are an UAV trajectory planning algorithm process of Problem 1. The overall
algorithm flow can be expressed in Figure 8.Electronics 2020, 9, x FOR PEER REVIEW 12 of 23 
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Figure 8 shows the combination of genetic algorithm and trajectory planning and the entire
planning process. In Problem 1, we used the real number coding method to transform the trajectory
planning problem into a genetic algorithm chromosome problem. Under multiple constraints and
driven by the fitness function, the evolution operation of each generation is completed through
operations such as genetic crossover and mutation, and finally decoded to obtain the required track
node and complete the solution of the optimal solution for the trajectory planning.

3.3. Simulation Results and Analysis of the Trajectory Planning Algorithm for the Problem 1

According to the above algorithm, the results of the Problem 1 are calculated by using the data set.
For the parameters of the data set, the vertical error and horizontal error will increase by δ

dedicated units for each flight of 1 m; when a UAV reaches the ending point, the vertical error and



Electronics 2020, 9, 250 12 of 21

horizontal error should be less than θ units; when vertical error correction is performed, the vertical
error of an UAV is not more than α1 units, and the horizontal error is not more than α2 units; when the
horizontal error correction is performed, the vertical error of an UAV is not more than β1 units, and the
horizontal error is not more than β2 units. Under these parameters, we calculate the shortest path of the
trajectory under the given constraint condition, and calculate the minimum number of times an UAV
corrected by the correct area. The trajectory planning path map of the data set is shown in Figure 9.Electronics 2020, 9, x FOR PEER REVIEW 13 of 23 
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Figure 9 shows the trajectory planning path of the data set. Firstly, the data of the data
set is filtered and processed, and imported into MATLAB software. The discrete point maps of
these three-dimensional spaces are drawn according to the type of correction points of an UAV.
The mathematical model is established by given multiple constraints and designed objective function,
and then the idea of genetic algorithm is used to analyze the feasibility of the horizontal error correction
point and the vertical error correction point in the discrete point respectively. After the screening,
through the fitness function, some fitness values are determined in turn, and the trajectory formed by
the fitness function values is the optimal trajectory length.

Before determining the above-mentioned trajectory planning path and the number of times an
UAV through the correct area for correction, the position of the corrected vertical and horizontal errors
can be determined, and the error correction point number and the path planning of the error before the
correction are obtained. The optimal trajectory length is 16,972.695304 m. The results are shown as
Table 2.

It can be seen from Table 2 that the shortest path to the trajectory set of the data set is according to
the process of the above algorithm, that is, to initialize a gene, save these genes and form the gene
sequence of the trajectory, then the gene sequence is a chromosome. Using this method to cycle
back and forth, we can get a lot of chromosomes, then get the appropriate function value from the
determined moderate function, and use the given constraints to determine whether the chromosome is
feasible, to get the optimal trajectory length. On this basis, the number of times of correction of the
correction area is calculated to be nine, and the error correction point number is obtained from the
starting point.
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Table 2. Corrects result for Problem 1.

The Number of
the Correction Points

The Type of
the Correction Points

0 The Starting Point
504 1
295 0
124 1
76 0
34 1
12 0
404 1
595 0
398 1
612 The Ending Point

4. Problem 2

In addition to the constraints including Problem 1, Problem 2 including the above-mentioned
condition (8) in Section 2. That is to say, the condition that an UAV is restricted by the structure and
control system when turning is unable to complete the instant turn. And, comprehensively consider
the following optimization goals: (A) the trajectory length is as small as possible; (B) the number of
corrections through the correct points is as small as possible.

If the above-mentioned parameters of the data are:
α1 = 25, α2 = 15, β1 = 20, β2 = 25, θ = 30, δ = 0.001.

4.1. Multi-Constraints Optimization Problem

4.1.1. Objective Function

The focus of this research is to plan a trajectory for a UAV from the starting point to the ending
point, and finding the optimal trajectory satisfied with the multi-constraints in Problem 2, so we build
mathematical models of the problem.

F1 = min(
m∑

i=1

(ηi + λi + hi +
∑

1≤ j≤i

l j)) (21)

F2 = min(
m∑

i=1

(ai + bi)) (22)

where F1 represents the trajectory length of an UAV from the starting point A to the ending point B,
F2 represents the number of times an UAV has been corrected through the correction area, m represents
the total number of corrections of an UAV throughout the flight, ηi represents the distance of an
UAV’s i-th flight, λi represents the correction distance of the i-th flight to the vertical error correction
point, hi represents the correction distance of the i-th flight to the horizontal error correction point,
l j represents the distance that an UAV turns during the j-th flight, ai represents an UAV’s i-th flight
reaches the vertical error correction point, and bi represents an UAV’s i-th flight reaches the horizontal
error correction point.

4.1.2. Multi-Constraints

The above objective function should satisfy the constraints of Problem 1 and the
following constraints:
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(1). When a UAV is flying from position Hi to position Hi+1, due to the limitation of the UAV’s
maneuverability, it will move in an arc segment Hi Hi+1. At this time, the circle is centered on the
intersection of the mid-permanent line of the distance from position Hi to position Hi+1 and the ideal
trajectory of Hi to Hi+1, so the radius ri can be expressed as:

ri =
ηi

2
cosφ, i = 1, . . . , m (23)

where ηi represents the distance of an UAV which flies from position Hi to position Hi+1,ri represents
the turning radius of an UAV’s i-th flight, and φ is the maximum yaw angle that an UAV is allowed to
fly. During the flight of a UAV, it will be limited by the structure and control system, and it will not be
able to complete the instant turn, so the turning distance of the j-th flight of an UAV can be obtained by:

l j = πr j − 2r j, 1 ≤ j ≤ i (24)

(2). Due to the limitation of the UAV’s own maneuverability, a UAV can only turn within a certain
range of yaw angle, that is, its yaw angle is less than or equal to the maximum allowed yaw angle
before it can fly to the next trajectory point. The yaw angle limit is the minimum turning radius limit.
The smaller the turning angle, the more smoothly a UAV can fly. Therefore, suppose the horizontal
projection of the i-th trajectory segment is γi = (xi − xi−1, yi − yi−1), and the maximum yaw angle
allowed by a UAV to fly is φ, then the constraint condition can be expressed as:

cosφ ≤
γi

Tγi+1

‖γi‖‖γi+1‖
, i = 1, 2, . . . , m (25)

(3). A UAV is limited by the structure and control system during the turn and cannot complete the
immediate turn. The minimum turning radius of an UAV is 200 m in Section 2.1, then the constraint
condition can be expressed as:

200 ≤ r j ≤
η j

2
γi

Tγi+1

‖γi‖‖γi+1‖
, j = 1, 2, . . . , i (26)

In summary, the model for Problem 2 can be established as:

F1 = min(
m∑

i=1
(ηi + λi + hi +

∑
1≤ j≤i

l j))

F2 = min(
m∑

i=1
(ai + bi))

s.t.



m∑
i=1

aiηiδ < θ

m∑
i=1

biηiδ < θ

0 ≤ ηi ≤ lAB
λi = aiηiδ, i = 1, . . . , m
hi = biηiδ, i = 1, . . . , m
ai, bi = 0, 1, i = 1, . . . , m
ai + bi = 1, i = 1, . . . , m

λi ≤ α1, hi ≤ α2, i = 1, . . . , m
λi ≤ β1, hi ≤ β2, i = 1, . . . , m

l j = πr j − 2r j,

cosφ ≤ γi
Tγi+1

‖γi‖‖γi+1‖
, i = 1, . . . , m

200 ≤ r j ≤
η j
2

γi
Tγi+1

‖γi‖‖γi+1‖
, j = 1, . . . , m

(27)
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4.2. Trajectory Planning Algorithm for the Problem 2

Problem 2 has a constraint on the minimum turning radius. Therefore, we adopt an improved
sparse A* algorithm, which is an effective method to avoid useless trajectory nodes in space and reduce
the time to search for feasible successor nodes. Using trajectory constraints to search only the effective
space reduces the search space and speeds up the search. So, for Problem 2, we propose a trajectory
planning problem based on the improved sparse A* algorithm. First, we plan the division of space.
Attention should be paid to reducing the number of divided cells as much as possible, thereby reducing
the amount of calculation and improving the algorithm’s convergence speed, so that the algorithm
can plan the feasible trajectory of a UAV in the shortest time. Then, there is the determination of the
cost function.

If g(n) represents the actual cost of a UAV at the current trajectory node n in space:

g(n) = q1Rn(P) + q2Sn(P) (28)

where R,S represents the flight cost of a UAV respectively, the horizontal and vertical error correction
costs of a UAV, and q1, q2 each represent the weight coefficient of R,S.

Rn =
m∑

i=1

ηi (29)

Sn =
m∑

i=1

(ai + bi)ηiδ (30)

where ηi represents the distance of an UAV’s i-th flight, ai represents an UAV’s i-th flight to the
vertical correction point, bi represents an UAV’s i-th flight to the horizontal correction point, and δ
indicates that the horizontal error and vertical error increase by δ units each time an UAV flies 1 metre.
Let h(n) represent the Euclidean distance from the current trajectory node to the target trajectory node
B(xB, yB, zB), and q3 represent the weight coefficient of h(n), then:

h(n) =
√
(xn − xB)

2 + (yn − xB)
2 + (zn − xB)

2 (31)

Therefore, the improved cost function f (n) can be determined as:

f (n) = q1Rn(P) + q2Sn(P) + q3h(n) (32)

A UAV’s online real-time trajectory planning task requires an improved sparse algorithm to
complete the trajectory planning in a short time and a small memory space. The node can be expanded
by an improved cost function, nodes can be expanded with an improved cost function, using two
linked lists, of which the open table stores the nodes to be expanded, and the close table stores the
nodes already. The specific algorithm flow is as follows and can be seen in

Step 1: The search space is divided according to the requirements of the aircraft for the accuracy
of the trajectory.

Step 2: Put the starting point A into the open table, and the closing table is initially empty.
Step 3: If the open table is empty, it means that the search failed, and the algorithm exited.
Step 4: Remove the least costly trajectory node in the open table as the current trajectory node,

and store the point in the closing table.
Step 5: If the current node is midpoint B, the search is ended, and the algorithm exits successfully.

Starting from point B and going back to point A, we get the optimal path from point A to point B.
Otherwise, go to the next step.

Step 6: The successor node of the node with the least expansion cost. Point the parent pointer of
the succeeding node to the node with the least cost.
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Step 7: Calculate the generation value of the successor node according to the improved cost
function formula, and insert the successor node into the open table according to the generation value.

Step 8: Return to step 3. Figure 10:
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Step 6 is to classify the successor nodes of the node with the least expansion point cost as follows:
The first type: If the successor node already exists in the open table, the successor node is discarded;

the node is added to the node table with the least cost; and then calculate and compare the actual cost
g value of the point, determine whether the parent node of the point needs to be relocated, and if so,
update the generation value;

The second type: If the subsequent node is in the closing table, call the Step 7 to calculate the path
cost. If it is smaller, update the total generation value f and actual generation value g of the parent
node. If find that there is a better path to reach this point in the path search, extend this step to the
subsequent nodes of this point;

The third type: If the successor node is not in the open table and the closing table, then the node is
placed in the open table.

4.3. Simulation Results and Analysis of the Trajectory Planning Algorithm for the Problem 2

According to the above algorithm, the results of the Problem 2 are calculated by using the data
set. As the Problem 2 is based on the Problem 1, considering that an UAV is limited by the structure
and control system when turning, it cannot complete the instant turn. According to the Problem 2,
the minimum turning radius of the aircraft is 200 m. Then, use the improved A* algorithm to calculate
its maximum yaw angle, and use MATLAB software to make a path planning path map of the data set.
Figure 11 shows the trajectory planning path map of an UAV.
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Figure 11. Trajectory planning path for the Problem 2.

Figure 11 shows that both the horizontal error correction point and the vertical error correction
point are evenly distributed in the three-dimensional space. This question considers that when a UAV
turns from the current trajectory node in the horizontal direction to the next trajectory node, due to
the limitations of the UAV’s own performance, it can only turn within a certain yaw angle range.
Therefore, through the above algorithm, the feasible correction point is searched in turn. Connect these
feasible correction points, that is, get a trajectory planning path, use this method to cycle back and
forth, which constitutes the optimal trajectory length in Figure 11.

Under the constraint condition that a UAV is turning within a certain yaw angle, the position of
the trajectory planning path and the number of times a UAV passes the correct area for correction can
be determined before the correction of the vertical and horizontal errors, and a UAV starts from the
starting point. The error correction point number and the trajectory planning result table of the error
before correction are shown in Table 3.

Table 3. Corrects result for Problem 2.

The Number of the
Correction Points

The Type of
the Correction Points

0 The Starting Point
346 1
200 0
294 0
136 1
108 1
74 0
462 1
543 0
369 1
457 0
388 1
436 0
612 The Ending Point
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Obtaining the optimal trajectory length from starting point to ending point is 14957.842315 m.
From the table, the number of times of correction of the correction area is calculated 12 times, and the
error correction point number passing through the starting point from the starting point is obtained.

5. Performance Comparison of the Proposed Algorithm with Traditional Swarm
Intelligence Algorithm

5.1. For the Problem 1

For the data set, we compare the proposed improved GA algorithm with the traditional GA
algorithm in trajectory planning. Figure 12 shows the fitness change of traditional GA algorithm:
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In order to compare the performance of the two algorithms more clearly, draw the fitness curves
of Figures 12 and 13 into a unified coordinate system, as shown in Figure 14:
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It can be seen from Figure 14 that: (1) the proposed improved GA algorithm converges significantly
faster than the traditional GA algorithm, (2) the proposed improved GA algorithm has a lower overall
cost for the optimal trajectory search, (3) during the search of the proposed improved GA algorithm,
the shock is small. Therefore, the proposed improved GA algorithm in the paper is significantly better
than the traditional GA algorithm.

5.2. For the Problem 2

Experiments were performed using the basic A* algorithm and the improved A* algorithm, and the
superiority of the algorithm was verified by comparing the path length of the trajectory planning and
the number of correction points passed. Using the data set, the two weight coefficients q1, q2 and q3 of
Formula (32) are set, respectively, as shown in Table 4.

Table 4. The weight coefficient of the improved cost function f (n).

Number q1 q2 q3

1 0.3 0.2 0.5
2 0.3 0.5 0.2

In the course of trajectory selection, the smaller the value of the cost function, the better the
trajectory. Table 5 compares the experimental performance of the proposed improved sparse A*
algorithm and the basic A* algorithm in the same environment.

Table 5. Performance comparison of A* algorithm and the proposed improved sparse A* algorithm.

Number Algorithm Number of Correction Points Passed Trajectory Length

1
Before improvement 31 35,436.632176
After improvement 12 14,957.842315

2
Before improvement 39 41,258.581392
After improvement 15 19,513.452647
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In Table 5, before improvement means that the basic A* algorithm, and after improvement means
that the proposed improved sparse A* algorithm in this paper is used. Numbers 1 and 2 represent
the weight coefficients of numbers 1 and 2 in Table 4. It can be seen from Table 5 that the larger q2

is, the larger correction points are passed, and the larger q3 is, the shorter the trajectory length is.
Therefore, the values of these weighting factors can be adjusted from different needs. Furthermore,
it can be seen that the performance of the improved sparse A* algorithm is significantly better than the
basic A* algorithm.

6. Conclusions

The proposed method allows for multiple constraints optimal trajectory planning using the
improved genetic algorithm (GA) and A* algorithm. The conclusions of this research work are: (1) The
numerical results of the experiment proved that the improved genetic algorithm (GA) and A* algorithm
are good for optimal trajectory planning. (2) All essential constraints like the correction and turning
radius of a UAV are satisfied with all solutions obtained from the trajectory planning algorithm.

Future work should take into account more complex and realistic constraints, such as threats
to the ground or in the air, the avoidance of obstacles, and other constraints of the UAV itself (such
as its own battery life), improve the algorithm optimization model and objective functions (such as
considers flight time [28]), and ensure that UAVs are able to adapt to more complex environments.
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