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Abstract: This paper presents an enhanced maximum power point tracking approach to extract
power from photovoltaic panels. The proposed method uses an artificial neural network
technique to improve the fractional open-circuit voltage method by learning the correlation
between the open-circuit voltage, temperature, and irradiance. The proposed method considers
temperature variation and can eliminate the steady-state oscillation that comes with conventional
algorithms, which improves the overall efficiency of the photovoltaic system. A comparison with the
traditional and most widely used algorithms is discussed and shows the difference in performance.
The presented algorithm is implemented with a Ćuk converter and tested under various weather
and irradiance conditions. The results validate the competitiveness of the algorithm against
other algorithms.
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1. Introduction

The advancement of photovoltaic (PV) technologies and the drop in manufacturing costs have
led to a sudden increase in the number of mega-watt-sized solar projects. Developed countries have
planned to wean themselves off their reliance on fossil-fuels, as solar investment becomes an appealing
option [1–3]. PV energy is superior to other sources because it does not require periodic maintenance,
and PV panels have a lifetime of two and a half decades [4–6]. PV systems can be either grid-tied
systems or off-grid systems [7]. In the grid-tied systems, the load is powered by the PV system,
the main electric grid, or both [8]. A grid-tied system is less complicated than an off-grid system,
which is more commonly seen since it has fewer components and is generally more cost effective;
for example, there are usually no batteries in grid-tied systems [9]. The off-grid system can operate
without a battery if the load is set to be powered during peak hours of the day, like a water pump
system [10]. However, if the load is a home appliance, it is better to have enough energy storage
devices with enough capacity for a couple of days [11].

The output power of the PV systems is intermittent and highly depends on weather and sun
radiation levels. The sun irradiance affects the PV current directly, and the temperature affects mostly
the output voltage [12–14]. Therefore, it is essential to have power processing units regulate the output
voltage and extract the most out of the PV panels. The load seen by the PV determines the operating
point on the power-voltage curve (P-V curve) and often does not match the resistance at the maximum
power [15]. The resistance mismatch results in a loss of power and a reduction of the system’s overall
efficiency. The resistance seen by the PV needs to be varied to match the maximum power resistance at
various temperatures and solar irradiance levels [16–19]. Power processing units enable the operation
at the highest power if a maximum power point tracker (MPPT) controls the power processing unit.
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MPPT is an algorithm or method that tracks the maximum operating point, which is necessary to
extract the most out of the PV panel, enhance the operation of the overall system, and extend the
lifetime of the PV panels [20].

Many MPPT methods have been developed and utilized [21–25] during the last two decades.
Several studies evaluated the performance of such methods [26–30] based on both uniform solar
irradiance and partially shaded conditions. The essential aspects of the comparisons are the
implementation complexity, reaching the real maximum power point (MPP), the required number of
sensors, convergence speed, cost, and efficiency [15,31]. Several other aspects are considered, such as
the dependency on the PV panel or array and whether the control system is analog or digital. The most
widely used method is perturbation and observation (P&O). In P&O, the power is calculated from the
current and voltage sensors and then compared to the previous power reading. If the current reading
is higher than the previous, the reference voltage should be increased until it reaches the maximum
power. However, if the current reading is less than the previous reading, the reference voltage is
higher, the maximum power voltage (Vmpp). Therefore, the reference voltage needs to be decreased.
The P&O conversion speed depends on the perturbation size (∆). That is, if ∆ is small, the convergence
speed will be slow. On the other hand, when ∆ is large, the convergence speed will be fast. Very large
∆ might cause the control system’s instability, and it might never reach the real maximum power.

Several modifications to P&O have been suggested and experimented with, such as in [32–35],
where the dynamic perturbation size was introduced. Similar methods to P&O, such as hill-climbing
(HC) and incremental conductance (IC), were presented in [16,36], respectively, where their speed
depends on the size of the step size. Several other methods were introduced, such as fuzzy logic,
genetic algorithms, fractional open-circuit voltage (FOCV), fractional short-circuit current, neural
networks, ripple correlation control, and many others. The most common methods will be discussed
in detail and will be illustrated based on their performance in the next sections.

FOCV is the simplest and easiest to implement tracking approach. However, under the variation
of temperature, the tracker cannot reach the true maximum power point. This paper presents an
enhancement modification to the FOCV. The feed-forward neural network (FFNN) is used to learn
the correlation between the temperature, irradiance, voltage at maximum power, and the open-circuit
voltage and enhance the performance by providing the accurate voltage reference for the pulse width
modulation controller. That is, the FFNN is used to find the fraction of the voltage at the maximum
power and the open-circuit voltage at specific irradiance and temperature instead of guessing or
estimating the value of the fraction. Therefore, the advantages of the proposed method are:

• It provides accurate results in all weather and irradiance conditions.
• It has a stable operation with no oscillation around the MPP.
• It is a cost-effective method, which does not require expensive sensing components.
• It has a faster transient response and can track the MPP during a sudden decrease in the

solar irradiance.

The rest of this paper is organized as follows: Section 2 discusses several PV models and the
models’ performance under weather and temperature variations. Section 3 illustrates several MPPT
methods and compares them to their performance, cost, and implementation. Section 4 presents the
proposed modification to the fractional open-circuit and the implementation details. The proposed
method results under several conditions and the performance comparison with other commonly used
methods are presented in Section 5. Finally, the conclusions are presented in Section 6.

2. PV Characteristics and Performance

2.1. PV Mathematical Models

The simplest model of a PV cell can be represented by a light generated current source connected
in parallel to an ideal diode. The current source depends on the level of solar irradiance, and the
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current generated is called the photocurrent Iph. The equivalent circuit of this model is shown in
Figure 1a. The PV current IPV of the ideal model is given by:

IPV = Iph − I0(e
VPV
VT − 1) (1)

Iph VD RL

+

_

+

_
VPV

IPV

Iph VD RL

+

_

+

_
VPV

RS IPV

RP

(a)

(c)

Iph VD RL

+

_

+

_
VPV

RS IPV

(b)

Iph VD RL

+

_

+

_
VPV

RS IPV

RPVD
+

_

(d)

Figure 1. Several PV models: (a) the ideal model, which is lossless; (b) single diode with series
resistance; (c) single diode with series and parallel resistances; (d) the two-diode model.

The VT is the thermal voltage of the diode, which can be calculated by:

VT =
nkBoltzmannTcell

q
(2)

where n is called the ideality factor. The ideality factor indicates how close the diode is from the ideal
diode. Therefore, n = 1 if the diode is ideal. TCell is the temperature of the cell in Kelvin, and kBoltzmann
is the Boltzmann constant, which has a value of kBoltzmann = 1.38× 10−23 J/K. The amount of charge in
one electron is q ≈ 1.602× 10−19 C . The ideal model takes into account the direct relationship between
the photocurrent and the solar insolation. However, it is not enough to model the nonideality, such as
the losses. The simple model is similar to the ideal model with the addition of a series resistance Rs,
as shown in Figure 1b. The series resistance represents the losses in the low-doped semiconductor
material, as well as the conduction losses in wires and contacts. The PV current is calculated by:

Ipv = Iph − I0(e
V+I×RS

VT − 1) (3)

The series resistance is not enough to accurately model all the losses. The PV cell suffers from
the impurities of the p-n junction and the leakage current across the cell borders, which lead to power
loss. Therefore, parallel resistances model the loss and improve the temperature sensitivity. Figure 1c
shows the equivalent circuit of the PV cell with the parallel resistance. The current equation of a single
diode model with series and parallel resistance is given by:

Ipv = Iph − I0(e
V+I×RS

VT − 1)− V + I × RS
RP

(4)

A higher level of modeling accuracy can be achieved using the two-diode model, as shown in
Figure 1d. The second diode represents the junction recombination, which corrects the ideality factor
at low voltages. The current of the two-diode model is given by:
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Ipv = Iph − I01(e
V+I×RS

VT1 − 1)− I02(e
V+I×RS

VT2 − 1)− V + I × RS
RP

(5)

Several studies also introduced a three-diode model [37]. The current of the third diode represents
recombinations in the blemished regions and grain boundaries. The current equation is given by:

Ipv = Iph − I01(e
V+I×RS

VT1 − 1)− I02(e
V+I×RS

VT2 − 1)− I03(e
V+I×RS

VT3 − 1)− V + I × RS
RP

(6)

2.2. PV Performance

The performance of a PV cell is related to its characteristic and power curves. The characteristic
curve is also called the I-V curve, which shows the relationship between the PV voltage and current
under specific solar irradiance and temperature, as shown in Figure 2a. Several parameters are known
from the I-V curve, such as the open-circuit voltage, the short-circuit current, the voltage and current
at the maximum power, and the maximum power point. Furthermore, the fill factor can be calculated,
and it is given by:

FF =
Pmpp

ISC × VOC
=

Vmpp × Vmpp

ISC × VOC
(7)

The performance also can be indicated using a power curve (P-V) that shows the power versus
the voltage. Figure 2b shows the power curve under standard conditions. Under normal operation,
the curve has a single peak, which represents the maximum power point. The irradiance level and
temperature influence both the I-V and P-V curves. The effect of temperature on the P-V curve is
illustrated in Figure 3a. As the temperature increases, the maximum output power decreases. On the
other hand, the effect of irradiance on the PV curve is shown in Figure 3b. As the solar irradiance
increases, the maximum power increases. Similarly, with the I-V curve, the increase in temperature
reduces the open-circuit voltage, as shown in Figure 4. The short-circuit current increases as the solar
irradiance increases. The effects of temperature on the open-circuit voltage and short-circuit current
are given by:

Voc(T) = Voc,STC + ∆v(T − TSTC) (8)

Isc(T) = Isc,STC(1 + ∆i(T − TSTC)) (9)

where ∆v and ∆i the temperature coefficients for open-circuit voltage and the short-circuit current,
respectively. The temperature of the standard test conditions (STCs) is given by TSTC. The open-circuit
voltage Voc,STC and short-circuit current Isc,STC are measured in the STCs. The effect of solar irradiation
on the short-circuit current can be characterized by:

Isc(G, T) = Isc(T)
G

GSTC
(10)

where GSTC is the solar irradiation of the STCs, which is 1000 W/m2:
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Figure 2. The performance curves of PV cells: (a) I-V characteristic curve. From this curve, one can
find the short-circuit current, open-circuit voltage, voltage and current at maximum power, fill factor,
and resistance at maximum power. (b) P-V curve, which shows the maximum output power.
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Figure 3. The P-V under variable conditions: (a) Under different temperature degrees. (b) Under
different solar irradiance levels.
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Figure 4. The I-V under variable conditions: (a) Under different temperature degrees. (b) Under
different solar irradiance levels.

3. Maximum Power Point Tracking Approaches

A single PV cell has a unique mpp, corresponding to the solar irradiance and temperature point.
The resistance at that point is represented by Rmpp. The Rmpp at the STCs can be calculated by:

Rmpp,STC =
Vmpp,STC

Impp,STC
(11)

The variation in solar irradiance and temperature values makes Rmpp variable. Therefore, a tracker
is needed to allow a PV panel to operate at Rm pp and extract the maximum power. Many approaches
have been introduced to track the MPP. The commonly used technique in the solar industry is the
P&O because of the reasonable trade-off between simplicity and performance. The P&O approach
flowchart is seen in Figure 5. This approach perturbs the duty cycle and observes the power if it
increases or decreases. Then, a step-change to the duty cycle takes place. The step-change determines
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the conversion speed and accuracy. P&O with a large step-change lacks accuracy and might experience
instability issues. Making the step-change small reduces the conversion speeds, lacks speed, and might
perform poorly at fast transitioning solar irradiance. The adaptive step can be applied, but without
the guarantee of stable operation [36,38–40]. Similarly, hill-climbing and incremental conductance
have similar performance to P&O, with no significant advantages. The ripple correlation control
approach takes advantage of ripples imposed by switching devices on the PV panel [41,42]. In RCC,
the derivative of the voltage is multiplied by the derivative of the power. If the product is zero, then
the PV operates at its maximum power point. If the product is higher or lower than the MPP, then
the PV operates on the left or the right of the MPP, respectively. The drawback of using RCC is the
required multiplied devices, which are power-consuming devices.

Intelligent tracking approaches, such as fuzzy logic and artificial neural networks, were used
to track the MPP. In fuzzy logic, the PV voltage and current are used to calculate the slope of the
P-I characteristic and the change in the slope, which will be the input of the fuzzification stage.
Fuzzification converts the numeric to linguistic variables to be used in the inference stage to make
a decision. After a decision is made by a set of conditionals statements, the defuzzification stage
converts the decision into numerical values [43–45]. Although the performance of the fuzzy controller
is higher than the traditional P&O, the rules of the membership function selection are based on trial
and error, which increases the implementation time. The neural network method was used to track the
MPP. The technique uses acquired data, usually irradiance and temperature, to train the neurons and
provide the optimal weight that makes the correct control decision about the duty [46,47]. The NN
can track the true MPP and has solid performance, but it uses an expensive pyranometer to read the
irradiance values.

NO

Sense  Ipv and VOC

ΔP>0

ΔP=Vpv(k)Ipv(k) - Vpv(k-1)Ipv(k-1)

ΔV=Vpv(k)- Vpv(k-1)

ΔV > 0

NO YES

D(k)=D(k-1)-ΔD

NO YES

D(k)=D(k-1)-ΔDD(k)=D(k-1)+ΔD

YES

Return

ΔV > 0

Figure 5. The flowchart of the P&O tracking method.

The fractional open-circuit voltage (FOCV) method is the simplest MPPT method. In this method,
the MPP voltage can be approximated by multiplying the open-circuit voltage with a fraction number
k. The k is a constant value predetermined by either experimentation or assumption, and it has a
typical value ranging between 0.6 and 0.93. The open-circuit voltage must be sensed periodically.
The challenge is that the open-circuit voltage cannot be measured while the system operates without
disconnecting the system. Disconnecting the system momentarily to measure the open-circuit voltage
leads to power loss and overall efficiency degradation. In order to find the open-circuit voltage without
PV panel disconnection, a pilot cell with the same characteristics as the main PV panel is needed.
Figure 6 shows the implementation of the FOCV with a pilot cell.
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Figure 6. An example of how FOCV with the pilot cell is implemented: (a) the PV is connected to
a conventional boost converter, which is controlled by the duty cycle (b) the pilot cell provides the
reading of the VOC to the control circuit.

4. The Proposed Method

4.1. Theory of Operation

The conventional FOCV is unable to reach the actual MPP, and neural network methods require
expensive sensors to give accurate results. The proposed method uses a neural network to correlate
the open-circuit voltage with temperature, therefore giving the right and precise reference voltage or
duty cycle. The proposed FFNN is fed input from an external pilot circuit and a temperature sensor.
The external pilot cell provides implicit information about the solar irradiance level and independent
open-circuit voltage without system disconnection. Figure 7a shows the maximum power of the
PV plotted versus the voltage and current of the PV panel. We use a neural network to learn and
approximate maximum power functions perfectly under specific solar irradiance and temperature.
Therefore, the reading of the irradiance and temperature is needed to find the real MPP. The ratio
between the maximum power voltage Vmpp and the open-circuit voltage varies depending on the
irradiance level and the temperature, as shown in Figure 7b. The PV panel’s open-circuit voltage
directly relates to the irradiance and an inverse relationship with the temperature, as illustrated in
Figure 7c. Similarly, the effects of solar irradiance and temperature on the maximum power and the
relationship between the maximum power and maximum voltage and current are shown in Figure 7d
and Figure 7e, respectively. The figures show that the open-circuit voltage can provide information
about the solar irradiance, and by using only the temperature sensor, the true MPPs can be found.

(a) (b) (c)

(d) (e)
Figure 7. (a) The output power of the PV panel versus the PV current and PV voltage. (b) The ratio
between the maximum voltage versus the irradiance and temperature. (c) The effects of solar irradiance
and temperature on the open-circuit voltage of the PV panel. (d) The effects of solar irradiance and
temperature on the maximum power of the PV panel. (e) The maximum power versus the maximum
current and the maximum voltage of the PV.
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4.2. Neural Network Based FOCV Setup

The setup has three stages; preprocessing, setting and training the neural network,
and implementation and testing. Figure 8 shows the stages of implementing the controller.

Figure 8. Stages for implementing the neural network based FOC controller. The implementation
process has three stages; preprocessing, setting and training the neural network, and testing
and implementation.

4.2.1. Preprocessing

The data can be obtained using voltage sweep at different solar irradiance, either experimentally
or by simulation. Figure 9 shows the circuit used to obtain the dataset, which can be either simulation
or experimental. A large dataset is needed to train the network and achieve higher test accuracy.
The process can be automated in simulation using an iterative loop with a small step size, which allows
for higher resolution data. The data obtained must be correctly labeled. Each maximum power point
and open-circuit voltage correspond to specific solar irradiance and temperature values. In this
study, the Kyocera KC200GT solar panel was used to perform the sweep. The panel was tested at
standard test conditions (STCs), which had 200 W maximum power, Vmpp = 26.3 V, Impp = 26.3 A,
VOC = 32.9Ṽ, and ISC = 26.3 A. The data were recorded in the solar irradiance range of 50−1000W̃/m2

and temperature range of 15−65 ◦C. The recorded data require cleaning the incorrect sensor readings
or other values that are out of PV range, for example negative values of power. Missing data points can
be filled with the average of the row or the mode. Because the data are obtained by the voltage sweep,
some data are redundant. The redundancy needs to be removed to improve the training process.
Table 1 shows a sample of the recorded data after cleaning. The final step in the preprocessing stage is
normalization. Normalization enhances the learning speed and convergence time [48]. The values
after the normalization process lie between 0 and 1.

4.2.2. Setting the Network And Training

In this stage, the data are split into a training dataset and a testing dataset, either by using a
holdout set or a cross-validation set. The validation dataset is optional, and the controller can be
validated eventually after simulation and implementation. The holdout set used is 70% for training
and 30% for the test. The selection of the neural network topology can be difficult due to the wide
variety of neural network topologies and hyperparameters. A feedforward neural network is used in
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this paper to map labeled input data to labeled output data and learn the relationship. Figure 10 shows
the structure of the training network. The training consists of two neural networks. The first neural
network NN1 is used to approximate the relationship between the open-circuit voltage and the solar
irradiance under variable temperature values. NN1 eliminates the need for an expensive pyranometer,
as the solar irradiance can be estimated with the value of open-circuit voltage. The structure of NN1

contains an input layer with two neurons, a hidden layer with 8 neurons, and a single output layer.
The activation function of the hidden layer is sigmoid [49], which is given by:

f (z) =
1

1 + e−z (12)

where z is nothing but the summation of the bias and the product of the weight and input examples
z = b + WX. The output layer has a linear function where f (z) = z. The inputs to NN1 are VOC(t)
and the temperature T(t), and the target is the solar irradiance G(t). Similarly, NN2 has an input layer
that takes two inputs, the predicted irradiance and the temperature T(t). The hidden layer consists
of 10 neurons with the sigmoid activation function. The output layer has a linear activation function,
and the output is k.

After selecting the topology, the weight is randomized, and the hyperparameters are set.
Both networks are trained using the Levenberg–Marquardt backpropagation algorithm [50] to update
the weight. The training took about 50 epochs to reach the goal set, a low mean squared error (MSE).

PV
Electronic load or 

variable resistorV

A

(a) (b)

Figure 9. The approach used to produce the dataset for neural network training: (a) schematic diagram
of the circuit (b) experimental setup. The electronic load used to sweep the voltage and get the I-V
characteristic curve at specific irradiance and temperature values.

Table 1. Sample of the recorded data.

G T Vmpp Impp MPP VOC K

400 20 26.3106 3.0091 79.1704 31.8532 0.826
800 45 23.7686 6.0453 143.6872 29.9841 0.7927

1000 50 23.2755 7.5521 175.7788 29.8026 0.781
600 25 26.0688 4.5389 118.323 31.9547 0.8158
100 30 22.896 0.714 16.3469 27.9174 0.8201
200 25 24.7221 1.4769 36.5124 29.9076 0.8266
300 35 23.9895 2.2404 53.747 29.3799 0.8165
900 40 24.4561 6.8125 166.607 30.8412 0.793
700 30 25.5538 5.3 135.436 31.602 0.8086
500 40 23.9789 3.7658 90.2998 29.7159 0.8069

4.2.3. Testing and Implementation of The Controller

After the training process is complete, the weight and bias are adjusted to map the relationship
between the inputs and the output correctly. Then, the data are denormalized; the reverse of the
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normalization process. To evaluate the performance of the neural network, the mean squared error is
used, which is given by:

MSE =
1
n

n

∑
t=1

(k − k̂)2 (13)

where k̂ is the predicted output value and n is the number of samples. The learning curve of the
training process and testing is shown in Figure 11. The MSE error is about 2.2 × 10−10 at the end of the
50th epoch. The neural network block is implemented using the following equation.

k = W2 × sigmoid(W1X + b1) + b2 (14)

where W1, W2, b1, b2 are the weight matrix for the hidden layer, the weight matrix for the output layer,
the bias for the hidden layer, and the output layer’s bias, respectively. A multiplier is then used to
find the voltage reference by multiplying the open-circuit voltage and the fraction k. A further safe
operation can be considered by limiting the value of k to be between 0 and 1.

VOC(t)

Irradiance 

T(t)
k

T(t)

NN1
NN2

Figure 10. The two neural networks used in training: NN1 used to approximate the relationship
between the open-circuit voltage and the solar irradiance under variable temperature values, and NN2

used to map the relationship between the irradiance and fractional open-circuit factor.
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Figure 11. The learning curve for training NN1. The performance of the test is similar to the training.

5. Simulations

The simulation setup of the proposed method was implemented using MATLAB and PLECS
Blockset, as shown in Figure 12. The model KC200GT was used as an input source to supply a resistive
load. The PV system was interfaced using a Ćuk converter, as shown in Figure 12a. The Ćuk converter
was selected because of the non-pulsating input and output currents, which enhance the PV cell’s
lifetime and obtain better reading values of the PV current, as well as providing the ability to step-up
and step-down the voltage. Then, the resistance of the maximum power point (Rmpp) can be tracked
from zero to infinity ∞. The Ćuk converter is designed to operate in continuous conduction mode,
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where the inductor current at the input level must be above zero in the steady-state. In the continuous
conduction mode, the converter goes into two subintervals. In Subinterval 1, the MOSFET is ON,
and the diode is in reverse bias mode. The inductor L1 is charging from the input source, and the
capacitor C1 is discharging to the output. The equivalent circuit of this subinterval is illustrated in
Figure 13a. In Subinterval 2, the MOSFET is OFF, and the diode is in forwarding conduction mode.
The capacitor C1 is charging from the input source and the inductor L1. The equivalent circuit of
Subinterval 2 is shown in Figure 13b. The output voltage of the Ćuk converter is inverted and given by:

Vo =
d

1 − d
VPV (15)

The parameters used in the simulation are L1 = 100 µH, L2 = 10 µH, C = 10 µF, Vf = 0.8 V,
Ron = 15 mΩ. The MPPT tracker shown in Figure 12b consists of the pilot PV cell and the neural
network. The pilot PV cell is connected directly to a voltage sensor to obtain the open-circuit voltage.
The controller uses a pilot cell for open-circuit voltage measurements and a temperature sensor to
provide temperature values. Then, the trained neural network takes the VOC and T(t) values at time t
and provides the corresponding k. The value of k will be multiplied by VOC to provide the reference
voltage to the pulse width modulator (PWM). The PWM operates at a 100 kHz switching frequency,
and the control bandwidth does not exceed one-tenth of the switching frequency.

Q

C1

VPV

L1

D R

_  

vo 

+

Co

L2
  

+   vL1  _
  

+   vL2  _

iL1 iL2  

+        _

Neural 

Network

VOC(t)

k

T(t)
X

Vref

dutyPilot cell

v

(a) (b)

Figure 12. The experimental setup: (a) Ćuk converter (b) the proposed controller.
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Figure 13. The subintervals in continuous conduction mode. (a) is when the active switch is ON; (b) is
the when the active switch is OFF.

5.1. Case1: Variation of Solar Irradiance with a Constant Temperature Value

In this case, the output load and temperature are assumed constant for two reasons. First,
the relationship between the output power and solar irradiance is stronger than the relationship
between the output load and temperature, which gives an acceptable estimation of the tracking
algorithm’s performance if the temperature value is constant. Second, all algorithms need an ideal
test, where the load is constant to find their best performance. Figure 14 shows the performance of
the algorithms under the variation of solar irradiance. The proposed method outperforms the P&O
algorithm in terms of accuracy and can reach the MPP faster. P&O oscillates around the MPP without
reaching the exact MPP. The FOCV method has a similar dynamic performance to the proposed
method. However, the accuracy of the FOCV is less than the proposed method.

Figure 15 shows a new way to compare the performance of the two algorithms. Therefore in
Figure 15a, the power difference between the FOCV and the proposed method is shown to indicated
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positive and negative regions. The positive region is when the difference in power is higher than
zero, which indicates that the power produced using the proposed method is higher than the power
produced using the FOCV. The negative region is when the difference in power is less than zero and
indicates that the FOCV performs better. The comparison with P&O is shown in Figure 15b.
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Figure 14. The output waveform of the PV panel for Case 1 using various tracking algorithm: (a) The
performance over a long time period. (b) Zoomed area.
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Figure 15. Case 1: comparison between the proposed method with (a) the FOCV method and (b) the
P&O method.

5.2. Variation of Both Irradiance and Temperature

This case simulates a more realistic situation, where the temperature and irradiance vary.
The output power, in this case, is shown in Figure 16. It can be seen that the proposed method
exhibits faster dynamic speed and higher accuracy than the other methods. The varying temperature
greatly degrades the performance of the FOCV since the open-circuit voltage depends on it. P&O
is also affected by the temperature variation. However, since the P&O algorithm is independent of
the panel information, the accuracy is higher than the FOCV method. The proposed method is faster
during transitions from one irradiance level to another.

5.3. Energy Analysis

It can be seen from Figures 14–17 that the proposed converter outperforms the other tracking
algorithms. The overall comparison can be determined using the average of the difference between the
two tracking methods. In the case of fixed temperature, the extracted energy by the proposed method
is about 4.27 kW/y higher than the FOCV and 5.1 kWh/y higher than P&O. In the case of variable
temperature, the energy extracted by the proposed method is 12.1 kWh/y higher than the extracted
energy by the FOCV and 8.9 kWh/y higher than the extracted energy by P&O. Note that the previous
analysis is per panel; the difference in energy extraction would be much higher for a large PV system.
The performance comparison is summarized in Table 2. The energy and efficiency of the proposed are
higher than the other methods, with better transitioning time and stability.
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Table 2. Performance comparison of the proposed method with commonly used methods.

Method
Case 1 Case 2 Performance

Energy
(kW/year) η%

Energy
(kW/year) η% Oscillation Transition True

MPP Implementation

FOCV 358.6 98.2 349.6 95.8 No Fast NO
Digital and

analog

P&O 375.1 98 352.9 96.6 Yes Slow Yes
Digital and

analog
Proposed 362.8 99.4 361.7 99.1 No Fast Yes Digital
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Figure 16. The output waveform of the PV panel for Case 2 using various tracking algorithms:
(a) The performance over a long time period. (b) Zoomed area.
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Figure 17. Case 2: comparison between the proposed method with (a) the FOCV method and (b) the
P&O method.

6. Conclusions

A novel approach for finding the maximum power point of a photovoltaic system is developed.
The approach is based on the fractional open-circuit voltage to find the true maximum power
point using an artificial neural network approach. The neural network can correlate the reference
voltage of the maximum power to the open-circuit voltage and temperature. Unlike other neural
network approaches, the presented approach does not require expensive irradiance sensor circuitry.
The proposed method is used to control the Ćuk converter to interface with a 200 W solar panel.
Both the simulation and experimental results confirm the validation of the new approach. The results
show that the proposed method has a fast transitioning time, better efficiency, and higher extracted
energy than other methods.
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Abbreviations

The following abbreviations are used in this manuscript:
PV Photovoltaics
MPPT Maximum power point tracking
FFNN Feedforward neural network
FOCV Fractional circuit voltage
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