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Abstract: This paper proposes a hybrid machine-translation system that combines neural machine
translation with well-developed rule-based machine translation to utilize the stability of the latter to
compensate for the inadequacy of neural machine translation in rare-resource domains. A classifier is
introduced to predict which translation from the two systems is more reliable. We explore a set of
features that reflect the reliability of translation and its process, and training data is automatically
expanded with a small, human-labeled dataset to solve the insufficient-data problem. A series
of experiments shows that the hybrid system’s translation accuracy is improved, especially in
out-of-domain translations, and classification accuracy is greatly improved when using the proposed
features and the automatically constructed training set. A comparison between feature- and text-based
classification is also performed, and the results show that the feature-based model achieves better
classification accuracy, even when compared to neural network text classifiers.

Keywords: hybrid machine translation; neural machine translation; rule-based machine translation;
feature-based classification

1. Introduction

Over the past few years, automated translation performance has improved dramatically with
the development of neural machine translation (NMT). In the past decades, we said that rule-based
machine translation (RBMT) had a high meaning-transmission accuracy, and statistical-based machine
translation (SMT) had excellent fluency. However, NMT has excellent quality in both aspects when
there is a large-scale, bilingual parallel corpus.

In practice, it is often difficult to acquire such large-scale parallel corpora, except with some special
language pairs or for specific companies. Additionally, most of the special-domain corpora are limited.
Considering the weakness of NMT on low-resource and out-of-vocabulary issues, some researchers
proposed using a hybrid approach of aiding NMT with SMT [1]. For teams that have already developed
an RBMT system with a stable translation quality, utilizing their existing RBMT with NMT when
translating a specific domain can be an attractive solution. To test this assumption, we performed
a preliminary evaluation on the Korean-to-Chinese translation performance of RBMT, SMT, and NMT
in several different domains, including news, Twitter, and spoken language. The spoken dataset with
1012 bilingual sentence pairs consists of daily conversations, travel sentences, and clean sentences
selected from the log of the mobile translation service. The other spoken dataset and the single-word
dataset are composed with complete sentences and single words, respectively, are randomly selected
from the same translation service log. News and Twitter are randomly collected from the day’s news
and hot issue-related trending topics on Twitter. Except for the first spoken dataset with bilingual
sentence pairs, other datasets do not have translation references—we did not translate the data manually
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to perform BLEU evaluation [2]. Instead, our translators evaluated the MT results directly, because
it would be more intuitive and faster for small datasets. The average length in Table 1 represents
the average number of word segments (spacing unit in Korean) per sentence in difference datasets.
GenieTalk (HancomInterfree, Seoul, Korea), Moses [3], and OpenNMT [4] are adopted for RBMT,
SMT, and NMT, respectively, and 2.87 million bilingual sentence pairs in the spoken-language domain
are used to train the SMT and NMT systems. BLEU and translation accuracy [5,6] are adopted for
large- and small-scale assessments, respectively.

Table 1. Translation quality comparison of rule-based machine translation (RBMT), statistical-based
machine translation (SMT), and neural machine translation (NMT).

Domain Evaluation
Matrix

Sentence
Count

Average
Length RBMT SMT NMT

Spoken BLEU 1012 3.70 0.2570 0.3671 0.4273
Spoken Accuracy 30 2.90 84.17% 89.58% 90.42%
News Accuracy 20 17.05 68.13% 46.88% 42.50%

Twitter Accuracy 20 13.70 46.25% 46.25% 35.00%
Single word Accuracy 10 1.00 96.25% 80.00% 82.50%

Table 1 shows that both NMT and SMT outperform RBMT for in-domain translation (“Spoken”).
However, the translation quality drops significantly for out-of-domain sentences. This tendency is
more severe in the case of NMT, showing that NMT is more vulnerable in low-resource domains
(“News” and “Twitter”) and is more sensitive to noisy data (“Twitter”). NMT and SMT are also weaker
when performing translation in the absence of context information (“Single word”), while RBMT shows
better quality in these domains.

Starting from the above observations, this paper proposes combining RBMT with NMT using
a feature-based classifier to select the best translation from the two models; this is a novel approach for
hybrid machine translation.

The contribution of this paper resides in several aspects:

• To the best of our knowledge, this paper is the first to combine NMT with RBMT results in domains
where language resources are scarce, and we have achieved good experimental results.

• In this paper, we propose a set of features, including pattern matching features and rule-based
features, to reflect the reliability of the knowledge used in the RBMT transfer process. This results
in better performance in quality prediction than surface information and statistical information
features, which have been widely used in previous research.

• Since neural networks perform text classification well, we compare feature-based classification
with text-based classification, and our results show that feature-based classification has better
performance, which means explicit knowledge that expresses in-depth information is still helpful,
even for neural networks.

• To construct a training corpus for the classification of hybrid translation, which is very costly,
our study built a small hybrid training corpus manually and then automatically expanded
the training corpus with the proposed classifier. As a result, classification performance was
greatly improved.

The rest of this paper is organized as follows: Section 2 reviews related work on hybrid machine
translation (MT) systems. Section 3 presents our hybrid system’s architecture and the specific MT
systems adopted in this paper. Section 4 presents our proposed features for hybrid machine translation.
Section 5 describes the experimental settings for the tests and discusses the results from different
experiments. We present our conclusions and discuss future research in Section 6.
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2. Related Works

The first effort toward a hybrid machine translation system adopted SMT as a post-editor of
RBMT. In this model, a rule-based system first translated the inputs, and then an SMT system corrected
the rule-based translations and gave the final output [7–11]. The training corpus for the post-editing
system consisted of a “bilingual” corpus, where the source side was the rule-based translation, and the
target side was the human translation in the target language. This architecture aimed to improve lexical
fluency without losing RBMT’s structural accuracy. The experiments showed that the purpose was
partially achieved: automatic post-editing (APE) outperformed both RBMT and SMT [9,10]. On the
other hand, APE for RBMT degraded the performance on some grammatical issues, including tense,
gender, and number [9]. It was particularly limited in long-distance reordering for language pairs
that have significant grammatical differences; analysis errors could further exacerbate this because of
structural errors introduced during rule-based translation [11].

Other researchers proposed an “NMT→SMT” framework, which combined NMT with SMT in
a cascading architecture [1]. NMT was adopted as a pre-translator, and SMT, which was tuned by
a pre-translated corpus, was adopted as a target–target translator. As a result, the performance was
significantly improved in Japanese-to-English and Chinese-to-English translations.

APE has developed to a professional level where human post-edits of the automatic machine
translation are required instead of independent reference translations [12–14], because learning from
human post-edits is more effective for post-editing [15,16]. However, developing a human-edit corpus
is time-consuming and costly, so it cannot be performed for all language pairs. There is not a clear
performance improvement when NMT results are post-edited using neural networks, unlike when
SMT results are post-edited using neural networks [17].

Reference [18] reported that under the same conditions, selecting the best result from several
independent automatic translations was better than APE. This hybrid approach adopted several
independent translation systems and picked the best result using either quality estimation or
a classification approach. Quality estimation predicts the translation qualities using the language
model, word alignment information, and other linguistic information; then, it ranks the quality scores
of multiple translations and outputs the top-ranked result as the final translation [19,20]. In addition
to hybrid MT, quality estimation also has other applications, such as providing information about
whether the translation is reliable, highlighting the segments that need to be revised and estimating
the required post-editing effort [21–23].

Feature extraction is normally one of the main issues of quality estimation and classification-based
hybrid translation methods. Features can be separated into black-box and glass-box types: black-box
features can be extracted without knowing the translation process, include the length of source and
target sentences, the n-gram frequency, and the language model (LM) probability of the source or target
segments. Meanwhile, glass-box features depend on some aspect of the translation process, such as the
global scores of the SMT system and the number of distinct hypotheses in the n-best list of SMT [22,23].
Most of the existing research has either focused on black-box features or the glass-box features from SMT,
including language model perplexity, translation ambiguity, phrase-table probabilities, and translation
token length [5,18,24–26]. However, a classification approach is considered more proper for a hybrid
RBMT/SMT system, because most of the quality estimation research tend to evaluate translation quality
using language models and word alignment information; thus, it tends to overvalue the results of
SMT [5,18].

Another issue with the classification approach involves the training corpus for hybrid
classification [5,24,25,27,28]. The training corpus is composed of extracted features and labels indicating
the “better” and “best” translations. Human translators should be involved in building the labeled
training corpus; therefore, building such a corpus is a time-consuming and costly process. In previous
researches, given the bilingual corpus and the outputs of the two MT systems, the labels are determined
based on the quality evaluation metrics such as BLEU. However, this approach has a limit in hybridizing
SMT with RBMT, because such measures may cause a biased preference for language model-based
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systems [5]. Reference [5] proposed an auto-labeling method for RBMT and SMT hybridization
that only evaluated SMT translations: the labels would indicate that the SMT results were better if
their BLEU metrics were high enough, and the labels would indicate that the RBMT results were
better if the SMT results’ BLEU metrics were low enough. This approach avoided the difficulty of
securing a large-scale training corpus, but it assumed that an SMT translation was better than an RBMT
translation based on the SMT translation’s BLEU score; the quality of the RBMT translation was not
considered. In practice, sentences that are translated well by SMT are relatively short and contain
high-frequency expressions; these are also translated well by RBMT. Sentences that receive low scores
with SMT also show relatively inferior performance with RBMT.

Other researchers adopted only one of these systems, either rule-based or statistical, as the basis,
letting other systems produce sub-phrases to enrich the translation knowledge. Reference [29] adopted
an SMT decoder with a combined phrase table (produced by SMT and several rule-based systems)
to perform the final translation. Others [28,30–32] used a rule-based system to produce a skeleton of
the translation and then decided whether the sub-phrases produced by SMT could be substituted for
portions of the original output. This architecture required the two systems to be closely integrated,
making implementation more difficult.

3. System Architecture

This paper aims to offset the disadvantages of NMT, which shows low performance in low-resource
domains, by using RBMT. As shown in Figure 1, a classification approach is adopted to select the best
of the RBMT and NMT translations.
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Figure 1. Hybrid system architecture. Classifier 1 is trained on the human-labeled dataset to
automatically build a larger dataset. The automatically classified dataset is used with the human-labeled
data to train the Classifier 2 for hybrid translation.

Since the performance of RBMT is much lower than that of NMT in general cases,
classification accuracy becomes more important to prevent the hybridized results from being lower than
those of NMT, which is the baseline. To ensure accurate classification, we thoroughly explored glass-box
features that reflect the confidence of RBMT, and we expanded the training corpus automatically
using a small-capacity, labeled corpus constructed by human developers, which is a decidedly simple
self-training approach.
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3.1. Rich Knowledge-Based RBMT

The RBMT system adopted in this study is a machine translation system based on rich
knowledge [33]. The main knowledge sources used for the transfer procedure include a bilingual
dictionary (backed by statistical and contextual information) and large-scale transfer patterns (at the
phrase and sentence level). The phrase-level patterns, which play the most important role in the
transfer procedure, describe dependencies and syntactic relations with word orders in the source and
target languages. The arguments of the patterns can be at the part-of-speech (POS) level, semantic level,
or lexicon level. The following are examples of Korean-to-English transfer patterns; for readability,
Korean characters have been replaced with phonetic spellings:

• (N1:dobj) V2→ V2 (N1:dobj)
• (N1[sem=location]:modi+ro/P2) V3→ V3 (N1:dobj)
• (N1[sem=tool]:dobj) gochi/V2→ fix/V2 (N1:dobj)
• (N1[sem=thought]:dobj) gochi/V2→ change/V2 (N1:dobj)
• (hwajang/N1:dobj) gochi/V2→ refresh/V2 (makeup/N1:dobj)

The source-language arguments are used as constraints in pattern matching. A pattern with more
arguments, or with a higher proportion of lexical- and semantic-level arguments, tends to be more
informative. We use weights to express the amount of information in the source-language portion of
the patterns. The weight of the lexical-level argument is higher than the semantic argument, and the
weight of the semantic argument is higher than the POS argument. In terms of POS, verbs and auxiliary
words weigh more than adjectives, while adjectives weigh more than nouns. Adjectives weigh more
than nouns, because Korean adjectives have various forms of use, which cause the ambiguity in
both analysis and transfer. For example, the Korean phrase “yeppeuge ha (keep sth pretty)” can be
“yeppeu/J+geha/X”, or “yeppeuge/A ha/V”. In the previous analysis, the combination of adjectives and
auxiliary words increased the difficulty of translation. Patterns that obtain higher matching weights
gain higher priority in pattern matching. The quality of the translation strongly depends on the
patterns used in the transfer process.

The system supports multilingual translations from and to Korean, so the patterns share the same
form in different language pairs. The following Korean-to-Chinese transfer patterns share the same
Korean parts with the above Korean-to-English patterns, while some of them even share the same
target-language parts (if there is no lexicon argument involved):

• (N1:dobj) V2→ V2 (N1:dobj)
• (N1[sem=location]:modi+ro/P2) V3→ V3 (N1:dobj)
• (N1[sem=tool]:dobj) gochi/V2→ xiu1li3/V2 (N1:dobj)
• (N1[sem=thought]:dobj) gochi/V2→ gai3/V2 (N1:dobj)
• (hwajang/N1:dobj) gochi/V2→ bu3zhuang1/V2_1

3.2. Neural Machine Translation

The NMT system OpenNMT [4], which uses an attention-based, bi-directional recurrent neural
network, is adopted in this paper. The corpus used for training covers travel, shopping, and diary
domains as Korean–Chinese language pairs. As described in Section 1, there are 2.87 million pairs.
The sentences in both languages are segmented with byte-pair encoding [34] to minimize the rare-word
problem. The dictionaries include 10,000 tokens in Korean and 17,400 tokens in Chinese. The sizes of the
dictionaries are so small that most tokens are character-level, and the sizes are determined by a series
of experiments using Korean–Chinese NMT. The trained model includes four hidden layers with 1000
nodes in each layer. Other hyperparameters followed the default OpenNMT settings (embedding
dimensionality 512, beam size 5, dropout 0.7, batch size 32, and sgd optimizer with learning rate 1.0 for
training). The validation perplexity converged to 5.54 at the end of 20 training epochs.
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3.3. Feature-Based Classifier with an Automatically Expanded Dataset

Since creating human-labeled training sets for hybrid translation is time-consuming,
expensive, and generally not available at large scales, we use support vector machines (SVMs) as the
basic classifier, because SVMs are efficient, especially with a large number of feature dimensions and
smaller datasets, while a small training set makes deep learning prohibitive. Since neural networks have
shown good performance in classification using only word vectors, we also compare the feature-based
classifier with several text classifiers to see whether the proposed features are still effective in such
a comparison.

We use a self-training approach to construct the training corpus automatically. First, we trained the
feature-based classifier 1 on the human-labeled dataset, and then we automatically constructed a larger
dataset with the trained classifier. The automatically classified dataset is used with the human-labeled
data to train the classifier 2 for hybrid translation, as shown in Figure 1 above.

4. Feature for Hybrid Machine Translation

The classifier must determine whether the NMT or RBMT translation is more reliable.
Therefore, the features fed into the classifier are designed to reflect the translation qualities of both the
RBMT system and the NMT model.

The RBMT translation procedure includes analysis, transfer, and generation; thus, analysis and
transfer errors have a direct impact on translation quality.

4.1. High-Frequency Error Features

Ambiguity leads to high-frequency errors in analysis and transfer procedures. Analysis ambiguity
includes morpheme ambiguity (segmentation ambiguity in Chinese), POS ambiguity, and syntactic
ambiguity. Transfer ambiguity includes semantic ambiguity and word-order ambiguity. These features
are language dependent, and they have often been described as grammar features in previous research.
These features are black box features because they are extracted from the source sentences without
morpheme or POS analysis. This paper proposes 24 features to reflect high-frequency errors related to
ambiguities in Korean and Chinese. Some of these are as follows:

4.1.1. Morpheme and POS Ambiguities

In Korean, same surface morphological forms might have different root forms:

• Sal: sa (buy), or sal (live)
• Na-neun: nal-neun (flying), or na-neun (“I” as pronoun, or “sprout” as verb)

4.1.2. Syntactic Ambiguities

Case particles in Korean are often omitted, which causes case ambiguities among the subjective,
vocative, and objective cases. The particles “-wa/-gwa”, which mean ‘with’ or ‘and’ in English,
cause syntactic ambiguities when they are used to connect two nouns. Below are two examples where
the syntactic structures are determined by the word semantics (see (a) and (b) in Figure 2). In this case,
there are analysis ambiguities, because word semantics are not considered during analysis.

• Nam-pyeon-gwa maek-ju jom haet-da (I had a beer with my husband).

• Chi-kin-gwa maek-ju jom haet-da (I had some chicken and beer).
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4.1.3. Ambiguity of Adverbial Postpositional Particles

Many adverbial postpositional particles in Korean not only have word-sense ambiguity, but they
also cause word-order ambiguity in Korean-to-Chinese translation. This is seen with the high-frequency
particles “-ro (with/by/as/to/on/onto)”, “-e (at/on/to/in/for/by)”, and “-kka-ji (even/until/by/to/up to).”
The following are examples of “-ro” translation ambiguity:

• Taek-bae-ro mul-geon-eul bo-naet-da (I sent the goods by courier)→ Yong4 kuai4di4 fa1huo4

• Hoe-sa-ro mul-geon-eul bo-naet-da (I sent the goods to the company) → huo4wu4 ji4
dao4 gong1si1 le

4.1.4. Word-Order Ambiguity Related to Long-Distance Reordering

There are some terms that are particularly relevant when discussing long-distance reordering in
translation. In Korean, these include auxiliary predicates, such as “-ryeo-go_ha (want to)” and “-r-su_it
(can/may)”, and some verbs, such as “ki-dae_ha (expect)” and “won_ha (wish)”. These words can
cause word-order ambiguity during translation, which results in translation errors.

4.2. Basic Linguistic Features

Basic linguistic features have been widely used in previous research. These include POS, syntactic
features, and surface features related to source sentences and target translations. These features are
normally considered black-box features [22,23], but except for the length of the string feature, they can
also be considered as glass-box features because they are produced by the POS tagger and parser
included in the RBTM system [5].

4.2.1. Source- and Target-Sentence Surface Features

There are 19 features in this set. These include:

- Length features, such as the number of characters, morphemes, and syntax nodes. While the
number of characters corresponds to the length of the string, the number of morphemes is equal
to the tagged POS count. In some languages, the number of syntax nodes is the same as the
number of morphemes, but they differ in Korean, because postpositional particles and ending
words are not considered to be independent syntax nodes.

- Length comparison features of source and target sentences, such as the lengths of the NMT
and RBMT outputs, the length ratio of each translation with the source sentence, and the
length-difference ratio of each translation with the source sentence

- The number of unknown words in each translation and their proportion in the translation
- The number of negative words, such as “no/not”, in the source sentence, and the difference in

negative word counts between the source and each translation
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- The number of numerals in the source sentence, and the difference in numeral counts between
the source and each translation

4.2.2. Source-Sentence Linguistic Features

The number of different POSs (such as the number of verbs) and their proportion in the sentence.
There are 46 total POS features.

The number of different syntax nodes (such as the number of objects or subjects) and their
proportions in the syntactic nodes. There are 36 total syntactic features.

4.3. Pattern-Matching Features Reflecting Transfer Confidence

As previously introduced, the RBMT system uses transfer patterns to convert the source sentence
into a translation, and the translation quality is strongly influenced by exact matches of the patterns.
For example, if the original is translated with a long or informative pattern, it is more likely that the
translation quality is higher than that of several short patterns or a less informative pattern. There are
19 features proposed to reflect pattern-matching confidence, and all of them are glass-box features.

4.3.1. Pattern-Number Features

In the input sentence, adopted features include the number of words that need pattern matching,
the number of the words matched with patterns, and the ratio of both. The lower the pattern-matching
ratio, the lower the translation reliability. All words in Korean (except final endings and modal,
tense-related words) must be matched with patterns for translation.

In the matched patterns, features include the number of arguments on the source side of the
patterns and the proportion of matched arguments. When more arguments match with the input
sentence, the match is more reliable.

4.3.2. Pattern-Weight Features

In the input sentence, adopted features include the total weight of the words that need pattern
matching, the total weight of the words matched with patterns, and the ratio of these with the sentence.

In the matched patterns, adopted features include the weights of the patterns on the source side,
and the ratio of the matched arguments’ weights to the patterns’ weights.

4.3.3. Pattern-Overlap and Pattern-Shortage Features

Pattern-overlap features include the number of verbs, auxiliary verbs, conjunctional connective
words, and particles that match more than two patterns. If a word matches more than two patterns,
the word position in those patterns may differ, and this can create word-order ambiguity related to
word reordering, particularly for the above POSs. If these words do not match any patterns, this can
also lead to translation errors.

Pattern-shortage features include the number of verbs, auxiliary verbs, connective words,
and particles that fail to match any pattern.

4.3.4. High-Confidence Pattern Features

These features indicate whether an input sentence has been translated with a high-confidence
pattern. There are patterns that are described at the sentence level, and most of their arguments
are described with lexicon or sense tags. These patterns are considered high-confidence patterns.
If an input sentence is translated using one of these patterns, the translation is usually trustworthy.

4.4. NMT Features

Most of the features in previous research that represent the translation quality of SMT, including the
translation probability of target phrases and n-gram LM probability, were extracted from phrase tables
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and language models. Apart from the perplexity score of the final translation, NMT is more of a black
box that barely produces sufficient information for feature extraction.

However, there are still factors that affect the quality of NMT translations, such as the number of
numerals and rare words. We propose 20 NMT features as follows:

4.4.1. Translation-Perplexity Features

The perplexity produced by the NMT decoder for each translation can be adopted as a glass-box
feature. The lower the perplexity, the more confident the model is regarding the translation.

The normalized perplexity score according to the translation is also adopted as a feature,
because perplexity tends to be high when the target output is long.

4.4.2. Token-Frequency Features

Token-frequency classes are used for the source and target side. The average token frequency of
each side is normalized to create 10 classes (1 to 10) that are adopted as black-box features. Tokens with
higher frequencies belong to higher classes.

The average frequency ratio of the target tokens and the source tokens are captured using the
ratio of their average frequencies and the ratio of their classes.

4.4.3. Token Features

To avoid the rare-word problem, NMT normally uses sub-words as tokens for both source and
target sentences.

The numbers of numerals, foreign tokens, unknown tokens, and low-frequency tokens are
captured with eight total black-box features for the source-sentence and its translation. Foreign tokens
can be on either the source or target side (for example, English words in both a Korean source-sentence
and a Chinese translation). Unknown tokens are those that are outside the token dictionary’s scope
or untranslated tokens on the target side (for example, untranslated Korean tokens remaining in
the Chinese translation). Low-frequency tokens are tokens included in the token dictionary whose
occurrence frequency in the training corpus is under a specified threshold.

The counts of mismatched numerals and foreign tokens in the source sentence and in the translation
are captured with one feature. If both the source and target sentences have the same number of
numerals or foreign tokens, but one of these numerals or foreign tokens differs in the translation (from
that in the source sentence), we consider this a mismatch.

4.5. Rule-Based Features

By considering the proposed features above, several new rule-based features are obtained to
detect whether the RBMT or NMT result is trustworthy. This produces four glass-box features in total.

4.5.1. RBMT Pattern Feature

Whether the RBMT result is unreliable is captured by considering pattern-matching features and
calculating penalties. For example, if the ratio of matching pattern weights is below a given threshold,
or if pattern matching is severely lacking, the RBMT result is not reliable.

4.5.2. Basic-Linguistic Features

Whether the RBMT result is unreliable is captured by considering the mismatching numerals and
negative words along with other potential grammar errors.

Which translation is less reliable is captured by considering the number of unknown words
in RBMT and NMT and whether the length difference ratio of RBMT or NMT exceeds a threshold.
For example, if RBMT translates all words, but two words of NMT are not translated, the results of
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RBMT will be considered more trustworthy. Alternatively, if the original sentence and the RBMT
translation are very long, but the NMT translation is very short, the NMT may not be trusted.

4.5.3. Classification Feature

After considering the rule-based features above, we add a feature to indicate whether we prefer
the RBMT or NMT translation.

5. Experiments

We empirically evaluate the effects of the proposed hybrid translation in the following aspects:

• Translation performance and feature evaluation. The best feature set is selected through feature
ranking and translation-accuracy estimation.

• Translation-performance evaluation with the auto-expanded corpus. The hybrid translation
accuracy with an auto-expanded corpus is compared to the accuracy of RBMT and NMT.

• Classification performance comparison with text classification. Feature-based classification
accuracy is compared with deep neural network text classification to determine whether the
feature-based approach is still effective.

5.1. Experimental Settings

The first step is manually constructing the training data for the hybrid classifier. A set of source
sentences are provided with the automatic translation results and the extracted features from RBMT
and NMT. Human translators evaluate the quality of each translation result with a score (from 0 to
4 points) following the criteria shown in Table 2, which was revised from preliminary works [5,35].
Based on the human-estimated scores, each sentence is labeled with “NMT” (indicating that the NMT
result is better), “RBMT” (indicating that the RBMT result is better), or “Equal”. The extracted labeled
features comprise the training corpus for classification.

Table 2. Scoring criteria for translation accuracy.

Score Criterion

4 The meaning of the sentence is perfectly conveyed.

3.5 The meaning of the sentence is almost perfectly conveyed, except for
some minor errors, such as incorrect articles or stylistic errors.

3 The meaning of the sentence is almost conveyed (approximately 75% of
the sentence parts are translated correctly).

2.5 The meaning of the sentence is conveyed in part, but not in whole
(approximately 60–70% of the sentence parts are correctly translated).

2 Some of the phrases in the sentence are translated correctly
(approximately 50% of the sentence parts are correctly translated).

1 Only some words are correctly translated.
0 There is no translation or a completely incorrect translation.

The human-estimated scores are also adopted to estimate the translation engine’s translation
accuracy, as shown in Equation (1).

translation accuracy =

∑n
i=1

( score j
4

)
n

× 100.0 (1)

Table 3 shows the classification corpus’s composition by domain. The in-domain corpus contains
2786 sentences in the travel, shopping, and diary-conversation domains; these are the same domains
as in the NMT training corpus, but they were developed independently. The out-of-domain corpus
contains 1180 sentences collected from news, book reviews, Twitter, and lecture videos. The translation
accuracy is estimated by domain.
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Table 3. Information of hybrid classification corpus.

Sentence Average Translation Accuracy The Percentage of each Label

Domain Count Length RBMT NMT Upper RBMT NMT Equal

In
domain 2,786 3.04 83.44% 92.84% 96.36% 8.33% 36.36% 55.31%

Out of
domain 1,180 9.73 69.60% 67.44% 78.49% 38.73% 30.93% 30.34%

Total 3,966 5.05 79.32% 85.28% 91.00% 17.37% 34.75% 47.88%

As shown in Table 3, NMT shows better performance in in-domain translation, and RBMT shows
better performance in out-of-domain translation; these results are consistent with the small-scale
evaluation results shown in Table 1. We consider the NMT translation accuracy as our baseline
translation accuracy, which is 85.28%. The baseline classification accuracy is 47.88%, which is the
percent of the sentences labeled “Equal”. The upper bound of perfect classification would be 91.00%,
as “Upper” column in Table 3.

We applied 10-fold cross-validation to the above datasets in the following experiments,
unless otherwise noted.

5.2. Translation Performance and Feature Evaluation

All 181 features (f181) described in this paper are ranked with a feature selection tool provided for
SVM [36]. Of these features, 152 are suggested as the best feature set (f152), and 76 are suggested as
the second-best feature set (f76). We performed hybrid classification using structured SVMs [37] with
the three feature sets above and compared the resulting translation accuracies to determine the final
feature selection.

As shown in Table 4, the suggested best feature set of 152 features (f152) achieves the best
translation accuracy (86.41%) in hybrid translation. This indicates that the feature-ranking result is
reliable. Comparing these results with those in Table 3, we can see that regardless of the adopted
feature set, the translation accuracy of the hybrid system exceeds that of the baseline NMT of 85.28%.
For out-of-domain translation, the increase is even more obvious. The out-of-domain translation
accuracies for RBMT and NMT are 69.60% and 67.44%, respectively, and the hybrid system’s translation
accuracy is 70.10%.

Table 4. Translation performance evaluation and feature selection.

Domain f181 f152 f76

In domain 92.74% 93.31% 93.40%
Out of domain 69.59% 70.10% 69.72%

Total 85.86% 86.41% 86.36%

To determine whether the features proposed in this paper contribute to this performance, we have
analyzed the top 30 features in the ranking, and we found that of the top 30 features, 43.33% originate
in this study: seven features are RBMT pattern-matching features (Section 4.3), four features are
NMT-related features (Section 4.4), and two features are rule-based features (Section 4.5) (Table 5).
In the following experiments, the 152-feature set is adopted unless otherwise noted. Other “General”
type features in Table 5 are from the high-frequency error features (Section 4.1) and basic linguistic
features (Section 4.2).
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Table 5. Feature ranking.

Rank Feature Type Feature Description

1 General NMT perplexity score
2 General RBMT translation word number

3 General Source sentence string length (character
number)

4 General Source sentence word number
5 General NMT translation word number
6 General NMT translation length
7 Pattern matching The word number needs to match the pattern
8 General Source sentence morpheme number
9 General Source sentence syntactic node number

10 Pattern matching The word number matches the pattern

11 Pattern matching The weight of words needs to match the
patterns

12 NMT-related The average frequency ratio of translation and
source sentence

13 General The syntactic node number modifier
14 General The proportion of POS punctuations

15 NMT-related The class of the average frequency of target
tokens

16 NMT-related Normalized NMT perplexity score

17 NMT-related The class of the average frequency of source
tokens

18 Pattern matching The verb number needs to match the patterns
19 General The verb number in a source sentence
20 Pattern matching The weight of words in matched patterns
21 Pattern matching The verb number in matched patterns

22 General The length ratio of the target and source
sentence

23 General POS number – verb
24 General POS number – ending
25 General Syntactic proportion – punctuations
26 General Syntactic proportion – modifier
27 General POS number – particles
28 Rule-based Rule – need NMT by penalty scores
29 Rule-based Rule – need NMT by length ratio

30 Pattern matching The number of overlapped patterns matching
on particles

5.3. Translation Performance Evaluation with Auto-Expanded Corpus

Reference [5] proposed a truncation method to construct a training dataset for an SMT/RBMT
combination using a classification approach. The truncation method operated as follows: if the SMT
translation achieved a high enough confidence score (BLEU in their research), then the sentence was
labeled “SMT”; otherwise, it was labeled “RBMT”. This simple method was sufficient in their research.
However, unlike the SMT/RBMT hybrid, in which the translation accuracy of each system is similar to
the other, in the NMT/RBMT hybrid, the performance of NMT is much better than RBMT for in-domain
translation and slightly lower for out-of-domain translation. We evaluated the truncation method on
the same dataset used in Table 3, and we found that even the upper bound translation accuracy of the
hybrid system with the best truncation could not outperform NMT.

We collected 20,000 sentences (which are independent from both the NMT training corpus and
the human-labeled training corpus) for classification. We translated these sentences with both NMT
and RBMT and performed feature extraction. We then labeled them automatically with the classifier
trained on the human-labeled corpus. We used both the human-labeled corpus and the automatically
labeled corpus to train a new classifier. This process is the same as that shown in Figure 1. The classifier
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with the automatically expanded dataset is compared with the classifier with the human-labeled
dataset to see if the automatically expanded dataset contributes to the hybrid model’s translation
performance. We still apply 10-fold cross-validation to the dataset in Table 3, so in each iteration,
we have 23,569–23,570 training examples and 397–396 test examples.

As shown in Table 6, the translation accuracy (T-accuracy) increased from 86.41% to 86.63%
because of the improvement on the out-of-domain data, despite the in-domain translation accuracy,
which declined slightly. Since, as seen in Table 3, 47.88% of the data are labeled “Equal” (indicating
the NMT and RBMT translation qualities are the same), we also measure the classification accuracy
(C-accuracy) to see how much the classification performance is influenced by the expanded dataset.
As shown in the last row of Table 5, classification accuracy is greatly improved: from 54.46% to 63.01%,
or +8.55%.

Table 6. Translation accuracy with auto-expanded training data. T-accuracy: translation accuracy,
C-accuracy: classification accuracy.

Domain Criteria Human Dataset Expanded Dataset

In domain T-accuracy 93.31% 92.80%
Out of domain T-accuracy 70.10% 71.75%

Total T-accuracy 86.41% 86.63%
Total C-accuracy 54.46% 63.01%

Compared to the increase in classification accuracy, the increase in translation accuracy is not very
large. This is because the evaluation dataset is mostly composed of elements labeled “Equal” and
“NMT”, as seen in Table 3. According to Equation (1), our classification formula, if the classification
result is “Equal” or “NMT”, the final translation choice is “NMT”. Therefore, if the classifier
incorrectly predicts the “NMT” case as “Equal”, or vice versa, it has no effect on translation accuracy.
Translation accuracy is only affected when “NMT” or “Equal” is incorrectly classified as “RBMT” or
when “RBMT” is incorrectly classified as “NMT” or “Equal”.

5.4. Comparison with Text Classification

For text-based models, we adopt a convolutional neural network text classifier (CNN-text) [38],
a recurrent neural network (RNN) text classifier [39] with long short-term memory and gated recurrent
units, and a BERT [40] multilingual model as the pre-trained model. The tokens from the source
sentence and the translation outputs of RBMT and NMT are adopted as inputs for the text classifiers.

For our feature-based classifiers, the above RNN classifier (RNN), the above RNN classifier with
the above CNN classifier (CNN+RNN), a multilayer perceptron model (MLP), and a CNN classifier
(CNN) are adopted. The MLP model comprises a three-layer MLP with ReLU (256 units) and dropout
(0.1) after each layer, followed by a softmax layer. The CNN feature-based classifier is composed
of four layers: two convolutional 2D layers (filter size 100, kernel size 3 × 3, and ReLU activation
function), a max-pooling layer (size 2 × 2), a feedforward layer with ReLU (256 units), and a softmax
layer with dropout after max-pooling and feedforward layers. Both classifiers are optimized with the
Adam algorithm. Early stopping is added to avoid overfit neural network-based models, and most
models stopped in 10 epochs. Classification accuracy is used as the evaluation criterion for comparing
classification models.

As shown in Table 7, the feature-based approach proposed in this paper clearly outperforms
text-based classification, including with the BERT pre-trained model. This is because the features
proposed in this paper express in-depth features explicitly, whereas text cannot express them well.
In addition, feature-based classification obviously benefits from an expanded corpus, but text-based
classification is the opposite. As we mentioned above, the expanded corpus is independent of
the human-labeled training corpus, which is also used as the 10-fold cross-validation dataset.
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Again, it implies that the features proposed in this paper could explore the common in-depth features
from two independent datasets.

Table 7. Comparing feature- and text-based classifiers. CNN: convolutional neural network, RNN:
recurrent neural network, MLP: multilayer perceptron model, SVM: support vector machine.

Classifier CNN-text RNN BERT SVM CNN RNN MLP CNN+RNN

Inputs Tokens Tokens Tokens f.152 f.152 f.152 f.152 f.152

Human
dataset 49.31% 52.82% 55.07% 54.46% 55.97% 51.94% 55.14% 54.54%

Expanded
dataset 50.53% 50.27% 48.06% 63.01% 59.05% 53.70% 58.85% 58.78%

6. Conclusions

This paper deals with a classification-based hybridization that selects the best translation
between the results of NMT and RBMT. Considering that previously used measures and features
tend to evaluate frequency and fluency, which create a preference bias for NMT, we investigated
RBMT-related features, including pattern-matching features and rule-based features that measure
RBMT’s quality, and we proposed NMT-related features that reflect NMT’s quality. We also expanded
the training data automatically using a classifier trained on a small, human-constructed dataset.
The proposed classification-based hybrid translation system achieved a translation accuracy of 86.63%,
which outperformed both RBMT and NMT. In practice, it is difficult to improve the accuracy of
translation system after a certain degree (such as 80%). Thus, the above improvement is remarkable.
The contribution to performance is more evident in out-of-domain translations, where RBMT and
NMT showed translation accuracies of 69.60% and 67.44%, respectively, while the proposed hybrid
system scored 71.75%.

Since deep-learning text classification and sentence classification have shown good performance,
we also compared feature-based classification with text classification. Our experiments show that
feature-based classification still has better performance than text classification.

Future studies will focus on low-resource NMT by exploring ways to utilize the in-depth and
explicit linguistic knowledge that has been used in RBMTs system until now. We expect to use
user dictionaries and syntactic information to improve NMT’s ability to control low-frequency-word
translation and sentence structure in long-sentence translation.
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