electronics m\py

Article

Small-Footprint Wake Up Word Recognition in Noisy
Environments Employing

Competing-Words-Based Feature

Ki-Mu Yoon ! and Wooil Kim %*

Mediazen Inc., Gangseo-gu, Seoul 07789, Korea; kmyoon@mediazen.co.kr
Department of Computer Science and Engineering, Incheon National University, Incheon 22012, Korea
*  Correspondence: wikim@inu.ac.kr; Tel.: +82-32-835-8459

2

Received: 13 November 2020; Accepted: 18 December 2020; Published: 21 December 2020 f‘r:)e(fgtz’g

Abstract: This paper proposes a small-footprint wake-up-word (WUW) recognition system for real
noisy environments by employing the competing-words-based feature. Competing-words-based
features are generated using a ResNet-based deep neural network with small parameters using the
competing-words dataset. The competing-words dataset consists of the most acoustically similar
and dissimilar words to the WUW used for our system. The obtained features are used as input
to the classification network, which is developed using the convolutional neural network (CNN)
model. To obtain sufficient data for training, data augmentation is performed by using a room
impulse response filter and adding sound signals of various television shows as background noise,
which simulates an actual living room environment. The experimental results demonstrate that the
proposed WUW recognition system outperforms the baselines that employ CNN and ResNet models.
The proposed system shows 1.31% in equal error rate and 1.40% false rejection rate at a 1.0% false
alarm rate, which are 29.57% and 50.00% relative improvements compared to the ResNet system,
respectively. The number of parameters used for the proposed system is reduced by 83.53% compared
to the ResNet system. These results prove that the proposed system with the competing-words-based
feature is highly effective at improving WUW recognition performance in noisy environments with a
smaller footprint.

Keywords: speech recognition; wake-up word; deep neural network; competing words;
feature generation

1. Introduction

As speech recognition systems use large amount of resources, to minimize computational load,
many systems employ wake-up-word (WUW) recognition so that they can be awakened to an active
mode once WUW is recognized. In earlier research, a support vector machine (SVM) was used
for the WUW recognition system [1]. Because the performance of deep neural network (DNN)
systems has proven to be highly effective in many fields, there have been numerous efforts to build
DNN-based WUW recognizers in various ways [2-12]. In [2], the bidirectional long short-term memory
(BLSTM)-based end-to-end model was used to calculate the post-probability similar to the hybrid
system, and the weighted finite-state transducers (WFSTs) were used to generate a confidence score
from the calculated post-probability. The work in [3] proposed a WUW recognition system that
generates six types of confidence measures through the decoder of a DNN-hidden Markov model
(HMM) hybrid structure and classifies WUW and non-WUW using SVM.

Many studies on small-footprint keyword spotting have shown effectiveness by employing
different types of deep networks, including convolutional neural networks (CNN) [4], convolution
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recurrent networks [5], residual networks (ResNet) [6], and other variations [7-9]. Recently, the attention
method was applied to small-footprint keyword recognition [10-12]. Various studies have also been
conducted to improve recognition performance in noisy environments [13-16].

In this paper, we propose utilizing competing words in order to improve WUW recognition
performance and minimize the model size of the system. A high-level feature was generated using
the competing-words dataset and the residual network. The competing-words-based feature was
used as an input to the CNN-based network for classification network training. For small-footprint
systems, we focused on minimizing the size of the model parameters as well as increasing the
recognition accuracy. The proposed system was evaluated using the WUW speech data recorded in
actual noisy home environments where the real air conditioner was operating. To obtain the training
data, the original clean data were filtered using the room response filters with real sounds added as
background noise, which were extracted from various television shows.

Section 2 describes the proposed WUW recognition system, including the competing-words-based
feature and the structure of the recognizer. The speech database and the experimental results are
presented in Section 3, and the concluding statements are provided in Section 4.

2. Proposed WUW Recognition System

The motivation for the competing-words-based feature in this study was that phonetically
discriminative features across various vocabularies that are obtained independently from the training
database could make the WUW recognition system more robust to the unseen non-WUW inputs. In this
work, we used competing words to generate more discriminative high-level features over different
words. The proposed system consists of two parts: a feature generation network and a classification
network. The details are described in the following sections.

2.1. Selection of Competing Words

In our work, the WUW was a single two-word command, such as “Hey Siri” and “Okay
Google,” which consisted of Korean words with four syllables. For the competing-words-based feature
generation, we used the PBW452 database, which contains a set of 452 number of phonetically-balanced
isolated Korean words where 45 Korean phonemes occur at approximately the same frequency,
including a duration of about 19 h uttered by 71 speakers [17]. The PBW452 database does not include
the WUW used for our system. From the PBW452 database, we selected N, number of words for the
competing words in three different ways: (1) most acoustically similar words, (2) most acoustically
dissimilar words, and (3) mixed set.

To select the most similar words among the 452 number of PBW452 words, we first constructed
acoustic models of the 452 words by concatenating the Korean phone models of HMMs using the
PBW452 database and the HTK toolkit [18]. Each HMM represented a monophone that consisted of 3
states with an 8-component Gaussian mixture model (GMM) per state. A conventional mel-frequency
cepstral coefficient (MFCC) front-end was employed for the input feature to the HMM. Using the
acoustic scores of the WUW training data X for the 452 word models, N, number of words generating
the highest scores were selected among the 452 words with the following equation:

p(X[wi™) > p(X[w§™) > -+ > p(X[w}" ) )
where ws”" represents the kth most similar word to the WUW among the 452 words. The selected
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competing words { 5 WY } were expected to generate an acoustic score relatively similar
to that of WUW, such that they might degrade discrimination ability from similar inputs to the actual
WUW, resulting in an increase in the false rejection rate (FRR). We also selected the most dissimilar

dis o dis dis ; ; i on-
words {w wss, ..., chw} using the following equation:
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The mixed set of competing words {wiim, e, w;l]m /a7 w‘fis, e, wld\}'s /2} also consisted of the same
New number of words, which were obtained from the top N¢, /2 words from each of the sets of the

most similar words and dissimilar words.

2.2. Generation of Competing-Words-Based Feature

As a feature generation network, the ResNet was modified, which showed considerable
effectiveness for the small-footprint keyword recognition system proposed by Tang and Lin [6].
The deep neural networks used in our experiments were implemented using the Tensorflow [19].
The proposed feature generation network is presented in Figure 1la. The parameters used for the
feature network are listed in Table 1. Here, the network included a single original residual block with
double layers of convolution layer and batch normalization, and a reduced residual block with a single
layer. The kernel size (I) and dilation sizes (d) used for the convolution layers are also listed in Table 1.
The number of feature maps (1) was set to 12. Through the last max-pooling and dense layers, the final
output was generated using the softmax function.

Here, the sizes of the last max-pooling and dense layers had a principal impact on the size of
the feature generation network, because the dense layers had a much larger number of parameters
compared to the convolution layers. Since the output of the max-pooling layer was used as the input
to the classification network, its size could also have impacted the performance and the size of the
classification network. The size of the dense layer should have been identical to N, which was the
number of selected competing words, because the feature generation network was trained using the
dataset of the selected competing words. From a series of extensive experiments on changes to the size
of the max-pooing layer and Ny, considering the computational expense and recognition performance
of the proposed small-footprint system, they were set to 240 and 200 respectively.

Log Spectral Feature

Competing-words
based feature

Conv 3x3, 12

’
Conv 3x3, 12
Batch Norm

(a) Feature network (b) Classification network

Figure 1. Configurations of the DNN (Deep Neural Networks) for the proposed WUW (wake-up-word)
recognition system: (a) feature generation network and (b) classification network.
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Table 1. Parameters used for the feature network of the proposed system. * The total number was
calculated by excluding the 48,200 parameters of the dense layer, as the dense layer was excluded for
the feature generation network of the actual system.

Type Kernel (I) Dﬂ(?;)lon Feature Map (n) Parameters
conv 3x3 - 12 108
res X1 3x3 1x1 12 2688
conv 3x3 1x1 12 1296

bn - - 12 48
conv 3x3 4x4 12 1296

bn - - 12 48

max-pool 23 x5 - 12 0

dense - - 200 48,200
Total - - - 5484 *

The input to the feature generation network was a log-spectral feature vector that consisted of
23 elements. The log-spectral feature was the logarithm of the “Mel-filterbank outputs” generated by
the ETSI [20] standard using a 25 ms window size and a 10 ms moving interval for 16 KHz sampled
speech data. In our work, to extract the high-level feature for an input utterance, 120 frames of
log-spectral feature vectors were selected from the center of each speech utterance, and they were
added to the feature generation network as an input. Therefore, the input data was two-dimensional
as 23 x 120.

By applying the six different background noises (i.e., TV programs: drama, news, music,
entertainment, sports, and home shopping) at 5 dB to the selected competing words of the PBW452
dataset, including clean conditions, the training data for the feature generation network was constructed.
The background noise used for the competing-words training data was identical to the noise samples
used for the WUW/non-WUW training database used for the classification network, which are described
in more detail in Section 3. A total of 10% of the training data was used as the development data for
the training processes in all experiments.

For training the network, each label was encoded as a one-hot vector with 200 elements. The Adam
optimizer was used with a learning rate of 0.001, and cross-entropy was used for the loss function.
The batch size was set to 1000. The training was stopped when the loss was minimum over the
development dataset in all experiments. When the training was finished, the obtained feature
network was used for feature generation for classification network training and testing (recognition).
The 240-dimensional vector of the output from the last max-pooling layer was used as the input feature
vector for the classification network, as shown in Figure 1. Therefore, the number of parameters used
for training the feature network was 53,684 in total, including the dense layer. However, only 5484
parameters were used for the feature generation network of the actual system by excluding the
dense layer.

2.3. Classification Network

For the classification network, a CNN model was employed. The classification network consisted
of four blocks of convolution and max-pooling layers. The first convolution layer used 3 as the kernel
size (I). The other three convolution layers used 5 as the kernel size and 2 as the stride size (s), and each
max-pooling layer used 2 as the pooling size; consequently, the size of each output element decreased
as it went through the layers. In this work, 4 feature maps (1) were used. The output size of the
last max-pooling layer was 100, and two dense layers were added with 80 and 2 as node numbers.
Each convolution layer used the ReLU function, and the first dense layer used the sigmoid function
as the activation function. The last dense layer used the softmax function. For training the network,
each label was encoded as a one-hot vector. The Adam optimizer was used with a learning rate of
0.001, and cross-entropy was used for the loss function. The batch size was set to 1000.
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Table 2 lists the parameters used for the classification network. The total number of parameters
was 8510 for the classification network. Therefore, the total number of parameters of the entire
system proposed in this paper was 13,994 (= 5484 + 8510). Figure 2 shows a block diagram of the
proposed system. In step 1, for the feature network training, the feature network was trained using
the competing-words training database. In step 2, using the trained feature generation network,
the competing-words-based feature vectors were obtained from the log-spectral feature of the input
speech, and then the classification network was trained using WUW and non-WUW data.

Table 2. Parameters used for the classification network of the proposed system.

Type Kernel (1) Stride (s) Feature Map (n) Parameters
conv 3 1 4 16
max-pool 2 1 4 0
conv 5 2 4 84
max-pool 2 1 4 0
conv 5 2 4 84
max-pool 2 1 4 0
conv 5 2 4 84
max-pool 2 1 4 0
dense - - 80 8080
dense - - 2 162
Total - - - 8510

Step 1: Feature network training

Competing-word 1
i o= By Competing-word 2
4 ?‘l ‘&. : LA 3 Feature 3 Competing-word 3
[ L g Network :
Competing-words Competing-word N
train data
i ﬂ. 4 LN Feature o
0 Classification
YIS VA — Network > N ;VUWWUW
(4 N | Network on-
. (Frozen)
WUW/Non-WUW

train data
Competing-words based feature vector

Step 2: Classification network training

Figure 2. Block diagram of the proposed WUW recognition system.
2.4. Analysis of the Competing-Words Network-Based Feature

Figures 3 and 4 show the contour curves of principal component analysis (PCA)-transformed
vectors of the log-spectral features and the competing-words-based features, respectively. Here, the two
main principal components were selected, and they were estimated to be a two-dimensional
Gaussian pdf. The contour curves of the distributions were plotted. Figure 3 presents the contour
curves of distributions of PCA-transformed log-spectral features for WUW and non-WUW speech
samples. Figure 4 presents the contour curves of the PCA transform of the competing-words-based
features. In Figure 3, the contours of WUW distribution are almost included in the contours of
the non-WUW distribution; therefore, it is difficult to discriminate the WUW distribution from the
non-WUW distribution. Compared to Figure 3, the overlapped parts of the contours of WUW and
non-WUWs in Figure 4 are considerably smaller. From this observation, we believe that the proposed
competing-word-based features obtained discriminative ability between WUW and non-WUWs by
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generating from the trained feature network using competing words. The proposed feature could be
effective at improving the recognition accuracy of the WUW system.

60

Wuw

400 Non-wuw

-60 b

-750 -700 -650 -600 -550 -500 -450 -400 -350

Figure 3. Distribution contour curves of two-dimensional vector obtained through PCA (Principal
Component Analysis) transform of the log-spectral features for WUW and non-WUW speech utterances.
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Figure 4. Distribution contour curves of two-dimensional vector obtained through PCA transform of
the competing-words based features for WUW and non-WUW speech utterances.

3. Experiments and Results

3.1. Database

In this study, as a WUW), a single Korean two-word command with four syllables was used.
The WUW included the name of a Korean company. We obtained 3000 utterances from 1000 speakers
who uttered the WUW three times. A total of 2001 utterances from 667 speakers were used for the
training set and 999 utterances from 333 speakers were used for evaluation with no overlap in speakers.

The microphone for the input speech to our WUW recognizer developed in this work was assumed
to be mounted on an air conditioner in a living room at home. To evaluate performance in the condition
most similar to the actual environment where the WUW recognizer was used, the evaluation data was
generated by re-recording the evaluation set of the original sound source files (999 samples) through
the microphone mounted on the air conditioner with background noise. To simulate the speaker
locations from the air conditioner in the actual operation condition, the sound was re-recorded at
various locations with a combination of different distances (1 m, 3 m, and 5 m) and angles (left, front,
and right), as shown in Figure 5. It was assumed that the air conditioner was in operation while the
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user used the speech recognition system, as there was background noise from a wind sound at different
levels. In our experiment, 15,984 files were generated for the evaluation dataset, which had a duration
of 12.6 h. The datasets used for our experiments are summarized in Table 3.

4m

0

Figure 5. Environment where re-recorded utterances were used for testing. Each point represents the
position of the speaker. A combination of distances from an air-conditioner and angles were used.

Table 3. Datasets used for the experiments. * A total of 10% of each set of training data was used for
the development data with no-overlap with the training data.

Use Contents Noise Types Length (h)
. Competing-words Background noise 6.75
Degzellémri%/nt % WUW RIR + background noise 9.5
P Non-WUW from TV shows RIR 9.5
, WUW Wind noise from 12.6
Evaluation air-conditioner
Non-WUW from TV shows Wind noise from 45

air-conditioner

We collected audio data of Korean television shows and programs for evaluation of rejection
accuracy for non-WUW utterances that could occur in a home environment. We chose six types of TV
programs (drama, news, music, entertainment, sports, and home shopping), and extracted audio data
from the Korean TV programs found on YouTube. The audio files with a duration of 45 h were used
for the evaluation set, and the audio files with a duration of 9.5 h (i.e., 1.5-2 h for each type of program)
were used for the training set with no overlap between evaluation and training. The collected audio
data of the TV programs did not include the WUW used in our system.

To simulate a living room environment of an actual house, a room impulse response (RIR) filter
was applied to the training datasets. As shown in Figure 6, we generated data by applying the RIR
filters with different combinations of microphone positions (1 m, 2.5 m, and 4 m) and reverberation
times (0.3 s, 0.4 s, and 0.5 s). For the WUW training data, various types of background noise (white,
car, babble, and music) data were added to the generated training data with four different types of
signal-to-noise ratios (SNR) (5 dB, 10 dB, 15 dB, and 20 dB). The car and babble noise samples were
obtained from NOISEX-92 [21], and the music samples were obtained from Korean pop-music samples.
The audio signals collected from the TV programs were also used for the background noise. Through
the data generation, we obtained 12,006 files with a duration of 9.5 h for training.
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Figure 6. Placement of TV and microphone.

3.2. Experimental Results

As the performance measure, the equal error rate (EER) and a false rejection rate (FRR) at a 1.0%
false alarm rate (FAR) were used, which have been popularly used in literature, including [4-6,10-12].
The FRR and FAR represented the probability of falsely rejecting the WUW inputs and falsely accepting
the non-WUW inputs, respectively. The EER was calculated as the point where the FRR and FAR
became the same. A value of 100% minus FRR was considered the recognition accuracy of the system
for the WUW at a fixed FAR point.

The performance of the proposed method was evaluated according to different sets of the
competing words, which were defined in Section 2.1. Here, each system used a 6-7 h long dataset with
the selected competing words extracted from the PBW452 database for the feature network training.
The results in Table 4 show that the system with a mixed set of competing words showed the best
performance in EER and FRR, outperforming the similar and the dissimilar set of competing words.
The result of the randomly selected word set showed worse recognition performance in EER compared
to the similar set and the worst performance in FFR. From these results, we can see that it is important
to properly construct the set of the competing words by including similar as well as dissimilar words
to increase the discriminative ability across various inputs.

Table 4. Performance comparison of the proposed system for different sets of the competing words in
the equal error rate (EER) (%) and in the false rejection rate (FRR) (%) at a 1.0% false alarm rate (FAR).

Competing-Words Set EER FRR
Most similar 1.33 1.63
Most dissimilar 1.50 1.95
Mixed 131 1.40
Randomly selected 1.45 1.98

The performance of the proposed method was compared to existing keyword spotting systems that
employ CNN [4] and ResNet [6] models, which show effective performance for small-footprint systems
and are used as a baseline by many researchers. Tables 5 and 6 list the model structures and parameters
used for the baseline systems with the CNN and ResNet models, respectively. The input feature was
identical to our proposed system, which was a set of 120 frames of log-spectral features. The same
datasets as those of the proposed system were used for training and evaluation. The competing-words
data from the PBW452 database was also included in the training data for non-WUW. In the experiments,
we tried our best to obtain the smallest size of the neural network models with the best performance in
EER and FRR.
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Table 5. Parameters used for the CNN system.

Type Kernel () Stride (s) Feature Map (n) Parameters
Conv 3%x3 1x1 16 160
max-pool 2X2 2X2 16 0
Conv 3x3 1x1 16 2320
max-pool 2x2 2x2 16 0
Dense - - 300 537 K
Dense - - 100 30K
Dense - - 2 202
Total - - - 570 K

Table 6. Parameters used for the ResNet system.

Type Kernel (1) Dll(;t)mn Feature Map (n) Parameters

conv 3x3 R 16 144

res X3 3%x3 23] x 2l3] 16 14,208

conv 3x3 4x4 16 2304

bn - - 16 64

avg-pool - - 16 0

dense - - 2 34

Total - - - 16,754

The CNN model consisted of two layers of 2-D convolution layers and a max-pooling layer with
a dense network. The convolution layers had 3 x 3 size kernels (/) with the ReLU function, and the
max-pooling layers had 2 X 2 size kernels with 2 X 2 strides (s). The size of the output of the second
max-pooling was 1792. Here, the number of feature maps () used was 16. The dense network had
two hidden layers with 300 and 100 nodes and a sigmoid function. The output layer had two nodes for
WUW and non-WUW with a softmax function. The Adam optimizer was used with a learning rate of
0.001, and cross-entropy was used for the loss function. The batch size was set to 1000, which was
identical to the proposed system.

The ResNet model was an identical configuration proposed by Tang and Lin [6]. To reduce the size
of the model and optimize the performance for our task, that is, a single keyword system, the res§ model
was employed with 16 feature maps (). The ResNet model consisted of the first convolution layer,
three residual blocks, and the following convolution layer. As shown in Table 5, 16,754 parameters
were used for the ResNet model. The optimizer, loss function, learning rate, and batch size were
identical to that of the CNN model.

As another baseline system, we constructed the WUW recognition system proposed in [3],
which used six types of confidence measures, and compared the performance to our system. Moreover,
we constructed an end-to-end system that concatenated the proposed feature network and classification
network in a series with the same number of parameters. The concatenated system is presented as
“Concatenated” in Table 7.

Table 7. Performance comparison of the baselines and the proposed system in EER (%) and in FRR (%)
at 1.0% FAR.

Systems EER FRR
Ge and Yan [3] 494 -
CNN 2.55 3.93
ResNet 1.86 2.80
Concatenated 2.79 4.45

Proposed 1.31 1.40
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Table 7 shows that our proposed method outperformed other systems in terms of EER and FRR.
In particular, the proposed method showed lower EER compared to the ResNet system, i.e., 1.31 vs. 1.86,
respectively. Considering the size of the models in terms of the number of parameters used for the
systems (13,994 vs. 16,754, respectively), our system was highly effective for a small footprint device.
As for FRR at 1.0% FAR, the CNN and ResNet systems showed 3.93% and 2.80%, respectively, and the
proposed system showed 1.40%, which was considerably lower compared to the CNN and ResNet
systems. Therefore, the proposed system outperformed the concatenated system as well as the CNN
and ResNet systems. These results prove that the proposed two-step system is highly effective at
increasing WUW recognition performance, where the feature network is trained over the competing
words independently from the training dataset.

Table 8 presents a comparison of the FRR at 1.0% FAR over the different locations of the speaker
from the microphone. The farther the speaker moved from the air-conditioner, the smaller the amplitude
of the wind noise sound from the air-conditioner became. However, the amplitude also became smaller
in amplitude and the input speech became more distorted due to reverberation. From the results
in Table 8, the proposed system was consistently robust in the different noisy conditions due to the
speaker’s location in relation to the air-conditioner compared to the baseline systems. Figure 7 shows
the ROC curves of the CNN system, ResNet system, and our proposed system. Here, the marker (*)
indicates the point of EER for each system. Table 9 summarizes the numbers of parameters and the
number of floating point operations (FLOPs) of the proposed system and baselines systems. The FLOPs
were calculated using the “tf.profiler.profile()” function of the Tensorflow.

Table 8. Comparison of FRR (%) at 1.0% FAR over the different speaker distances from the microphone.

Systems Im 2m >3 m Total
CNN 5.04 2.63 3.69 3.93
ResNet 3.09 3.08 2.32 2.80
Proposed 1.15 1.53 1.57 1.40
5 T A} T T T T T T T
‘\ L CNN
45 \ \'\ — — —ResNet | A
\ \ Proposed
Al .
<
o 35
©
o
c 31
9
3
T 25T
o
s 2t
©
[
151
1F
05 1 l 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

False Alarm Rate (%)

Figure 7. ROC (receiver operating characteristic) curves of the baseline systems and the proposed system.
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Table 9. Summary of the number of parameters and the number of the floating point operations
(FLOPs) used in the systems.

Systems Parameters FLOPs
CNN 570K 1140 K
ResNet 16,754 335K
Proposed 13,994 28.0K

4. Conclusions

In this paper, we proposed a small-footprint WUW recognition system for noisy environments
by employing the competing-words-based feature. The competing-words-based feature was
generated using a ResNet-based DNN, with small parameters using a competing-words dataset.
The competing-words dataset consisted of the most similar words and the most dissimilar words to the
WUW used for our system. The obtained features were used as the input to the classification network,
which was developed using the CNN model. To obtain sufficient data for training, data augmentation
was performed by using an RIR filter and adding sound signals from various television shows as
background noise, which simulated an actual living room environment. The experimental results
demonstrated that the proposed WUW recognition system outperforms the baselines that employ
CNN and ResNet models. The proposed system showed 1.31% in EER and 1.40% FRR at 1.0% FAR,
which were 29.57% and 50.00% relative improvements compared to the ResNet system, respectively.
The number of parameters used for the proposed system was reduced to 83.53% compared to the
ResNet system. These results proved that the proposed system with the competing-words-based
feature is highly effective at improving the WUW recognition performance in noisy environments with
a smaller footprint.
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