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Abstract: In this paper, an efficient technique of computation of method of moments (MM) matrix
entries for multilayer periodic structures with NURBS surface and Bézier patches modelling is
proposed. An approximation in terms of constant pulses of generalized rooftop basis functions
(BFs) defined on Bézier patches is proposed. This approximation leads discrete convolutions instead
of usual continuous convolution between Green’s functions and BFs obtained by the direct mixed
potential integral equation (MPIE) approach. An equivalent periodic problem (EPP) which contains
the original problem is proposed to transform the discrete convolutions in discrete cyclic convolutions.
The resultant discrete cyclic convolutions are computed by efficiently using the Fast Fourier Transform
(FFT) procedure. The performance of the proposed method and direct computation of the MM entries
are compared for phases of reflection coefficient. The proposed method is between 9 and 50 times
faster than the direct computation for phase errors less than 1 deg. The proposed method exhibits
a behaviour of CPU time consumption of O(NbLog10Nb) as the number Nb of BFs increases. This
behaviour provides significant CPU time savings with respect to the expected behaviour of O(Nb

2)
provided by the direct computation of the MM matrix entries.

Keywords: integral equations; moment methods; multilayered media; periodic structures;
reflectarrays

1. Introduction

In the design and analysis of electromagnetic devices likes frequency selective surfaces
(FSSs) [1], reflectarrays/transmitarrays [2], leaky wave antennas [3] and metasurfaces antennas [4],
efficient electromagnetic analysis tools of multilayer periodic structures are required. Although
reflectarrays/transmitarrays, leaky wave antennas and metasurfaces antennas are not strictly periodic
structures, in the design of these antennas, it is common practice to assume that each element of the
antenna is located in periodic environment. This is known as the local periodicity assumption [2].

Some popular of numerical tools of periodic structures are based on Finite Element (FE) [5], Finite
Difference Time Domain (FDTD) [6] and MM [7], all methods under periodic boundary conditions.
Although FE and FDTD are mature methods, these methods involve volumetric meshes to model
the multilayer medium which hosts the unit cell of the periodic structure. This volumetric mesh
involves a large amount of numerical computations which slow down the electromagnetic analysis.
Thus, the MM is preferable because the multilayer medium is modelled by Green’s functions and the
volumetric mesh is avoided. The work shown in this paper will be focused in MM formulation for
an analysis of multilayer periodic structures. There are recent papers that attempted sophisticated
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improvements on the MM [8–10], also for multilayer periodic structures [11–13]. The MM is usually
used to solve electric field integral equations (EFIEs) where the unknowns are the induced current
densities on the metallic layout. These EFIEs show hypersingular behaviour of the kernel (Green’s
functions) which cause difficulties in the solution procedure [14]. This hypersingular behaviour may be
avoided if the electric fields are expressed in terms of vector and scalar potentials with weakly singular
kernels. This led to the development of MPIEs [15]. In this latter approach, for the case of periodic
structures, one has to face with the computation of multilayer periodic Green’s functions consisting of
slowly convergent double infinite summations. Fortunately, there are pre-processing techniques to
interpolate efficiently the Green’s functions in terms of Chebyshev polynomials after extracting known
singular behaviour around the source point [11]. Therefore, this approach involves surface mesh to
model the geometry layout hosted in the unit cell of the multilayer periodic structures with accurate
computation of the multilayer periodic Green’s functions. Once an accurate computation of multilayer
periodic Green’s functions is available, the induced current density on the metallic layout is expanded
in terms on BFs weighted by unknown coefficients. When this expansion is taken into account in the
MPIEs and a method of weighted residual is applied, a linear system of equations is obtained. The
elements of the coefficient matrix of the resultant linear system of equations involve the computation
of convolutions between the Green’s function and the BFs used in the expansion of the density current.
These convolutions involve the integration of singular behaviour of the integrand introduced by the
Green’s function when the observation point and the source point are close. Fortunately, there are direct
methods of numerical integration of the singular behaviour of the integrand as double exponential
(DE) formulas [16] or Ma-Rokhlin-Wandzura (MRW) quadrature rules [17,18].

On the other hand, in order to provide accurate electromagnetic models of complex geometries of
the layout, NURBS surfaces are usually used by computer-aided geometry design (CAGD) tools [19].
NURBS surfaces are quite useful because they provide invariance under rotation, scaling, translation
and perspective transformation of control points. Moreover, they allow complex shapes to be defined by
means of a small number of NURBS. These NURBS surfaces are efficiently written in terms of piecewise
Bézier patches as it is described in [19] using Cox-de Boor transformation algorithm [20]. Bézier
patches are parametric surfaces defined by Bernstein polynomials [21,22] and they are suitable for
numerical computation of parameters associated with the surface (curvature, derivatives, integrations)
thanks to the properties of Bernstein polynomials. Thus, Bézier patches are suitable domains to
define known subsectional BFs which approximates the induced density currents on the metallic
surface. In fact, generalized subsectional rooftop BFs are defined on a pair of adjacent Bézier patches
in [19] to approximate the surface density currents induced on metallic surfaces. Despite all these
improvements, the direct computation of MM matrix entries leads to computational complexity of
CPU time consumption as a function of the number of BFs Nb which is roughly O(Nb

2) [23,24]. This
computational complexity is inherent to the direct computation of MM matrix entries because it
requires the computation of a MM matrix with dimensions of Nb×Nb element by element.

In [25,26], the Conjugate Gradient Fast Fourier Transform (CG-FFT) method is proposed to solve
electromagnetic problems. This CG-FFT method uses as BFs rooftops defined on a regular rectangular
mesh to expand the current density. The advantage of this approach is that the convolutions between
Green’s functions and the BFs are expressed as discrete cyclic convolutions which are computed by
FFT algorithm. In this way, the consumption of CPU time involved in the computation of these cyclic
convolutions are proportional to NbLog10(Nb). Thus, the behaviour of CPU time with respect to the
number of BFs, Nb, involves important CPU time savings as Nb increases when it is compared to that
provided by the direct computation of MM matrix entries. However, this approach has a drawback
because it uses regular rectangular meshes. In order to model accurately complex geometries (e.g.,
geometries with a combination of thin strips and/or patches, patches with curve boundaries, etc.) it
needs a very dense mesh. This requires a high number of rooftops to approximate the surface currents
which leads to systems of equations with a high number of unknowns.
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In other very general formulations for multilayered problems [27,28], Rao-Wilton-Glisson (RWG)
BFs [29] defined on triangular surfaces are also approximated in an expansion of pulses. However, this
approximation is accurate for sufficient separation of the source and the observation triangular surfaces.
Under this condition, the MM matrix entries are computed using a conventional pre-corrected FFT
algorithm [30].

In this work, we used generalized rooftop defined over pair of adjacent Bézier patches. These
rooftops are approximated in an expansion of pulses with enough dense equi-spaced meshes in order to
keep the high-order description of the geometry. Thus, the approach is suitable for complex geometries
(geometries with a combination of thin strips and/or patches, patches with curve boundaries, etc.)
when very dense equi-spaced meshes are used in the pulse expansion. This approximation leads to
discrete convolutions instead of usual continuous convolution between Green’s functions and BFs.
Since the Green’s functions and generalized rooftops involved in the discrete convolutions are not
strictly periodic functions, an EPP which contains the original problem is proposed [26]. We show that
this new approach leads to discrete cyclic convolutions which were be efficiently computed for a very
dense equi-spaced mesh by means of an FFT procedure. Since the original problem is contained in
the EPP, this approach does not require considering different formulations when the source and the
observation points are close or far. Moreover, unlike the CG-FFT method, the increment of density of
the equi-spaced mesh does not lead to an increment of number of unknowns.

This paper is organized as follows. Section 2 shows a description of the problem which is
faceted by the direct MM using a generalized rooftop defined on a pair of adjacent Bézier patches and
‘razor-blade’ as weighted functions. In this section, the formulation of direct numerical integration
involved in the MM matrix entries is shown. Section 3 shows an efficient computation of these matrix
entries using the pulse approximation of the generalized rooftop BFs and EPP approach. Section 4
shows an efficient computation of integrals of the Green’s functions in each pulse domain which are
required in the formulation described in the previous section. Section 5 shows convergence results
and CPU time consumption obtained by the proposed method and by the direct computation of the
MM matrix entries. Validations of both numerical techniques are also shown with different periodic
structures. Finally, the conclusions are provided in Section 6.

2. Description of the Problem

Figure 1 shows a multilayer periodic structure. The patches are assumed to be PEC with negligible
thickness. The multilayer substrate consists of N lossy dielectric layers with thickness dk and complex
permittivity εk= ε0εr,k(1-jtanδk) (k=1, . . . ,N). The lower limit of the multilayer substrate is a ground
plane. The qth-interface hosts a periodical array of patches with arbitrary geometry. In order to simplify
the notation, we show a formulation with unique interface which hosts a periodical array of patches.
The formulation can be easily extended with more interfaces with periodical structures. The periodic
structure of Figure 1 is illuminated by a linearly polarized plane wave with an arbitrary polarization
direction and the incidence direction is given by the angular spherical coordinate θinc and φinc. A time
dependence of the type ejωt is assumed and this dependence is suppressed throughout. In order to
determine the electric field scattered by the periodic structure of Figure 1, we need to determine the
induced surface current densities J(x,y) hosted on the unit cell of the qth-interface of the periodic array
of patches. These surface current densities can be obtained by solving MPIE [15]:

Eexc
t (x, y, z = −hq) − jω

∫
S

GA
xx(x− x′, y− y′, z = −hq, z′ = −hq)J(x′, y′)dx′dy′

−∇

∫
S

GΦ(x− x′, y− y′, z = −hq, z′ = −hq)σ(x′, y′)dx′dy′ = 0
(1)

where Et
exc(x,y,z=-hq) is the tangential electric field generated in the observation point (x,y,z=-hq) by

the plane wave impinging on the multilayer substrate in the absence of the patches. GA
xx and GΦ are

the periodic Green’s functions for the x-component of the vector potential and the scalar potential,
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respectively, of the multilayer substrate of Figure 1. σ is the surface charge density induced on the
surface S of the patch hosted in the unit cell of the periodic array of patches of the qth-interface. The
induced surface charge density σ is related with the induced surface current density J by the known
continuity equation:

σ(x′, y′) = −
1
jω
∇
′J(x′, y′) (2)
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Note that gradient operators work on prime variables x’ and y’ of the source point on the
surfaces of patches. We would like to point out that in this work, the periodic Green’s function of the
multilayer substrate for the x-component of the vector potential GA

xx and for the scalar potential GΦ

were efficiently obtained by the pre-processing procedure of interpolation described in [11]. In this
procedure, the periodic Green’s functions of the multilayer substrate are judiciously interpolated in the
spatial domain in terms of 2-D Chebyshev polynomials after extracting the singular behaviour of the
Green’s functions around the source points (which includes the source singularities plus the images
through the closest layers). If the MM is used to solve the MPIE shown in Equation (1), J(x,y) would
have to be expanded in terms of known BFs Jj(x,y) (j=1, . . . ,Nb), as shown below:

J(x′, y′) =
Nb∑
j=1

cj,Jj(x
′, y′); σj(x′, y′) = −

1
jω
∇
′Jj(x

′, y′) (3)

Since the surface charge densities and current densities are related by the continuity Equation (2),
the BF for the surface charge densities σj(x,y) are related with the BF for the current densities Jj(x,y) in
similar way as shown in Equation (3). In this paper, the surface of the metallic layout hosted in the unit
cell of the qth-interface is modelled by NURBS surfaces. These NURBS surfaces are efficiently written
in terms of piecewise Bézier patches as is described in [19] using the Cox-de Boor transformation
algorithm [20]. Thus, the BFs Jj(x,y) (j=1, . . . ,Nb) used in this paper are generalized “rooftop” functions
defined on pairs of adjacent Bézier patches that share a common boundary line, as described in [19].
According to [19], the BF σj(x,y) is constant in each Bézier patch.

In order to solve the MPIE given in Equation (1), the method of weighted residual was carried out
using “razor-blade” as the weighting function. These “razor-blades” are defined in the qth-interface
over the isoparametric curved lines Ci. This curved line joins the centres of the pair of adjacent Bézier
patches associated to each BF Jj(x,y) (see [19]). Thus, when Equation (3) is introduced into Equation
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(1) and “razor-blade” functions are used, the following system of linear equations for the unknown
coefficients cj is obtained:

Nb∑
j=1

Zijcj = ei(i = 1, . . . , Nb) (4)

where the coefficients ei of the system of the linear equations can be computed by the next line integral:

ei =

∫
Ci

Eexc
t (x, y, z = −hq) · dr (5)

The elements of the coefficient matrix of the system of linear equations of (4) can be broken down
in inductive and capacitive contribution:

Zij = Zind
ij + Zcap

ij (6)

where the inductive contribution of each element of the coefficient matrix is given in terms of the
line integral of the bi-dimensional convolutions between periodic Green’s function GA

xx for the
x-component of the vector potential and the BF Jj(x,y), as shown in Equation (7). These bi-dimensional
convolutions involve the integration of singular behaviour of the integrand introduced by the periodic
Green’s function when the observation point (x,y,z=-hq) and source point (x’,y’,z’=-hq) are close.

Zind
ij = jω

∫
Ci


∫
Sj

GA
xx(x− x′, y− y′, z = −hq, z′ = −hq)Jj(x

′, y′)dx′dy′

 · dr (7)

The numerical integration of the singular behaviour of the integrand can be accurately computed
by DE formulas [16] or MRW quadrature rules [17,18]. On the other hand, the capacitive contribution
is given by the line integral of the gradient of the bi-dimensional convolution between periodic Green’s
function GΦ for scalar potential and the BF σj(x,y). Since the capacitive contribution involves a line
integral whose integrand is an exact differential, this line integral can be analytically expressed as the
difference of bi-dimensional convolutions, as shown in Equation (8). According to [19], the observation
points (x+

i, y+
i, -hq) and (x-

i, y-
i, -hq) are the centres of the pair of adjacent Bézier patches associated to

BF σj(x,y) (i.e., the extremes points of the isoparametric curved lines Ci).

Zcap
ij =

∫
Sj

GΦ(x+i − x′, y+i − y′, z = −hq, z′ = −hq)σj(x′, y′)dx′dy′−

−

∫
Sj

GΦ(x−i − x′, y−i − y′, z = −hq, z′ = −hq)σj(x′, y′)dx′dy′


(8)

Again, the bi-dimensional convolutions involve the integration of singular behaviour which can
be accurately computed by DE formulas [16] or MRW quadrature rules [17,18].

The main drawback of the direct computation of the inductive and capacitive contributions of the
coefficient matrix given in Equations (7) and (8) is that the CPU time consumption is proportional to
the size of the coefficient matrix of the linear system of equations (i.e., the computational complexity
of CPU time consumption as a function of the number of unknown Nb is roughly O(Nb

2)) [23,24].
Thus, if a very high number Nb of the BFs is required for the approximation of the induced surface
density current on the patches, the required CPU time consumption involved in the computation of all
elements of coefficient matrix may be prohibitive. In the next section, we describe a procedure for the
computation of the inductive and capacitive contributions which involves the FFT algorithm. This
approach does not require considering the different formulations when the source and the observation
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points are close or far, as is required in [27,28]. This procedure provides significant CPU time saving
and behaviour of CPU time consumption of O(NbLog10Nb) as Nb increases, as will be shown in the
following sections.

3. Efficient Computation of MM Matrix Entries Using Pulses Expansions of BFs

In the previous section, the induced surface current J(x,y) and charge σ(x,y) density are expanded
in terms of known BFs Jj(x,y) and σj(x,y) (j=1, . . . ,Nb) to solve the MPIE given in Equation (1). These
BFs can be expanded in terms of pulses as shown below:

Jj(x
′, y′) ≈

2Nx+1∑
m′=0

2Ny+1∑
n′=0

Jj(xm′ , yn′)P(x′ − xm′ , y′ − yn′) (9)

σj(x′, y′) ≈
2Nx+1∑
m′=0

2Ny+1∑
n′=0

σj(xm′ , yn′)P(x′ − xm′ , y′ − yn′) (10)

where xm’=x0+m’∆x, yn’=y0+n’∆y are equi-spaced mesh points and P(·) is the pulse function defined as

P(x, y) =

1 if |x| < ∆x
2 and

∣∣∣y∣∣∣ < ∆y
2

0 elsewhere
(11)

The expansions given in Equations (9) and (10) approximate the values of the BF Jj(x’,y’) andσj(x’,y’)
as the constant values Jj(xm’,yn’) and σj(xm’,yn’), respectively, in the intervals xm’-∆x/2<x’<xm’+∆x/2
and yn’-∆y/2<y’<yn’+∆y/2. Thus, the pulse approximation of the BF improves as the density of the
equi-spaced mesh increases (i.e., the values of Nx and Ny of the upper limit of the expansion increase
as the values of ∆x and ∆y decrease). We would like to point out that the BFs are defined on pair of
adjacent Bézier patches associated with NURBS surfaces. Thus, the BFs are capable of taking into
account a high-order description of the geometry of layout hosted by the unit cell. Since these same
BFs are expanded in terms of pulses with very dense equi-spaced meshes, the high-order description
of the geometry is kept.

When Equations (9) and (10) are introduced into Equations (7) and (8), the following inductive
and capacitive contributions of the coefficients matrix are obtained:

Zind
ij = jω

∫
Ci

find
j (x, y, z = −hq) · dr (12)

Zcap
ij =

[
f cap
j (x+i , y+i , z = −hq) − f cap

j (x−i , y−i , z = −hq)
]

(13)

where

find
j (x, y, z) =

2Nx+1∑
m′=0

2Ny+1∑
n′=0

Jj(xm′ , yn′)GA
m′,n′(x, y, z) (14)

f cap
j (x, y, z) =

2Nx+1∑
m′=0

2Ny+1∑
n′=0

σj(xm′ , yn′)GΦ
m′,n′(x, y, z) (15)

and

GA
m′,n′(x, y, z) =

m′∆x+ ∆x
2∫

m′∆x− ∆x
2

n′∆y+ ∆y
2∫

n′∆y− ∆y
2

GA
xx(x− x′, y− y′, z, z′ = −hq)dx′dy′ (16)



Electronics 2020, 9, 234 7 of 18

GΦ
m′,n′(x, y, z) =

m′∆x+ ∆x
2∫

m′∆x− ∆x
2

n′∆y+ ∆y
2∫

n′∆y− ∆y
2

GΦ(x− x′, y− y′, z, z′ = −hq)dx′dy′ (17)

The direct evaluation of the inductive and capacitive contributions given in Equations (12) and
(13) involves the summation of double series Equations (14) and (15) whose addends involve double
integrals given by Equations (16) and (17). Moreover, these double series have a high number
of addends since a high density of the equi-spaced mesh is required in order to provide accurate
approximation of the BFs in terms of pulses. Thus, this approach may seem inappropriate. Let us
define the following discrete functions for the BF of the surface current and charge densities:

Jd
j,x/y[m

′, n′] = Jj,x/y(xm′ , yn′) (18)

σd
j [m

′, n′] = σj(xm′ , yn′) (19)

In Equations (18) and (19) the m’n’th-element of matrixes of size (2Nx+1)x(2Ny+1) is defined as
the values of the BFs in the equi-spaced mesh point (xm’,yn’). Now, let us define the following discrete
functions for the double integrals given in Equations (16) and (17):

Gd,A
q [m−m′, n− n′] = GA

m′,n′(xm, yn, z = −hq) (20)

Gd,Φ
q [m−m′, n− n′] = GΦ

m′,n′(xm, yn, z = −hq) (21)

These discrete functions Gq
d,A[m-m’, n-n’] and Gq

d,Φ[m-m’, n-n’] contain the values of the functions
GA

m’,n’(x,y,z=-hq) and GΦ
m’,n’(x,y,z=-hq), respectively, for equi-spaced mesh points x=xm, y=yn, z=-hq.

When the definition of the discrete functions given by Equations (18)–(21) are taken into account in
Equations (14) and (15), expressions in terms of discrete convolution are obtained:

f d,ind
j,q,,x/y[m, n] =

2Nx+1∑
m′=0

2Ny+1∑
n′=0

Jd
j,x/y[m

′, n′]Gd,A
q [m−m′, n− n′] (22)

f d,cap
j,q [m, n] =

2Nx+1∑
m′=0

2Ny+1∑
n′=0

σd
j [m

′, n′]Gd,Φ
q [m−m′, n− n′] (23)

Note that the discrete functions f d,ind
j,q,x/y[m,n] and f d,cap

j,q[m,n] contain the values of the x and
y-components of the vector function fj

ind(x,y,z=-hq) and the scalar function f j
cap(x,y,z=-hq), respectively,

for equi-spaced mesh points x=xm, y=yn, z=-hq. The discrete convolutions would be discrete cyclic
convolutions if the discrete functions Jd

j,x/y[m’,n’], σd
j[m’,n’], Gq

d,A[m-m’, n-n’] and Gq
d,Φ[m-m’, n-n’]

were periodic functions. In this case, efficient evaluation by 2D-FFTs could be carried out if 2Nx+2 and
2Ny+2 can be written as 2M. This efficient evaluation is well known and consists of three steps:

• First, we compute the 2D-FFT of the discrete functions involved in the cyclic convolution for
values of their discrete arguments inside of intervals [0, 2Nx+1]×[0, 2Ny+1].

• Second, we multiply, element by element, the elements of the resultant discrete functions computed
in the previous step.

• Finally, we compute the inverse 2D-FFT of the resultant discrete function provided by the
multiplications, element by element, in the previous step.

However, the discrete functions Jd
j,x/y and Gq

d,A involved in Equation (22) and the discrete
functions σd

j and Gq
d,Φ involved in Equation (23) are not discrete periodic functions. Thus, in this case,

an EPP has to be found [25,26]. In our case, we define the EPP as the discrete functions Jd
j,x/y[m’,n’]

and σd
j[m’,n’] are defined in Equations (18) and (19) for 0<m’<Nx, 0<n’<Ny and ∆x=2a/ (2Nx+1),
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∆y=2b/ (2Ny+1) and with a zero value for m’>Nx, n’>Ny. On the other hand, Gq
d,A[m,n] and Gq

d,Φ[m,n]
are defined as Equations (20) and (21) in the whole domain of the discrete variables m and n. Thus, the
discrete functions involved in Equations (22) and (23) are periodic with periods 2Nx+1 and 2Ny+1. In
this way, Equation (22) and (23) are discrete cyclic convolutions and can be efficiently evaluated by the
previous 2D-FFTs procedure. Note that the EPP has a periodic cell with dimensions of 2a×2b which are
twice the original periodic cell. This period is the minimum period which guarantees that aliasing is
avoided [26]. On the order hand, Jd

j,x/y[m’,n’] and Gq
d,A[m,n] (or σd

j[m’,n’] and Gq
d,Φ[m,n]) contains

values of the original problem for 0<m’<Nx, 0<n’<Ny. This fact guarantees that the convolutions of the
EPP contains the convolutions of the original problem for 0<m’<Nx, 0<n’<Ny [26]. We would like to
point out that thanks to EPP, this approach does not require considering different formulations when
the source and the observation points are close or far, as is required in [27,28].

Since the FFT algorithm is very efficient, the main computational cost of this procedure is the
computation of the discrete functions defined in Equations (20) and (21). Since Green’s functions
GA

xx and GΦ involved in Equation (16), (17), (20) and (21) are efficiently interpolated in terms
of 2D-Chebyshev polynomial [11], the computational cost of the computation of Gq

d,A[m,n] and
Gq

d,Φ[m,n] is improved with respect to that obtained if the conventional computation of multilayer
periodic Green’s functions was made by means of slowly convergent double infinite summations.
Despite this improvement, in this work, we make an additional effort to alleviate this computational
cost in the next section.

Finally, the computation of the inductive contributions given in Equation (12) of the elements of the
coefficient matrix is computed by conventional quadrature (for example Gauss-Legendre quadrature
rules [31]) where the samples of the components of the vector function fj

ind(x,y,z=-hq) are computed
from the values of the discrete functions f d,ind

j,q,x/y[m,n] by conventional bilinear interpolation [31]. A
similar procedure is carried out for the computation of f j

cap(x,y,z=-hq) from the samples f d,cap
j,q[m,n].

Since a dense equi-spaced mesh is required to approximate efficiently the BFs by pulses expansions
given in Equations (9) and (10), the bilinear interpolation provides enough accuracy for practical
purposes. Thus, once discrete functions f d,ind

j,q,x/y[m,n] and f d,cap
j,q[m,n] are available for jth-BF, these

discrete functions are reused for the computation Zij
ind and Zij

cap given in (12) and (13) for i=1, . . . ,Nb.
Thus, CPU time savings with respect to the direct method (Equations (7) and (8)) are expected as the
number of BFs increases.

4. Efficient Computation of Gq
d,A and Gq

d,Φ

In this section, we show an efficient procedure to compute efficiently the discrete functions
Gq

d,A[m,n] and Gq
d,Φ[m,n] which are required for the computation of the discrete cyclic convolution

given by Equations (22) and (23). These elements have to be computed for the discrete values
0≤m≤2Nx+1, 0≤n≤2Ny+1. According to the previous section, the values of Gq

d,A[m,n] and Gq
d,Φ[m,n]

for 0≤m≤ Nx, 0≤n≤Ny are the values of the integrals given by Equations (16) and (17) in the points
x=xm, y=yn and z=-hq when 0≤xm-xm’<a and 0≤yn-yn’<b. Note that, in similar way, the values of
Gq

d,A[m,n] and Gq
d,Φ[m,n] for the discrete values m> Nx and/or n>Ny are the values of the integrals

given by Equations (16) and (17) in the points x=xm, y=yn and z=-hq when xm-xm’>a and yn-yn’>b. Let
G0 represent any of Green’s functions GA

xx and GΦ. The Floquet representation of G0 (see Equations
(12) and (13) in [11]) ensures the following periodic properties:

G0(x− x′ − a, y− y′, z, z′) = G0(x− x′, y− y′, z, z′)e− jkx0a (24)

G0(x− x′, y− y′ − b, z, z′) = G0(x− x′, y− y′ − b, z, z′)e− jky0b (25)

G0(x− x′ − a, y− y′ − b, z, z′) = G0(x− x′ − a, y− y′ − b, z, z′)e− j[kx0a+ky0b] (26)

where kx0=k0sin(θinc)cos(φinc), ky0=k0sin(θinc)sin(φinc) and k0=2π/λ, λ is the vacuum wavelength. If
we take into account these periodic properties in Equations (16) and (17), the values of Gq

d,A[m,n]
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and Gq
d,Φ[m,n] for the discrete values m>Nx and/or n>Ny are easily computed from the values of

Gq
d,A[m,n] and Gq

d,Φ[m,n] for 0≤m≤ Nx, 0≤n≤Ny. Thus, the computational cost is reduced to the
computation of Gq

d,A[m,n] and Gq
d,Φ[m,n] for 0≤m≤ Nx, 0≤n≤Ny. Since a dense equi-spaced mesh

is required to approximate efficiently the BFs by pulses expansions given in Equations (9) and (10),
the values of Gq

d,A[m,n] and Gq
d,Φ[m,n] may be approximated as the following expressions when

the singularity behaviour of the Green functions is not the dominant behaviour of the integrands in
Equations (16) and (17) (i.e., 0<<m∆x<<a and/or 0<<∆y<<b):

Gd,A
q [m, n] ≈ Gd,A,approx

q [m, n] = GA
xx(m∆x, n∆y, z, z′ = −hq)∆x∆y (27)

Gd,Φ
q [m, n] ≈ Gd,Φ,approx

q [m, n] = GΦ(m∆x, n∆y, z, z′ = −hq)∆x∆y (28)

If the singularity behaviour of the Green functions is the dominant behaviour, then the values of
Gq

d,A[m,n] and Gq
d,Φ[m,n] can be computed by numerical integration of Equations (16) and (17) for

the observation point (x, y, z)=(xm, yn, -hq) using MRW quadrature rules [17].
The solid line in Figure 2 shows the computed results of the normalized values of Gq

d,Φ[m,m] for
0≤m≤Nx=127 for a grounded dielectric multilayer (N=q=4 in Figure 1). The thickness and dielectric
constant of each dielectric layer are the following: d4=0.7 mm, εr4=2.1, d3=0.3 mm, εr3=12.5, d2=0.5
mm, εr2=9.8, and d1=0.3 mm, εr1=8.6. This multilayer medium was selected to show the capability of
the proposed method to analyse periodic structure on a complex multilayer medium in fast way. A
similar complex multilayer medium was used in [32]. The periodic structure has a square period given
by a=b=10 mm. The results are obtained under oblique incidence given by θinc=20 deg and φinc=0 deg
at 10 GHz. The results shown as the solid line were obtained by means of the computation of Equations
(16) and (17) using DE formulas with 203×203 quadrature points (i.e., five levels of the quadrature
rule [16]). These values are considered virtually exact. Relative error of the results obtained by MRW
quadrature rules with respect to the results obtained by DE formulas are also shown as a dashed line.
These results are obtained using 3×3 quadrature points when m,0 and with 40×40 quadrature points
when m=0.
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Figure 2. The solid line stands for values of the magnitude of Gq
d,Φ[m,m] normalized to maximum

value computed by DE formulas. The dotted lines and dashed lines stand for the relative error of the
values Gq

d,Φ[m,m] obtained by approximation given in Equation (28) and MRW quadrature rules
with respect to the values obtained by DE formulas. The dash dotted lines stand for relative error
for m=n obtained by mixed rules (MRW quadrature rules when m∆x/λ<0.02 or (m∆x-a)/λ<0.02, and
approximation given in Equation (28) for the rest of the cases).

We can see that the error level obtained by MRW quadrature rules is lower than 0.03% for the
worst case (m=0). The relative error of the results obtained by the approximation given in Equation
(28) with respect to the results obtained by DE formulas is also shown as the dotted line. These errors
reach values lower than 0.16% when m∆x/λ>0.02 or (m∆x-a)/λ>0.02. However, the error level increases
as m∆x/λ or (m∆x-a)/λ decreases. Therefore, a mixed computation is implemented to obtain enough
accuracy: computation of Gq

d,A[m,n] and Gq
d,Φ[m,n] by the approximations given by Equations (27)
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and (28) when m∆x/λ>0.02 or (m∆x-a)/λ>0.02 and computation by MRW quadrature rules otherwise.
The relative error obtained by this mixed computation is also shown as the dash-dotted line.

We would like to point out that the total consumption of CPU time to compute all the values of
Gq

d,A[m,n] and Gq
d,Φ[m,n] for (2Nx+1)×(2Ny+1)=256×256 is 2.247 s, which was obtained in a laptop

computer with a processor Intel Core i7-6700HQ at 2.6 GHz with 32 GB of RAM memory.
Finally, the computation of the inductive contributions given in Equation (12) of the elements of the

coefficient matrix is computed by conventional quadrature (for example Gauss-Legendre quadrature
rules [31]) where the samples of the components of the vector function fj

ind(x,y,z=-hq) are computed from
the values of the discrete functions f d,ind

j,q,x/y[m,n] by conventional bilinear interpolation [31]. A similar
procedure was carried out for the computation of f j

cap(x,y,z=-hq) from the elements f d,cap
j,q[m,n]. Since

a dense equi-spaced mesh is required to approximate efficiently the BFs by pulses expansions given in
Equations (9) and (10), the bilinear interpolation provides enough accuracy for practical purposes.

5. Numerical Results

In this section, we show the results of four cases of studies of surface geometry of layout: (1)
two ellipse halves, (2) square loop/patch combination, (3) two concentric split rings and (4) two
stacked crosses.

5.1. Two Ellipse Halves

Figure 3 shows the definition of the geometrical parameters of the unit cell of the periodic
structure which is considered in this work. The unit cell hosts a metallic layout which consists of
two ellipse halves on the grounded multilayer periodic medium used in the previous section. This
surface geometry of the layout was selected to show the capabilities of the proposed method to analyse
the resonant layout with a complex surface geometry. The semi-major and semi minor axis of each
ellipse half are given by L1 and L2=2 parameters where L2=2L1/3. The ellipse halves are separated
by a fixed gap of w=0.5 mm. The NURBS model of the geometry was made by a periodic structure
module of newFASANT [33]. We would like to point out that this layout is modelled by only four
NURBS surfaces.
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Figure 4 shows equi-spaced mesh points x=xm, y=yn, z=-hq 0<m<Nx, 0<n<Ny that are inside of the
periodic cell 15×15 mm2. These points were used to define the discrete functions described in Section 3
given by Equations (18)–(23). Values of Nx=Ny=127 and L1=4.1365 mm are considered. This length
value of L1 is the value for which the periodic structure is resonant at 10 GHz under oblique incidence
given by θinc=20 deg and φinc=0 deg. The blue points stands for the layout outer equi-spaced mesh
points while that the red points stands for the layout inner equi-spaced mesh points. The centre points
of the Bézier patches used in the definition of the BFs are also shown. We would like to point out that
the equi-spaced mesh is dense enough to consider the elliptical curves and the aperture between the
two ellipse halves.
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Figure 4. Equi-spaced mesh points x=xm, y=yn, z=-hq 0<m<Nx, 0<n<Ny that are inside of the unit cell
15×15 mm2. The values of Nx=Ny=127 and L1=4.1365 mm are considered. The centre points of the
Bézier patches used in the definition of the BFs are also shown.

Figure 5 shows the normalized values of discrete functions f d,ind
j,q,y[m,n] and f d,cap

j,q[m,n] given
in Equations (22) and (23) associated with BF defined on adjacent Bézier located in the central region of
the upper ellipse half (i.e., when j=102). These results were obtained at 10 GHz for L1=4.1365 mm
under oblique incidence given by θinc=20 deg and φinc=0 deg. In these computations, the values
of Gq

d,A[m,n] and Gq
d,Φ[m,n] for (2Nx+1)×(2Ny+1)=256×256 shown in Section 4 were used. Note

that the discrete functions f d,ind
j,q,y[m,n] and f d,cap

j,q[m,n] contain the values of continuous functions
fj

ind(x,y,z=-hq) and f j
cap(x,y,z=-hq) of the original problem for equi-spaced mesh points x=xm, y=yn,

z=-hq 0<m,n<127 (this region is limited by the dotted grey lines in Figure 5). These results are shown to
emphasize that the proposed EPP contains the results of the original problem for equi-spaced mesh
points x=xm, y=yn, z=-hq 0<m<Nx, 0<n<Ny.
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Figure 5. Normalized values of discrete functions f d,ind

j,q,y[m,n] and f d,cap
j,q[m,n] given in Equations

(22) and (23) associated with BF defined on adjacent Bézier located on central region of upper ellipse half
(i.e., when j=102). The results are obtained at 10 GHz for L1=4.1365 mm under oblique incidence given by
θinc=20 deg and φinc=0 deg.(a) Log10|f d,ind

j,q,y[m,n]/f d,ind
j,q,y,max|. (b) Log10|f d,cap

j,q[m,n]/f d,cap
j,q,max|.

Since a dense equi-spaced mesh is required, samples of the continuous functions f ind
j,x/y(x,y,z=-hq)

and f j
cap(x,y,z=-hq) for 0≤x≤a, 0≤y≤b are efficiently computed from the values of f d,ind

j,q,x/y[m,n] and
f d,cap

j,q[m,n] by conventional bilinear interpolations with enough accuracy for practical purpose.
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The inductive and capacitive contributions of the elements of the coefficient matrix given in
Equations (12) and (13) were efficiently computed from these samples. These inductive and capacitive
contributions were computed when i=j for different values of the size of the equi-spaced mesh
(2Nx+1)×(2Ny+1) at 10 GHz under oblique incidence given by θinc=20 deg and φinc=0 deg for
L1=4.1365 mm. These inductive and capacitive contributions were also computed by direct integration
of Equations (7) and (8) using MRW quadrature rules. Figure 6 shows the relative error of sum of
both contributions, Zii, with respect to the results obtained by means of MRW quadrature rules with
40×40 quadrature points. In these computations, 182 BFs Jj(x’,y’) (i.e., 0<j<182) for the expansion of the
surface density current of (3) were taken into account. We can see that the relative errors decrease as
the size of the equi-spaced mesh (2Nx+1)×(2Ny+1) increases. Since increasing of the density of the
equi-spaced mesh produces a better pulse approximation, these results were expected.
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Figure 6. Relative error of the computation of the diagonal elements, Zii, provided by the method
proposed in Equations (6), (12) and (13) with respect to the direct method given by the direct computation
of Equations (6)–(8) using MRW quadrature rules with 40×40 quadrature points. The relative errors are
shown for different values of the size of the equi-spaced mesh (2Nx+1)×(2Ny+1). The results were
obtained at 10 GHz for L1=4.1365 mm under oblique incidence given by θinc=20 deg and φinc=0 deg.

Table 1 shows the phase of the copolar reflection coefficient for transverse magnetic polarized
incident wave when the unit cell was analysed by the two different methods: the proposed method
where Zij was computed by Equations (6), (12) and (13) with Equations (12) and (13) computed by the
procedure described in Section 3, and the direct MM where Zij was computed by Equations (6)–(8)
with the direct evaluation of Equations (7) and (8) by MRW quadrature rules. The result were obtained
at 10 GHz under oblique incidence given by θinc=20 deg and φinc=0 deg for L1=4.1365 mm. Again
182 BFs Jj(x’,y’) were considered. The CPU time consumption is also shown. These CPU times were
obtained with a laptop computer with processor Intel Core i7-6700HQ at 2.6 GHz with 32 GB of RAM
memory. We can see that the computation of Zij by means of Equations (6), (12) and (13) produced
a gain of CPU time of 12.9 times with respect to that produced by the direct MM when 5x5 MRW
quadrature points were used. If we assume that the results provided by the direct MM with 40x40
MRW quadrature points are virtually exact, the phase of the reflection coefficient obtained by the
proposed method provides a phase error less than 0.3 deg, while the phase obtained by the direct MM
with 5x5 MRW quadrature points provides a phase error of roughly 2.8 deg. We would like to point out
that the direct MM takes into account the generalized rooftops BFs defined on pairs of adjacent Bézier
patches associated with NURBS surfaces. In this way, the direct MM uses a high-order description of
the geometric layout. These results show that although the proposed method used an equi-spaced
mesh model of geometry, the equi-spaced mesh is dense enough to provide accurate results with low
CPU time consumption.
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Table 1. At 10 GHz under oblique incidence, θinc=20 deg and φinc=0 deg with L1=4.1365 mm. The
results are shown for direct MM and the proposed method of computation of Zij.

Phase of Reflection Coefficient
(deg) CPU Time (s)

Zij by proposed method (2Nx+1)=
(2Nx+1)=256 10.7 8.39

Zij by direct MM (5x5 MRW
quadrature points) 7.57 108

Zij by direct MM (40x40 MRW
quadrature points) 10.4 5756

Table 2 shows the phase of the copolar reflection coefficient for transverse magnetic polarized
incidence when the unit cell was analysed by the two different methods for different numbers Nb of
the BFs Jj(x’,y’) in the approximation of the surface density current given in (3). The results are shown
for Nx=Ny=127 in the proposed method and 5x5 MRW quadrature points in the direct MM.

Table 2. At 10 GHz under oblique incidence, θinc=20 deg and φinc=0 deg with L1=4.1365 mm. The
results are shown when the number Nb of the BFs Jj(x’,y’) increases.

Nb
CPU Time (s) by

Proposed Method
CPU Time (s) by

Direct MM
Phase (deg) by

Proposed Method
Phase (deg) by

Direct MM

138 6.72 61.4 14.1 11.1
182 8.39 108 10.7 7.57
288 11.9 257 1.24 −6.01
360 14.4 407 −5.54 −8.22
494 19.9 731 −14.8 −15.4
604 23.2 1296 −18.3 −17.4
772 29.8 1625 −18.5 −17.9

The consumption of CPU time obtained by both methods is shown. Again, these CPU times
were obtained with a laptop computer with a processor Intel Core i7-6700HQ at 2.6 GHz with 32 GB
of RAM memory. We can see that the CPU time provided by the proposed method increased from
6.72 (with Nb=138) to 29.8 s (with Nb=772) while the CPU time provided by the direct MM shows a
larger increase (from 61.4 to 1625 s). This fact means that the CPU time gain provided by the proposed
method is between nine and 50 times faster than the direct method. This justifies the efforts carried out
in Section 3 to compute the inductive and capacitive contributions of the MM matrix entries appearing
in Equations (12) and (13) in efficient way. We analysed the dependence of CPU time consumption as a
function of the number Nb of the BFs for both methods. In this way, we fitted the logarithm of CPU
time provided by the direct MM versus Log10(Nb) to a straight line model by least square. The resultant
straight line model is Log10(time)=1.955Log10(Nb)-2.389 with coefficient of determination R2=0.9962.
Thus, we can see that CPU time consumption provided by the direct MM as a function of the number
of BFs, Nb, is roughly O(Nb

2) as expected. On the other hand, we fitted the CPU time provided by the
proposed method versus NbLog10(Nb) to a straight line model by least square. The resultant straight
line model is time=0.01189NbLog10(Nb)-3.467 with coefficient of determination R2=0.9987. Thus, we
can see that CPU time consumption provided by the proposed method as a function of the number of
the BFs, Nb, is roughly O(NbLog10(Nb)). Figure 7 shows the CPU time versus Nb for the values of CPU
time and Nb shown in Table 2 and the fitted least square models.
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Figure 7. CPU time consumption versus Nb for the values of CPU time and Nb shown in Table 2 for
both direct and proposed methods. The fitted least square models are also shown.

In the following section, we will show several validations of different periodic structures. Figure 8
shows the phase curves of the copolar reflection coefficient for transverse magnetic polarized incident
wave for the unit shown in Figure 3 at 10 GHz under oblique incidence θinc=20 deg and φinc=0 deg
for variation of the L1 parameter. These phase curves were obtained by both methods, the proposed
method and the direct method. We can see that excellent agreements were found between both sets of
numerical results.
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Figure 8. Phase curves of the copolar reflection coefficient for transverse magnetic polarized incident
wave for the unit shown in Figure 3 at 10 GHz under oblique incidence θinc=20 deg and φinc=0 deg for
variation of the L1 parameter.

5.2. Square Loop/Patch Combination

Figure 9 shows the phase curves of the of the copolar reflection coefficient for X-polarization of
the Figure 3 of [34] provided by reflectarray element proposed by Zhou et al. under normal incidence.
According to [34], the reflectarray element hosts a metallic layout which consists of a square loop/patch
combination. The size of the side of square patch is given by L2 while the size of the side of the loop
is given by L1. The width of the loop is given by w. As shown in [34], the fixed relations L2=0.69L1

and w=0.135L1 are considered. The periodic lengths are 13.33x13.33 mm2. The results shown in
Figure 3 of [34] were reproduced by the proposed method using (2Nx+1)=(2Ny+1)=256 and direct
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methods using 5x5 MRW quadrature points. In [34], shaped beam transmit-receive flat reflectarray
was designed using this reflectarray element with stringent requirements and a high performance. We
can see that good agreements were found between the three sets of numerical results.
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5.3. Two Concentric Split Rings

Figure 10 shows the phase curves of the copolar reflection coefficient for right handed circular
polarization (RHCP) and left handed circular polarization (LHCP) of Figure 7a of [13] at 29.75 GHz
under oblique incidence θinc=30 deg and φinc=0 deg. These results are provided by a dual-band
reflectarray element which consist of two concentric split rings with 5x5 mm2 of period lengths. The
results provided in [13] wree obtained with the novel sophisticated technique which provides very
accurate results with very fast computations. However, this technique is only suitable when the
surface geometry of the layout is split rings or single circular arcs. The results were reproduced by the
proposed method using (2Nx+1)=(2Ny+1)=256 and direct methods using 5x5 MRW quadrature points.
These reproduced results were obtained using the following fixed geometrical parameters ψ2=150.4
deg, ρ2=1.85 mm, ρ1=1.20 mm, w=0.2 mm. The geometrical variables ψ1 and α2 used are given in
Figure 7b of [13]. In [13,35], this reflectarray element was used to design dual circular polarized and
dual band focused reflectarray. We can see that acceptable agreements were found between the three
sets of numerical results.
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5.4. Two Stacked Crosses

Finally, Figure 11a shows the square of magnitude of the transmission coefficient, |T|2, and
reflection coefficient, |R|2, provided by two stacked crosses printed on a single dielectric layer studied
in Figure 4b of [36]. The period of the structure is a=b=10 mm and the dielectric layer has a permittivity
εr=2.58 and thickness of d=2.362 mm. The results were obtained at normal incident for a for transverse
electric polarized incident wave with arm lengths and width of the crosses of L=6.875 mm and w=0.625
mm, respectively. The results were reproduced by the proposed method using (2Nx+1)=(2Ny+1)=256
and direct methods using 5x5 MRW quadrature points. We can see that acceptable agreements were
found between three sets of numerical results. Figure 11b shows the phases of the transmission and
reflection coefficients obtained by the proposed method and direct method. Again, we can see that
acceptable agreements were found between the three sets of numerical results.
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of two stacked crosses printed on a single dielectric layer studied in Figure 4b of [36]. (b) shows the
phases of the transmission and reflection coefficients.

6. Conclusions

In this work, several approaches to pulse expansion with dense equi-spaced mesh of generalized
rooftop BFs were carried out, defined on a pair of adjacent Bézier patches and an EPP which contains
the original problem. These approaches led discrete cyclic convolutions instead of usual continuous
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convolution between Green’s functions and BFs obtained by the direct MPIE approach. These discrete
cyclic convolutions involve periodic discrete functions of discrete values of integrals of Green’s
functions and BFs. These discrete cyclic convolutions are efficiently computed by FFT procedure for
very dense equi-spaced mesh.

Prior to efficiently computing the discrete cyclic convolutions, a fast and efficient mixed
pre-procesing technique of computation of integrals of Green’s functions was proposed. This efficient
pre-processing computation show consumption of CPU time of 2.247 s for 2×256×256 integrals. Using
these pre-processing results, an analysis of a unit cell was carried out. Comparisons of consumption of
CPU time by the direct MM and the proposed method was carried out and the comparisons show that
the proposed method can be between 10 and 50 times faster than the direct method when the number
of BFs increases from 138 to 772. Dependence of CPU time consumption with as a function of BFs
was carried out. O(NbLog10(Nb)) behaviour of CPU time consumption by the proposed method was
found. This behaviour provides significant CPU time savings with respect to the expected behaviour
of O(Nb

2) provided by the direct computation of the MM matrix entries. Finally, several validations of
the proposed and direct methods were successfully carried out.
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