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Abstract: Feature extraction is essential for classifying different motor imagery (MI) tasks in a
brain–computer interface (BCI). Although the methods of brain network analysis have been widely
studied in the BCI field, these methods are limited by differences in network size, density, and
standardization. To address this issue and improve classification accuracy, we propose a novel
method, in which the hybrid features of the brain function based on the bilevel network are extracted.
Minimum spanning tree (MST) based on electroencephalogram (EEG) signal nodes in different
MIs is constructed as the first network layer to solve the global network connectivity problem. In
addition, the regional network in different movement patterns is constructed as the second network
layer to determine the network characteristics, which is consistent with the correspondence between
limb movement patterns and cerebral cortex in neurophysiology. We attempt to apply MST to the
classification of the MI EEG signals, and the bilevel network has better interpretability. Thereafter, a
vector is formed by combining the MST fundamental features with the directional features of the
regional network. Our method is validated using the BCI Competition IV Dataset I. Experimental
results verify the feasibility of the bilevel network framework. Furthermore, the average classification
performance of the proposed method reaches 89.50%, which is higher than that of other competing
methods, thereby indicating that the bilevel network is effective for MI classification.
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1. Introduction

Electroencephalogram (EEG) is a bioelectrical signal formed by the simultaneous synthesis of
many postsynaptic potentials, and reflects the state of the brain and the activation of nerve cells [1].
Therefore, we can obtain substantial physiological, psychological, and pathological information
through the analysis of EEG signals [2,3]. The full expression of the various levels and aspects of signal
characteristics is important in the recognition process. In the past decades, numerous algorithms, such
as fast Fourier transform (FFT), power spectral density (PSD), autoregressive (AR) model, band power
(BP), and common spatial patterns (CSP), have been applied to extract the EEG features of different
motor imageries (MIs) [4]. Wu et al. [5] combined CSP and multivariate empirical mode decomposition
to classify left- and right-hand MI. Durongbhan et al. [6] extracted different features through wavelet
transform (WT) and FFT to classify Alzheimer’s disease.

However, the aforementioned methods are aimed at a specific motor cortex of the brain. Therefore,
only the directly related features were extracted in the initial research process. As the research
progresses, numerous comprehensive features will result in considerably effective expression. Recent
research indicates that combining bridge neurofeedback, connectomics, and network control theory can
better understand the current frontier of human cognition [7]. Functional connectivity often is referred
to as the addition of quantitative measures of coordinated activity [8]. The functional connectivity
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model can provide a cost-effective approach to differentiate and integrate information. Graph theory is
a common tool for analyzing the topology of neural networks and provides a comprehensive framework
for characterizing network topology [9]. The brain network is based on graph theory, which can visually
show the dynamic interaction among neurons, neuron clusters, and brain regions [10,11]. Furthermore,
the brain network can construct brain functional topology and integrate the connectivity strength
between different regions. The brain network also reflects the global activation of the cerebral cortex
and provides a highly reliable performance for distinguishing MIs. Many studies have demonstrated
that the brain network is an effective method for describing coordination among the different brain
regions. Stanley et al. [12] used global and local efficiency to analyze the relationship between the
efficiency of brain information transmission and working memory performance in young and old
people. Kong et al. [13] performed spectral decomposition on brain networks to classify four-class
tasks. Although the current methods of brain network analysis can relatively solve the classification
problems of brain function state, the construction of the network has no unified standard [14]. The
construction of a brain network is mainly obtained by global threshold processing. Different thresholds
often result in the same topology that generates different unweighted networks. Moreover, all valid
nodes have no guarantee that they will be connected to the network, thereby resulting in insufficient
brain information.

Minimum spanning tree (MST) is mathematically defined as an acyclic subgraph that connects
all nodes in the original weighted network with minimal link weights [15–17]. MST is the only
subnetwork in the weighted network that avoids methodological biases and solves the problem of
network connectivity. Moreover, MST can simplify network characteristics and directly compare
networks with the same number of nodes [18]. MST is a new and emerging method of human
functional connectomics and has been effectively used in the recent research on some neuropsychiatric
diseases [19]. As early as 2006, Lee et al. [20] have applied the MST analysis to the EEG signals and
demonstrated its effectiveness in the study of epilepsy and in characterizing the network topology
of different epilepsies. Olde Dubbelink et al. [21] found that MST of the brain network of different
patients with Parkinson’s disease could identify clinically relevant changes at the early stage of the
disease. These studies have proven the potential of MST for network analysis. Given that MST
can effectively determine the essential attributes of complex networks, this method is unbiased for
studying brain networks. Methods based on MST in the classification of the MI EEG signals have been
scarcely investigated. However, in [22], functional connectivity analysis and MST could successfully
distinguish between imagery hand movements and silent state. Therefore, MST should be applied to
the classification of the MI EEG signals in the present brain–computer interface (BCI) research, which
provides an effective new idea for classifying the patterns of brain consciousness tasks.

The network constructed by MST has the characteristics of the original network index structure
and summary information and is an unbiased and effective network topology information structure.
However, the brain network is a small-world network from the perspective of neurophysiology, and
the MST clustering coefficient is constantly zero and has no small-world network characteristics. To
overcome these limitations, we propose a novel method, which is the hybrid features of the brain
function based on the bilevel network. Lastly, the experimental results demonstrate the success of the
bilevel network in dealing with the MI classification. Moreover, our proposed method achieves better
classification performance than using a single-layer network and other algorithms.

In summary, this study’s contributions are as follows.

• We attempt to introduce MST to the MI-BCI research and improve the classification performance.
• Our proposed bilevel network framework is simple, effective, and has extensive interpretability.
• We demonstrate the superiority of our method in the BCI Competition IV Dataset I.

The remainder of this paper is organized as follows. Section 2 discusses the construction and
feature analysis of the bilevel network, as well as the experimental scheme. Section 3 presents the
details of the experimental results. Lastly, Section 4 provides the discussion and conclusion.
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2. Materials and Methods

2.1. Overview

Figure 1 shows an overview of our proposed bilevel network method. First, we preprocess the
BCI Competition IV Dataset I. Second, we constructed the MST for different MIs based on the graph
theory. Third, the regional network is constructed based on MST by combining the corresponding
relationship between limb movement and cerebral cortex. We compute diameter, average eccentricity,
average node degree, average clustering coefficient, and average path length of the bilevel network.
Lastly, we use support vector machine (SVM) to learn a classifier for the MI tasks.
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2.2. Motivation

MST of each movement was taken as the first network layer to comprehensively describe the
topological structure of the brain network in different MIs. On this basis, we constructed a regional
network as the second layer of the network according to the corresponding relationship between limb
movement and cerebral cortex in neurophysiology. The first network layer ensures that it connects all
nodes in the network and maintains the network tree trend in each movement. In addition, the first
network layer gives the node association and aggregation degree of the brain network. The second
network layer focuses on reflecting the activation degree of the corresponding regions of different
MIs. Moreover, the second network layer highlights the individualized network characteristics of
each movement. Therefore, a vector with the fundamental and directional characteristics of the brain
network is formed by combining the relevant features of the bilevel network. Accordingly, our method
has substantial interpretability.

2.3. EEG Signal Features

This study fuses the features of MST and the regional network to characterize the EEG signals.
The construction of the regional network is based on the constructed MST. Therefore, the methods of
node selection and node relationship quantification of the regional network are consistent with MST.
The unified description is as follows.

Step 1: We select the appropriate network nodes. Given that multichannel EEG signals are used,
we define each electrode on the scalp surface as a network node.

Step 2: We quantify the functional connectivity relationship between network nodes. The
commonly used methods are Pearson correlation coefficient, coherence spectrum, and mutual
information. Pearson correlation coefficient is selected because of its better noise suppression and
robustness compared with the other two methods [23]. The formula is as follows:

ri j =

∑T
t=1 [xi(t) − xi][x j(t) − x j]√∑T

t=1 [xi(t) − xi]
2 ∑T

t=1 [x j(t) − x j]
2

i, j = 1, 2, · · · , N, (1)

where xi(t) and x j(t) are the sampling values of nodes i and j, respectively, at time t; xi(t) and x j(t) are
the average sampling values of nodes i and j, respectively; and N is the number of network nodes. The
larger the absolute value of ri j, the stronger the correlation between the two nodes. We can obtain an
N ×N connection coefficient symmetric matrix.

2.3.1. MST Features

In a given undirected graph G = (V, E), V is the set of nodes and E is the set of edges. Hence,
(i, j) is the edge connecting nodes i and j, and w(i, j) is the weight of this edge. If T is a subset of E and
a cyclic graph, so that w(T) in Equation (2) is the smallest, then T is the MST of G. Each node in T is
called a connected component.

w(T) =
∑

(i, j)⊂T

w(i, j). (2)

The MST construction steps are listed as follows.
Step 1: Define the weight of the edge
We need to connect the nodes with high correlation because MST, as the connection edge, is the

edge with the smallest weight. Therefore, we consider the reciprocal Pearson correlation coefficient ri j
between nodes as the weight of the edge.

Step 2: Select the algorithm to solve MST
The Kruskal and Prim algorithms are commonly used to solve MST in graph theory. We choose

the Kruskal algorithm, which has a wider application [24]. The algorithm is as follows:
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Algorithm1 Kruskal (Figure 2)

1: Initialize two sets, V and E. V is the set of nodes and E is the set of edges.
2: Create a graph G← ∅ .
3: Sort E according to the weight of edges.
4: while the num of edges in G , the size of E do
5: Select ei, j ∈ E, so that ei, j is the edge with the smallest weight.
6: if node i directly reaches node j then
7: Add ei, j and nodes i and j into the graph.
8: Remove ei, j from E.
9: end if
10: end while
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Step 3: Calculate the MST features
We use MST of different MIs as the first network layer, which is considerably fundamental.

Therefore, we select the global metrics of the MST topology, namely, diameter and average eccentricity,
as features [16]. The diameter is the distance between the two nodes that are the farthest apart in the
MST, and can be used to measure the similarity between MST and the small-world network. The
average eccentricity can be used to measure the global distribution of MST in the brain network.

The diameter is calculated as follows:

D = max
{
d(i, j)

∣∣∣i, j ∈ T
}
. (3)

The average eccentricity is calculated as follows:

Mee =

∑
i, j∈T

d(i, j)

N
, (4)

where d(i, j) is the shortest path length between nodes i and j in MST, and N is the number of
network nodes.

2.3.2. Regional Network Features

The event-related desynchronization (ERD)/event-related synchronization (ERS) phenomenon is
caused by the resonance of numerous neurons on physiological electrical signals. This phenomenon
indicates the interaction between neurons and local neurons in a certain frequency band of EEG, which
mainly appears on the sensory motion region corresponding to the electrodes C3, C4, and Cz. For
example, the ERD on the left side of the motor region (C3) is observed in the right hand MI; ERD on
the right side of the motor region (C4) is observed in the left hand MI; and ERD in the midline central
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region (Cz) is observed in foot MI [25,26]. Therefore, the regional network centered electrodes C3, C4,
and Cz are constructed for the MI of the right hand, left hand, and foot, respectively. The regional
network is more directional than the MST and can better reflect the brain network characteristics of
each movement. The construction steps are listed as follows.

Step 1: Quantify the correlation between nodes
The Pearson correlation coefficient method is also selected for calculation. However, the regional

networks constructed in different movement patterns are centered on electrodes C3, C4, and Cz.
Therefore, we compute for the 1×N connection coefficient matrix.

Step 2: Matrix thresholding
By selecting an appropriate threshold value (δ) and performing threshold processing on the

connection coefficient matrix, we obtain a binary matrix that can be expressed as follows:

ai j =

{
1 ri j ≥ δ
0 ri j < δ

. (5)

ai j= 1 indicates that a connection edge exists, and the correlation between nodes i and j is strong.
Otherwise, the connection does not exist and the correlation between nodes is weak.

Step 3: Calculate the regional network features
Commonly used network metrics include node degree, path length, clustering coefficient, and

network density. These metrics reflect the structural characteristics of the network. We choose average
node degree, average clustering coefficient, and average path length as features [10,27]. The average
node degree is an important indicator in measuring the size of a network. The average clustering
coefficient reflects the tightness of the local connection of the network. Lastly, the average path length
can measure the connection characteristics of the network.

The average node degree (K) can be computed as follows:

K =
1
N

N∑
i=1

ki, (6)

where ki is the degree of node i, indicating the number of nodes directly connected to node i. The
greater the degree of a node, the more important it is in the network. N is the number of all nodes.

The average clustering coefficient (C) can be computed as follows:

C =
1
N

N∑
i=1

ci =
1
N

N∑
i=1

2Ei

ki(ki − 1)
, (7)

where Ei is the actual number of edges directly connected to node i, ci is the clustering coefficient of
node i, and ki is shown in Equation (6).

The average path length (L) can be computed as follows:

L =
1

N(N − 1)

∑
i, j∈V,i, j

d(i, j), (8)

where d(i, j) is shown in Equation (3).

2.4. Feature Fusion

To characterize EEG signals more comprehensively, we would like to combine MST features and
regional network features into a framework. To avoid the impact of the dimensions of two types of
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features, it is necessary to perform a normalization process before feature fusion. Specifically, the
feature vector (F) is normalized as:

F̃ =
F%− µ
σ

, (9)

where µ is the average vector of training feature vectors, and σ is the average of standard deviation of
training feature vectors.

Serial combination is a widely implemented feature fusion method [28]. With the serial
combination, the fused feature vector can be obtained, given by

F̃s =

 F̃MST

F̃RN

, (10)

where F̃MST is the normalized MST feature vector, F̃RN is the normalized regional network feature
vector.

Although serial combination can achieve satisfactory classification results, the contribution of
different features to the classification is ignored. In [29], a Bayesian fusion approach based on the
weighted average method was proposed. The core of this method is that the contribution of each
modality can be automatically weighed to optimize performance, and it will give access to the metric
that best classifies the data. This method is similar to hybrid-BCI systems and more details can be
found in [29–31]. Therefore, the weight can be computed as follows:

λi =
pi

pMST + pRN
, (11)

where pi is the posterior probability of the modality i.
In this way, different features can get corresponding weights, thereby optimizing the feature

selection of each individual.

2.5. Experimental Scheme

The data set in the BCI Competition IV Dataset I consists of human- and artificially generated MI
data. This study, we only considered the human EEG data. The data set provided by the Berlin BCI
Research Center and more details of the data set can be found in [32]. The experimental paradigm
was for seven healthy subjects (i.e., “a” to “g”) to perform any two classes of the left hand, right hand,
and foot MI tasks in the face of the computer screen. Subjects “a” and “f” chose left hand and foot MI
tasks, and the remainder chose left- and right-hand MI tasks. The EEG signals were recorded at the
following 59 positions of the international 10–20 system: AF3, AF4, F5, F3, F1, Fz, F2, F4, F6, FC5, FC3,
FC1, FCz, FC2, FC4, FC6, CFC7, CFC5, CFC3, CFC1, CFC2, CFC4, CFC6, CFC8, T7, C5, C3, C1, Cz, C2,
C4, C6, T8, CCP7, CCP5, CCP3, CCP1, CCP2, CCP4, CCP6, CCP8, CP5, CP3, CP1, CPz, CP2, CP4, CP6,
P5, P3, P1, Pz, P2, P4, P6, PO1, PO2, O1, and O2. The sampling rate of the amplifier was 100 Hz. We
selected the data set of all subjects for experimental analysis. Each subject performed a total of 200 MI
tasks. The data acquisition time of each trial was 8 s. From 0 to 2 s, the screen remained blank. From 2
to 4 s, the subject was in the preparation stage of MI when the screen displayed a mark “+”. At the
second 4 s, an arrow to the left, right, or down was displayed as a cue randomly, and the subject had to
concentrate on performing the corresponding movement according to the screen for 4 s. At the end
of one trial, the subject had a few minutes break. The subject imagined only one mental task in one
trial, and each of the movements was imagined 100 times. The experimental paradigm and electrode
positions are shown in Figure 3.
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2.6. EEG Data Preprocessing

EEG signals were preprocessed before further analysis. Fast independent component analysis was
used for denoising to obtain more pure EEG signals, ensuring the effectiveness of the extracted features
in the subsequent work. The ERD/ERS phenomenon is related to the mu (8–12 Hz) and beta (13–30 Hz)
rhythms of EEG signals. However, some frequencies in the beta rhythm are the harmonic waves of
the mu rhythm. Thus, mu rhythm is associated with motion or MI. The ERD/ERS in the mu rhythm
can be used as a direct indicator that reflects the excitation degree of neurons in the cortical region
and assesses neurodevelopment [33,34]. The EEG signals of 59 channels were decomposed by wavelet
packet. Thereafter, we reconstructed the wavelet coefficients to obtain the mu rhythm, which was used
in the latter network construction and feature extraction. Taking subject “a” as an example, the original
EEG and mu rhythm were given to the C4 channel after reconstruction by wavelet packet (Figure 4).
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2.7. Feature Classification with SVM

To automatically identify subjects MI data, our extracted features used machine learning methods
to learn a classifier. Widely used classifiers include SVM, decision trees, linear discriminant analysis
(LDA), and neural networks. Each classifier has its own application. Meanwhile, SVM classification
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algorithm has greater advantages when processing small sample data [35]. Based on the characteristics
of MI data, we chose SVM to classify mental tasks. The 10-fold cross-validation technique was chosen
to evaluate the classification performance of network features. For each subject, 90% of the trials were
used as the training set, and the rest were used as the testing set. This process was repeated 10 times to
ensure that each trial was treated as a test sample. Lastly, we set the average of the 10 accuracies as the
accuracy of one subject.

3. Results

3.1. MST in Different Movements

Subjects “a” and “f” performed left hand and foot MI tasks, whereas subjects “b”, “c”, “d”, “e”, and
“g” performed left- and right-hand MI tasks. Therefore, we took subjects “a” and “b” as representatives
of the two groups to illustrate the MST in different movements. First, we extracted the mu rhythm of
each channel by wavelet packet. Second, we calculated the Pearson correlation coefficients between the
mu rhythms of any two of the channel signals. Third, we averaged the Pearson correlation coefficients
for the same movement of one subject and obtained a 59× 59 connection coefficient matrix. We took
the reciprocal of the connection coefficient matrix to obtain the weight matrix and facilitate the solution
of Kruskal algorithm. The connection coefficient matrix and MST of subjects “a” and “b” in different
movements are shown in Figures 5 and 6, respectively.
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Figure 6. MST in different MI tasks of subject “b”. (a) Left hand; (b) right hand.

Figures 5 and 6 intuitively show that MST considerably simplifies the network structure. Thereafter,
all nodes in the network are connected, addressing the issue of node loss during brain network
construction. A significant difference in MST, particularly in the network tree trend, node association,
and aggregation, occurs when the subject imagines different movements. The reason is that different
movements activate different regions of the cerebral cortex, thereby verifying the functions of different
brain regions that are specific [36]. In addition, MST also differs when different subjects imagine
the same movement. The reason is that when different subjects imagine the same movement, the
corresponding activation degree of the cerebral cortex region is different, which is related to the
environment and psychological state of the subjects.

The differences in MST structures can be visually presented by the tree representation. By
comparing the tree representation of the subjects “a” and “b” in Figure 7, we can observe that the root
of each MST starts from the channel AF3. However, the subsequent trend of the tree is significantly
different. The number of branches in Figure 7a is the largest, and that in Figure 7d is the least. In
addition, the tree representation shows the changes in node association and aggregation of the same
node in different movements and reflects the trend of the MST network nodes.
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Although MST is not looped and the clustering coefficient is zero, the ability of MST to capture the
original network index structure and summary information is invariant. Therefore, the MST features
can be used to characterize the EEG signals in different MIs. Figure 8 shows the distribution of the
diameter and average eccentricity of subjects “a” and “b” in the different MIs.
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As shown in Figure 8, the degree of distinction is slightly evident although overlaps among
the points of movements of data are observed. Hence, the MST analysis is at least as sensitive as or
more sensitive than the traditional graph theory analysis. This finding strongly confirms that the
diameter and average eccentricity of the MST can be used as criteria for distinguishing MIs. This
result further reveals that our assumption of introducing MST into the BCI research is promising.
However, MST does not reflect attributes, such as clustering, that depend on the cycle. Thus, the
MST clustering coefficient is constantly zero and has no small-world network properties. The brain
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network is a small-world network. We constructed regional networks to characterize EEG signals more
comprehensively because the MST does not have small-world properties.

3.2. Regional Network in Different Movements

In neurophysiological studies, the ERS/ERD phenomenon mainly appears on the sensory motion
region corresponding to electrodes C3, C4, and Cz when subjects imagine right hand, left hand, and
foot movements, respectively. The construction of the regional network is based on MST, and then
threshold processing is carried out for the functional connection between the electrodes (C3, C4, and
Cz) corresponding to the movements (right hand, left hand, and foot) and other electrodes. Therefore,
we constructed regional networks centered on electrodes C3, C4, and Cz based on MST in Section 2.3.2.
The selection of connection threshold in the process of regional network construction has no uniform
standard. Therefore, we selected the threshold δ = 0.7 according to the method in [37]. Figures 9
and 10 show the regional networks of subjects “a” and “b,” respectively.
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Evidently, regional networks have different loops, which make them more compatible with
small-world network. The regional network under different movements can reflect the changes in
network location and connection well. After threshold processing, nodes with high correlation are
clustered and retained. Indeed, when subject “a” imagined left hand movement, a regional network
centered on electrode C4 was constructed on the basis of MST, which made the network in the vicinity
of electrode C4 in the motor control cortex more agglomerated. In addition, when subject “a” imagined
foot movement, the network in the vicinity of electrode Cz in the motor control cortex was highly
agglomerated. Similarly, for the left- or right-hand MIs of subject “b,” the network in the vicinity
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of electrodes C4 and C3 in the motor control cortex was highly agglomerated, respectively. These
results are consistent with the changes of motor cortical activation in different limb movements. The
regional network had stronger directivity than the MST; therefore, the regional network constructed
based on the MST can more effectively characterize each movement pattern with better interpretability.
Figure 11 shows the features distribution of subjects “a” and “b” in different MIs. The average node
degree, average clustering coefficient, and average path length as features to distinguish MIs are still
slightly evident (Figure 11).Electronics 2020, 9, 203 14 of 18 
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3.3. Classification

To evaluate the significant difference between the two mental tasks of each subject, the one-way
analysis of variance (ANOVA) was performed. As shown in Table 1, the p-value of MST features,
regional network features, and bilevel network features is less than 0.05. This result suggests that there
are significant differences in these mental tasks.

Table 1. p-values of the different features.

Subject MI
p-Value

MST RN SC BF

a Left hand/Foot 0.031 0.026 <0.01 <0.01
b Left/Right hand 0.024 0.018 <0.01 <0.01
c Left/Right hand 0.020 0.019 <0.01 <0.01
d Left/Right hand 0.019 0.015 <0.01 <0.01
e Left/Right hand 0.027 0.011 <0.01 <0.01
f Left hand/Foot 0.038 0.033 <0.01 <0.01
g Left/Right hand 0.023 0.012 <0.01 <0.01

Notes: regional network is abbreviated as RN, serial combination is abbreviated as SC, and Bayesian fusion approach
based on the weighted average is abbreviated as BF.

To evaluate our method, we chose the SVM method to classify mental tasks. We respectively
input the MST features, regional network features, and bilevel network features as vectors into SVM.
In this study, there are two ways of fusing the bilevel network features. One method is based on serial
combination and the other is Bayesian fusion approach based on the weighted average. Table 2 shows
the classification accuracies of the seven subjects.
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Table 2. Classification accuracies of the different features (%).

Subject MI
Features

MST RN SC BF

a Left hand/Foot 69.32 71.86 83.96 86.24
b Left/Right hand 72.34 77.48 87.24 88.31
c Left/Right hand 77.86 80.16 91.34 92.89
d Left/Right hand 73.24 77.66 88.64 89.51
e Left/Right hand 71.62 79.37 89.17 90.92
f Left hand/Foot 65.82 75.93 86.27 88.46
g Left/Right hand 72.19 76.87 88.37 90.16

Average accuracy of left hand/foot 67.57 ± 2.47 73.90 ± 2.88 85.12 ± 1.63 87.35 ± 1.57
Average accuracy of left/right hand 73.45 ± 2.53 78.31 ± 1.39 88.95 ± 1.51 90.36 ± 1.71

Average accuracy of all subjects 71.77 ± 3.68 77.05 ± 2.70 87.85 ± 2.34 89.50 ± 2.12

As shown in Table 2, the classification performance of feature fusion is significantly better than
that of an independent feature. Notably, among the two ways of feature fusion, the Bayesian fusion
approach based on the weighted average has better performance in each subject. The reason is that
it can combine the most significant features of each network layer, thereby reducing the subjects’
misclassification. This result further reveals that the Bayesian fusion approach based on the weighted
average can progressively capture the characteristics of the neural plasticity phenomena. In addition,
Table 2 shows that the average accuracy of all subjects based on the features of bilevel network is
89.50%, which has 17.73% and 12.45% gains compared with using only MST or regional network
features, respectively. Furthermore, the average accuracy of the bilevel network for left-/right-hand MI
is 90.36%, which has 3.01% gain over the left hand/foot MI. This result reveals that the bilevel network
is better at handling the left-/right-hand MI. In particular, the highest accuracy of subject “c” reached
92.89%. These results demonstrated the efficacy of the proposed feature extraction method based on
a bilevel network and verified that the combination of the fundamental and directional features can
achieve higher accuracy than independent features.

At present, extensive studies have been conducted on the classification of MI based on BCI. Table 3
shows the comparison of different feature extraction methods with our proposed method. A valid
comparison between different methods was ensured by sourcing all of their experimental data from
BCI Competition IV Dataset I.

Table 3. Studies with regard to the MI classification using different methods.

MI Method Accuracy (%) Database

Left hand/Foot
Our method 87.35 BCI Competition IV Dataset I
SBLFB [38] 79.85 BCI Competition IV Dataset I
FBCSP [39] 76.85 BCI Competition IV Dataset I

Left/Right hand
Our method 90.36 BCI Competition IV Dataset I

COL [40] 86.25 BCI Competition IV Dataset I
CSP [39] 75.60 BCI Competition IV Dataset I

Notes: sparse Bayesian learning is abbreviated as SBLFB, filter bank common spatial pattern is abbreviated as
FBLFB, and channel optimization based on l1-norm is abbreviated as COL.

Table 3 shows that our method is superior to that of references [38–40] for different types of MI.
Hence, our method has a feasible application and strong robustness, and we can conclude that the
bilevel network is an effective feature extraction method for the BCI research.

4. Discussion and Conclusions

Significant breakthrough has been achieved when brain network theory was applied to
neuroscience. However, the construction of the brain network often causes nodes to be incompletely
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connected. In this study, we applied the MST to the classification of MI EEG signals. MST is the only
subnetwork in the weighted network and effectively solves the problem of network disconnection
(Figures 5 and 6). In addition, MST can determine the original network index structure and summary
information. Regional network is constructed on the basis of MST with the functional cortex region
corresponding to different movements as the center. The most prominent role of the regional network
is to include more functional connectivity information in the cerebral cortex, highlight the network
characteristics of each movement, and compensate the shortcomings of the MST, which does not
have small-world characteristics. Figures 9 and 10 show that the regional network is more directional
than the MST. In summary, we combine MST with the regional network into a bilevel network. This
bilevel network has the superiority of each network layer and is more interpretative than MST or
regional network alone. Lastly, we combined the fundamental features of the MST with the directional
features of the regional network to characterize the brain network and apply them to the different MI
classifications. The results on real world data sets suggest that our method achieves better classification
performance than using a single layer network and other algorithms regardless of left/right hand or
left hand/foot MI.

This study further reveals that our assumption of introducing MST into MIs classification may be
promising for the BCI research. The classification performance of the regional network is better than
that of MST because the regional network contains more information of the cerebral cortex. Therefore,
our proposed regional network under different movements can reflect the changes in network location
and connection well. This study also demonstrates the superiority of the bilevel network in BCI
Competition IV Dataset I.

However, our method continues to have some drawbacks and deserves further study. (1) Given
that MST substantially simplifies the network structure, it may help find a generation model of the
brain network. This research only chose the diameter and average eccentricity to characterize the
fundamental features of MST. Therefore, our challenge in the future is to find a more comprehensive
measurement framework for MST. (2) Our method effectively solves the two-class problem. Thus,
extending our method to a multi-class framework may achieve generalization in practical applications.
(3) Although our proposed feature extraction method has achieved promising results, it has strong a
priori both in terms of frequency bands and EEG electrodes used to perform the classification. Given
that volume conduction effects typically affect scalp EEG activity, further research is needed in source
space. (4) Computational complexity is a concern for online BCI. Although the bilevel network achieves
better classification performance than using a single layer network, the calculation time is higher than
independent features. Hence, a topic worth considering is to reduce the computational complexity of
our method, which will hopefully promote the applications of our method in BCI systems.
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