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Abstract: Smart grid technology enables active participation of the consumers to reschedule their
energy consumption through demand response (DR). The price-based program in demand response
indirectly induces consumers to dynamically vary their energy use patterns following different
electricity prices. In this paper, a real-time price (RTP)-based demand response scheme is proposed for
thermostatically controllable loads (TCLs) that contribute to a large portion of residential loads, such as
air conditioners, refrigerators and heaters. Wind turbine generator (WTG) systems, solar thermal
power systems (STPSs), diesel engine generators (DEGs), fuel cells (FCs) and aqua electrolyzers (AEs)
are employed in a hybrid microgrid system to investigate the contribution of price-based demand
response (PBDR) in frequency control. Simulation results show that the load frequency control scheme
with dynamic PBDR improves the system’s stability and encourages economic operation of the system
at both the consumer and generation level. Performance comparison of the genetic algorithm (GA)
and salp swarm algorithm (SSA)-based controllers (proportional-integral (PI) or proportional integral
derivative (PID)) is performed, and the hybrid energy system model with demand response shows
the supremacy of SSA in terms of minimization of peak load and enhanced frequency stabilization of
the system.

Keywords: ORC solar thermal power system; thermostatically controllable loads (TCLs); price-based
demand response (PBDR); real-time pricing (RTP); load frequency control; genetic algorithm;
salp swarm algorithm (SSA)

1. Introduction

The demand for electricity consumption is growing day by day, in line with consumer activities.
The expansion of generation capacity with traditional energy sources leads to negative effects on the
environment and, subsequently, increases the operational cost. Therefore, the introduction of smart
microgrid technologies, such as renewable energy sources (RESs) and demand response management
(DSM), enables environmentally friendly solutions.

Smart microgrids with digital technological strategies and the utilization of generation of power
from RESs, such as wind turbine generators (WTGs) and solar power, are able to generate and
distribute [1] electricity as optimally, echo-friendly and user-friendly in a smart manner. Since wind
power generation (WTG) is fluctuating in nature, the diesel and wind energy combination [2,3] is utilized
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in hybrid systems. The integration of a solar thermal power system (STPS) as a non-conventional
energy source reduces the depletion of conventional energy-based power generation. In order to
overcome the frequency fluctuation due to uncertain energy sources, such as WTG and STPS [4,5],
some energy storage units have been introduced to the hybrid energy system model, such as hydrogen
aqua electrolyzers (AEs) and fuel cells (FCs), which are capable of reducing these fluctuations.

The smart grid concept has the ambition to achieve the most economical and reliable operation by
considering demand response (DR) [6,7] for smoothing the demanded load curve. The incentive-based
and price-based [8,9] programs are the two main programs corresponding to demand response.
A price-based program [10,11] or smart pricing provides consumers with dynamic electricity
prices. Among all the smart pricing schemes, real-time pricing (RTP) [12] is the most efficient
to enhance the supply and demand balance by altering electricity pricing in response to the
generation–demand balance.

Residential load represents a larger portion of energy consumption and load modeling in
distribution networks [13,14]. Thermostatically controllable appliances like air conditioners (ACs),
water heater (WHs) and refrigerators (REZs) hold a major portion of the non-sensitive residential
loads [15,16]. The control strategy for thermostatic loads to reduce the demand in peak hours by
load by changing the thermostat set point setting [17,18] has been studied by considering the system
frequency and real-time pricing (RTP) [19,20].

DR with pricing indicators on residential load control, such as thermostatically controllable loads
(TCLs) [21–24], can be modeled with various optimization techniques such as the genetic algorithm
(GA)- [25] and salp swarm algorithm (SSA)-based controllers (PI and PID) [26]. In fact, the smartness
of the power network lies in the gains and other parameters of the controllers. Hence, in recent times,
several example from the literature have leveraged different optimization approaches such as firefly
(FF) [27], the particle swarm technique (PSO) [28], the cuckoo search approach (CSA) [29] and the
ant lion approach (ALO) [30] under conventional and microgrid power networks. In the line above,
the application of SSA is a maiden one which has never been leveraged for frequency regulation of an
isolated hybrid microgrid system in the presence of price-based DR (PBDR). Like other techniques,
the requirement of a higher number of evaluations with larger computational time [31] is the major
drawback of GA, as was considered in the targeted assignment. However, the employment of an
adaptive mechanism in the SSA is the main factor to getting faster convergence characteristics with
less computational time. The motivation is the minimization of the peak load for better frequency
regulation and for better improvement of the stability and reliability of the hybrid-isolated power
network. The main objectives of the current research work are listed below:

1. The application of electricity pricing-based demand response (PBDR) for TCLs for the optimal
management of energy utilization by the users;

2. Comparison of the dynamic responses of various PI and PID controllers in the hybrid isolated
microgrid system with and without PBDR;

3. The optimization of (PI and PID) controller gains by applying the genetic algorithm (GA) and
SSA in the developed model.

The rest of this work is organized as follows. Section 2 illustrates the system’s frequency response
modeling of the proposed renewable hybrid microgrid. Section 3 describes the application of a
real-time pricing scheme on TCLs. Details of the salp swarm algorithm (SSA) are given in Section 4.
Section 5 assesses simulation results under various scenarios and compares their frequency stabilization
performances. Section 6 draws the conclusions.

2. Dynamic Modeling of Hybrid Energy System

The microgrid system model mentioned in the proposed work consists of organic Rankine cycle
(ORC) low-temperature STPSs, wind turbine generators (WTGs), diesel engine generators (DEGs),
fuel cells (FCs) and hydrogen aqua electrolyzers (AEs) as energy storage elements. The schematic block
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diagram of the proposed microgrid network, as well as its transfer function modeling, are displayed in
Figure 1a,b, respectively [2]. The system parameters are tabulated in Table 1.

Figure 1. Topology of the proposed microgrid ((a) the top) and the transfer function diagram of the
proposed model ((b) the bottom).

Table 1. Proposed hybrid energy model parameters [2].

Generating Units Gains Constant Values (s)

ORC-STPS Ks = 1.8
KT = 1

TS = 1.8
TT = 0.3

DEG KDG = 1/300 TDG = 2
FC KFC = 1/100 TFC = 4
AE KAE = −1/500 TAE = 0.5

WTG KWTG = 1 TWTG = 1.5

2.1. Wind Turbine Generator (WTG)

The captured energy of blowing wind converts mechanical energy to electrical energy with the
help of a WTG. As the volatile nature of wind is very much unpredictable, so too does the extractable
power of a WTG depend on the velocity of the wind at that moment. It usually includes a gearbox,
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and some wind turbines use blade pitch system controllers to control the total amount of transformed
power. The electrical generator transforms mechanical energy into electrical energy. The linearized
transfer function model [2] of a WTG is illustrated by the following equation:

GWTG = KWTG

(
1

sTWTG + 1

)
(1)

2.2. ORC Solar Thermal Power System (STPS)

Recently, concentric solar thermal collectors are used by the steam Rankine and Stirling engine
technologies. Organic Rankine cycle (ORC)-based STPSs with suitably selected working fluids are
typically selected for the use of generation of power in lower temperatures. A trough solar power
plant with parabolic trough collectors focuses the sunlight to heat the working fluid in the pipes to
some definite temperature (3930 ◦C). A heat transfer fluid, heated by a solar thermal power system,
generates a high temperature (up to 5600 ◦C). The steam generated by this process is used to drive
the steam turbine for the generation of electricity. The transfer function [2] modeling of an ORC solar
thermal power system is shown below:

GSTPS =

(
KS

sTS + 1

)( KT

sTT + 1

)
(2)

2.3. Diesel Engine Generator (DEG)

A DEG, the combination of a diesel engine and an electrical generator, is used to support backup
power generation and has fast dynamic characteristics. The transfer function model of the DEG is
given below [2]:

GDG = KDG

(
1

sTDG + 1

)
(3)

2.4. Fuel Cell (FC)

Considering the electrochemical reaction, an FC produces direct current power and converts that
power into alternating current power by enabling an inverter. A fuel cell generator has the non-linearity
characteristic, and the linearized transfer function Equation (2) of the FC could be depicted as

GFC = KFC

(
1

sTFC + 1

)
(4)

2.5. Aqua Electrolyzer (AE)

Due to the randomly variable power output from solar thermal and wind turbine generators,
AEs are used to absorb the variable or changeable power. The transfer function modeling of an AE is
shown below [2]:

GAE = KAE

(
1

sTAE + 1

)
(5)

In order to maintain efficiency, stability and reliability, it is also necessary to keep the scheduled
frequency under normal operating conditions, which can be achieved by maintaining the supply and
demand in a balanced condition. The change in electrical power (∆Pe) is calculated as the distinction
between the total power generation (Ps) and the demanded load (Pl):

∆Pe = Ps − Pl (6)

where
Ps = PWTG + PSTPS + PDEG + PFC − PAEPl = PLC + PUC
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The system frequency varies with the change in total power variation. As such, the frequency
deviation can be calculated by

∆ f = ∆Pe

(
1

Ksys + D

)
(7)

Due to the presence of a delay in time between the net power distinction and the frequency deviation,
the linearized transfer function modeling for the system frequency variation can be expressed as [2]

∆Gsys =

(
∆ f
∆Pe

)
=

1
sM + D

(8)

3. Real-Time Pricing for Smart TCLs

Thermostatically controllable loads (TCLs), like air conditioners, water heater and refrigerators,
were considered for residential load control. To supervise the energy utilization of the customer, the ON
and OFF rotation of the thermostatic appliances could be controlled to maintain the temperature within
an acceptable and limited range.

The RTP is the deviation of electricity pricing in real time for the improvement of the
supply–demand balance. In fact, the basic principle of RTP [32] is that, when it comes to the
overloading condition, the system frequency falls, and the electricity price increases to decrease the
load from the consumer side. On the other hand, during the light load periods, the system frequency
rises, and the electricity price decreases to increase the load, or the utility gives an opportunity to
consume more power to the consumer in these periods. Therefore, it is possible to reschedule power
consumption by introducing electricity pricing in demand response determined by RTP.

The key objective of this proposed assignment is to control the frequency of an autonomous hybrid
power system using the electricity pricing-based demand response (PBDR) for thermostatically controllable
loads. TCLs are rated by their coefficient of performance (COP), and the change in the set point of
thermostat results in the deviation in power consumption, calculated by the given equations [33]:

COP =
Work done (Q)

Electric power input(Pinput)
(9)

The work done (Q) by the thermostatic controllable loads is given by

Q = m×CP × (Tout − Tin) (10)

where m is the mass of the coolant, Cp is the specific heat capacity of the coolant, Tout is the outside
temperature and Tin is the inside temperature.

The change in work done (∆Q) for a change in the thermostat set point (∆Tst), calculated by
assuming the thermostat set point is the same as the inside temperature, is

∆Q = −m×CP × ∆Tst (11)

The change in work done (∆Q) results in a change in electric power consumption (∆Pinput).
Thus, from Equation (9), we can express the power consumption as

∆Pinput =
∆Q

COP
=
−m×CP × ∆Tst

COP
(12)

Equation (12) establishes a linear relation between the change in the thermostat set point and
the change in power consumed by the TCL unit. The consumers contracted for demand response
can adjust the set point temperature of their thermostatic loads so as to ensure optimal use of their
power consumption.



Electronics 2020, 9, 2209 6 of 16

With the variation in frequency (∆f ), the change in electricity price (∆ρ) can be expressed as [33]

∆ρ = −k× ∆ f (13)

where k is taken as 0.5 rupees per hertz (Rs./Hz), according to availability based tariff (ABT).
Therefore, the energy price increases when the frequency deviation becomes negative and vice

versa. Now, the variation in the thermostat set point with the variation in frequency (∆f ) can be
expressed by [14]

∆Tst = k
∫

0.5× ∆ f dt (14)

where k represents the gain factor.
As such, by adjusting the energy consumption of the thermostatic loads, as per the price of the

electricity, we can improve the load management by consumers [3]. Controllers are equipped to adjust
the thermostatic power, in addition to other generating units. The parameters of these controllers are
optimized by using algorithms such as GA and SSA.

In the PID controller design, the integral square error (ISE), given by Equation (15), is selected as
the objective function in this optimization problem, while t is the simulation time and ∆f is the change
in frequency:

J =
∫ T

0
(∆ f )2dt (15)

This is subject to the following: 
Kmin

p ≤ Kp ≤ Kmax
p

Kmin
i ≤ Ki ≤ Kmax

i
Kmin

d ≤ Kd ≤ Kmax
d

(16)

The minimum values of the objective function (J) are implemented to regulate the optimum
parameters of PI and PID controllers. The block diagram and necessary program were developed in
MATLAB/SIMULINK.

4. Salp Swarm Technique (SSA)

SSA is a global optimization technique used for obtaining the best solution, assuming that the
salps are searching the food source by creating a salp chain. In this salp chain model, the salps are
separated into two sets: leader and followers. The leading salp moves toward the food source and also
guides the other followers, and the followers follow the leading salp. In the optimization problem,
the best solution is presumed to be the food source, and to reach that search space is the target of the
salp swarms [26]. The flow diagram of the SSA is presented in Figure 2, whereas the parameters of
considered techniques are illustrated in Table 2.

Table 2. Considered parameters of the SSA and GA.

Description Value

Number of Salp population 20
Maximum number of iterations 100

Number of search agents 20
Probability of crossover 0.8
Probability of mutation 0.01

Maximum number of iterations 100
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Figure 2. Flow diagram of the salp swarm algorithm (SSA).

The computational steps of the SSA are given below:

1. Initiation of the salp population with random positions for the solution of the parameters (Kp, Ki, Kd);
2. Calculating the fitness value of each salp, and assigning the salp with the best ability to lead to

the food source. Here, the objective function in Equation (15) is considered as a fitness function;
3. Updating the salp positions. For every dimension, the position of the leading and following salps

are updated, keeping all the salps in the frontiers of the search space. This updating salp position
gives a solution to the problem;

4. Repeating all the above steps except Step 1 until the termination criterion or the best solution
is reached.

5. Frequency Response Simulation Results

In Section 4, the dynamic responses of the proposed renewable microgrid systems are observed to
evaluate the performance of several PI and PID controllers to contain the system frequency. The response of
different case studies under various operating conditions and the optimum gain values of GA- and SSA-tuned
controllers (PI and PID) are presented. However, the overview of each case is tabulated in Table 3.

Table 3. Different simulated cases studies.

Case Subcomponents Response Time (s) Operating Conditions

1.
WTG, ORC low-temperature STPS,

DEG, FC, AE and Load 120 s

PWTG = 0.5 p.u at 0 < t < 80 s
= 0.3 p.u at t > 80 s

PSTPS = 0.2 p.u at 0 < t < 40 s
= 0.4 p.u at t > 40 s

Pl = 0.8 p.u at 0 < t < 40 s
= 1.1 p.u at 40 s < t < 90 s

= 0.95 p.u at t > 90 s

2. WTG, ORC low-temperature STPS,
DEG, FC, AE and Load 12 s Concurrent random changes

in WTG, ORC-STPS and Load
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5.1. Case 1: Under Step Vitiation

With the step changes in the power output from wind, solar thermal and uncontrollable loads,
as plotted in Figure 3a, the varied power outputs of the DEG, FC and AE are as plotted in Figure 3c,d,
where the frequency deviation (∆f ) is depicted in Figure 3b. The controller gain parameters (with and
without price-based demand response (PBDR)) were obtained through a GA optimization technique,
which is given in Table 4. When the load demand was lesser than the total power generation, the aqua
electrolyzer (by using the controller) absorbed some power and, for the remaining period, the input
power to the AE was considered to be zero, as is shown in Figure 3e.

Table 4. PI and PID controller gains for Case 1.

Controller Gain
Case 1

GA Values

Without PBDR With PBDR

PI Controllers

KpDEG 1.450 1.690
KiDEG 1.0333 1.31401
KpFC −1.280 −1.1634
KiFC −1.380 −1.650
KpAE −1.0084 −1.482
KiAE −1.2177 −1.5316

KpLOAD 0 1.980
KiLOAD 0 1.490

PID Controllers

KpDEG 1.450 1.690
KiDEG 1.230 1.850
KdDEG 0.490 0.490
KpFC −0.970 −1.150
KiFC −1.380 −1.650
KdFC −0.72196 −0.7271
KpAE −0.99567 −1.250
KiAE −1.06374 −1.375
KdAE −0.750 −0.750

KpLOAD 0 1.980
KiLOAD 0 1.2665
KdLOAD 0 0.650

The controllable thermostatic loads (e.g., air conditioner, water heater) play an important role in
the reduction of system frequency error, as they are considered a major portion of the residential loads
of the system. Figure 4a,b shows the thermostatically controllable load power consumption and change
in electricity pricing (with and without PBDR) due to a change in frequency. It has been observed
that the deviation in frequency could be reduced better, while the thermostatic load consumption
was minimized using the PBDR strategy with GA-based controller gain. Furthermore, for the PID
controllers, thermostatic controllable loads (TCLs) and the frequency deviation were minimized much
better than with the PI controllers.
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Figure 3. (a) Extractable power of the the wind turbine generator (WTG), solar thermal power system
(STPS) and thermostatically controllable load. (b) Comparison of the frequency deviation, without and
with price-based demand response (PBDR). The power extraction of (c) a diesel engine generator (DEG),
(d) a fuel cell (FC) and (e) an aqua electrolyzer (AE) without and with PBDR is also shown.
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Figure 4. (a) Controllable thermostatic loads, without and with PBDR. (b) Change in electricity pricing,
without and with PBDR.

5.2. Case 2: Under Random Disturbances

In this study, randomly variable power generation from the WTG, STPS and load models,
as leveraged in Figure 5a, were considered for the dynamic responses of the hybrid microgrid system
to analyze the effects of a concurrent change in power. The net generated power for this scenario could
be expressed as

Ps = PDEG + PWTG + PSTPS + PFC − PAE
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Figure 5. (a) Output power of the WTG, STPS and TCL. (b) GA- vs. SSA-optimized comparative
frequency deviation with PBDR. (c–e) Comparative output power of the DEG, FC and AE with PBDR.

In order to minimize the deviation in the total generated power and demanded load, the output
powers of the DEG, FC and AE were automatically adjusted to various values through various
controllers, shown in Figure 5b,c–e, which plots the comparison between the frequency deviations for
pricing-based demand response (PBDR) using the GA and SSA optimization techniques. Figure 6a,b
frames the thermostatically controllable load power consumption and the change in electricity pricing
due to the change in frequency. In the case of pricing-based demand response, thermostatic load
consumption was minimized by using the GA- and SSA-based controller gain. For the PID controller,
thermostatically controllable loads (TCL) reduced the frequency deviation much better than the PI
controller. Table 5 depicts the optimized gain values of the PI and PID controllers obtained from the



Electronics 2020, 9, 2209 12 of 16

GA and SSA. The rigorous observation tells us that the performances of all SSA-based controller gain
values were better than the GA-optimized values. Overall, the SSA-based PID controller gave the
better performance compared with the GA-tuned PI, PID and SSA-tuned PI controller.

Figure 6. (a) Controllable thermostatic loads with PBDR. (b) Change in electricity pricing with the
change in frequency, GA- vs. SSA-optimized with PBDR.
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Table 5. GA- and SSA-optimized controller gain values for Case 2.

Controller Gain
Case 2

With PBDR

GA-Optimized SSA-Optimized

PI Controllers

KpDEG 1.980 1.9558
KiDEG 1.7690 1.5255
KpFC −1.270 −1.4183
KiFC −1.950 −1.9325
KpAE −1.3801 −1.6188
KiAE −1.325 −1.4049

KpLOAD 2.100 1.7953
KiLOAD 1.56948 1.6175

PID Controllers

KpDEG 1.980 1.7348
KiDEG 1.850 1.6828
KdDEG 0.490 0.5263
KpFC −1.270 −1.4189
KiFC −1.950 −1.906
KdFC −0.725 −0.6976
KpAE −1.350 −1.6316
KiAE −1.478 −1.5043
KdAE −0.750 −0.6865

KpLOAD 2.031 1.9147
KiLOAD 1.860 1.5507
KdLOAD 0.8473 0.8175

6. Conclusions

In this paper, a real-time price (RTP)-based demand response (DR) program in an autonomous
hybrid energy system is proposed. Such a program reduces the total energy consumption and shifts
the loads from high price periods to low price periods. The DR program introduces RTP to control
the thermostat set point of thermostat loads (e.g., air conditioner). When the energy rescheduling
technique with PBDR is applied, the thermostat set point changes linearly with the price. The modeling
of the wind turbine generator, solar thermal power system and load are selected properly for various
case studies to illustrate the dynamic performance of the proposed hybrid system model.

To minimize the fluctuations in frequency, the output power from the sources and power
consumption by the TCL loads (using electricity pricing-based DR) are controlled by PI and PID
controllers. By using GA and SSA optimization techniques, the gains of these controllers are optimized.
Extensive performance simulations are performed to compare and contrast the operation with different
controller and optimization combinations. It was observed from the dynamic response results that the
PID controller gave a better performance than the PI controller, in terms of the peak overshoot and
settling time. It was also observed that the dynamic performance of all SSA-optimized controllers was
better than using GA-optimized controllers to enable automatic generation control in the proposed
hybrid energy system.

These results are valuable in understanding frequency fluctuations in isolated hybrid microgrids
and designing optimal controllers and DR schemes for economic operation.
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Nomenclature

∆f System frequency fluctuation
Ksys Overall constant frequency characteristic
Gsys(s) Overall transfer function of proposed system
PDEG Extractable power of diesel generator
GDEG(s) Transfer function of DEG
KDEG DEG’s gain
TDEG Constant time of DEG
PFC Extractable power of FC
KFC FC’s gain
TFC FC’s constant time value
GFC(s) Transfer function of FC
PSTPS Dispatchable power of organic Rankine cycle-based STPS
GSTPS(s) Overall transfer function of organic Rankine cycle STPS
Ts Solar receiver’s constant time value
TT Constant charge time of the turbine
KS Solar receiver’s gain
KT Turbine’s gain
GAE(s) Overall transfer function of AE
PAE Extractable power hydrogen aqua electrolyzer
KAE Hydrogen aqua electrolyzer’s gain
TAE Hydrogen aqua electrolyzer’s fixed time
PS Total generated output power
Pl Demanded load power
∆Pe Mismatch between generated power and demand
M Overall proposed system inertia
D Overall proposed system damping coefficient
PWTG Dispatchable power WTG
GWTG(s) Overall transfer function of WTG
KWTG WTG’s gain
TWTG WTG’s time constant
∆Q Change in work done by thermostatic loads
∆ρ Change in electricity pricing
∆TST Change in thermostat set point
K Gain factor of smart thermostat
PLC Power consumption by controllable loads
PUC Power consumption by uncontrollable loads
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