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Abstract: We examined the effects of aluminum (Al) capping layer thickness on the electrical
performance and stability of high-mobility indium–gallium–tin oxide (IGTO) thin-film transistors
(TFTs). The Al capping layers with thicknesses (tAls) of 3, 5, and 8 nm were deposited, respectively,
on top of the IGTO thin film by electron beam evaporation, and the IGTO TFTs without and with
Al capping layers were subjected to thermal annealing at 200 ◦C for 1 h in ambient air. Among the
IGTO TFTs without and with Al capping layers, the TFT with a 3 nm thick Al capping layer exhibited
excellent electrical performance (field-effect mobility: 26.4 cm2/V s, subthreshold swing: 0.20 V/dec,
and threshold voltage: −1.7 V) and higher electrical stability under positive and negative bias
illumination stresses than other TFTs. To elucidate the physical mechanism responsible for the
observed phenomenon, we compared the O1s spectra of the IGTO thin films without and with Al
capping layers using X-ray photoelectron spectroscopy analyses. From the characterization results,
it was observed that the weakly bonded oxygen-related components decreased from 25.0 to 10.0%,
whereas the oxygen-deficient portion was maintained at 24.4% after the formation of the 3 nm thick
Al capping layer. In contrast, a significant increase in the oxygen-deficient portion was observed
after the formation of the Al capping layers having tAl values greater than 3 nm. These results imply
that the thicker Al capping layer has a stronger gathering power for the oxygen species, and that
3 nm is the optimum thickness of the Al capping layer, which can selectively remove the weakly
bonded oxygen species acting as subgap tail states within the IGTO. The results of this study thus
demonstrate that the formation of an Al capping layer with the optimal thickness is a practical and
useful method to enhance the electrical performance and stability of high-mobility IGTO TFTs.

Keywords: In–Ga–Sn–O (IGTO), thin-film transistor (TFT), Al capping layer; optimal thickness;
weakly bonded oxygen species

1. Introduction

Amorphous oxide semiconductor (AOS) thin-film transistors (TFTs) are of significant interest for
applications in active matrix displays, sensors, memories, and other electronic systems because of
their excellent electrical properties, good uniformities, and low fabrication costs [1–4]. Among them,
the indium–gallium–zinc oxide (IGZO) TFT, which was first introduced by Nomura et al., in 2004 [5],
is the most popular AOS TFT that is currently used for commercial products such as large-area
active matrix organic light-emitting diode televisions. However, the field-effect mobility (µFE = ~10
cm2/V s) of the IGZO TFT is insufficient to meet the requirements of large area, high-frame rate,
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and ultra-high-resolution next-generation displays [6–8]. Furthermore, µFE of the TFT should be higher
than that of the IGZO TFT to integrate the scan/driver circuits composed of the TFTs into a glass or
flexible substrate. To date, a variety of AOS TFTs having higher µFE values than those of the IGZO
TFTs have been intensively studied for application in next-generation displays [9–11]. Among them,
the indium–gallium–tin oxide (IGTO) TFT has recently been attracting special attention as a promising
high-mobility AOS TFT, because it exhibits excellent electrical properties even at low annealing
temperatures (<200 ◦C) [12–14]. Low temperature processing is exceedingly important for flexible
display applications because most plastic substrates have low glass transition temperatures (below
200 ◦C) [15,16]. In IGTO, the cation Sn is used instead of Zn, because a similar electronic configuration
of Sn4+ and In3+ can increase the electron mobility within the AOS by facilitating percolation path
formation [17–19].

To date, several previous studies have investigated the effects of metal capping layers on the
electrical characteristics of AOS TFTs [20–22]. Ji et al. examined the effects of titanium (Ti) capping
layer formation and subsequent thermal annealing on the electrical properties of indium–zinc oxide
(IZO) TFTs [23]. They showed that the Ti capping layer could enhance the µFE and positive bias
stress (PBS) stability of IZO TFTs. Kim et al. compared the transfer characteristics of zinc oxynitride
(ZnON) TFTs with and without the tantalum (Ta) capping layer and observed that the Ta capping
layer could increase µFE of the ZnON TFTs [24]. Recently, Park et al. showed that the aluminum
(Al) capping layer could enhance µFE of IGZO TFTs even without the subsequent post-deposition
thermal annealing process [25]. However, there has been no study on the optimal thickness of the
metal capping layer for AOS TFTs considering both the electrical performance and stability of the
devices. In this study, we investigated the effects of Al capping layer thickness (tAl) on the electrical
characteristics, PBS stability, and negative bias illumination stress (NBIS) stability of high-mobility
IGTO TFTs. Al capping layers with tAl values of 3, 5, and 8 nm were deposited on top of the IGTO thin
films using the electron beam evaporation technique and the IGTO TFTs without and with Al capping
layers were thermally annealed at 200 ◦C for 1 h in ambient air. From the experimental results, it was
concluded that the 3 nm thick Al capping layer was most advantageous for improving the electrical
performance and stability of IGTO TFTs. A systematic study was performed to analyze the effects of
the Al capping layer with each thickness on the electrical characteristics and stabilities of IGTO TFTs.

2. Experimental Details

The IGTO TFTs were fabricated on a heavily doped p-type silicon wafer (resistivity < 0.005 Ω
cm) covered by 100 nm thick thermally grown SiO2 with the bottom-gate configuration. A 15 nm
thick IGTO thin film was deposited via direct current (DC) magnetron sputtering using a 3 inch IGTO
target. The working pressure and Ar/O2 ratio were maintained at 3 mTorr and 35/15 (sccm/sccm),
respectively, during the deposition process. The DC power was fixed at 150 W, and the substrate was
not intentionally heated. A 100 nm thick indium–tin oxide (ITO) was deposited on the IGTO/SiO2/Si by
DC magnetron sputtering for the source and drain electrodes of the TFTs. During the sputtering of the
ITO, the DC power was fixed at 150 W and the working pressure was maintained at 3 mTorr under an
Ar atmosphere. Subsequently, Al capping layers with tAl values of 3, 5, and 8 nm were deposited on
top of the IGTO channel layer by electron beam evaporation, respectively. Finally, the fabricated IGTO
TFTs without and with Al capping layers were thermally annealed at 200 ◦C for 1 h in ambient air.
All layers were patterned using photolithography and lift-off processes. Figure 1a and b display the
schematic view and optical image of the fabricated Al-capped IGTO TFTs, respectively. All IGTO TFTs
in this study were designed to have a channel width/length (W/L) of 500/500 (µm/µm). The chemical
compositions of the IGTO thin films covered by Al capping layers of different thicknesses were
examined by X-ray photoelectron spectroscopy (XPS, K-alpha+, Thermo Scientific). The work-function
(Φ) of the deposited IGTO thin film was determined by Kelvin probe force microscopy (SKP5050,
KP Technology), and the optical bandgap (Eg) of the IGTO thin film was calculated via ultraviolet
visible-near infrared (UV-vis-NIR, wavelength: 300–1400 nm) spectroscopy (V-670, JASCO) using
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a Tauc plot. The electrical characteristics of the IGTO TFTs were measured using a semiconductor
parameter analyzer (4156C, Agilent Technologies) in the dark at room temperature in a vacuum
environment to avoid environmental ambient effects on the electrical characteristics and stabilities of
the IGTO TFTs.
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Figure 1. (a) Schematic view and (b) optical image of the fabricated Al-capped indium–gallium–tin
oxide (IGTO) thin-film transistors (TFTs). ITO, indium–tin oxide.

3. Results and Discussion

Figure 2a and b depict the representative transfer curves of the IGTO TFTs without and with 3,
5, and 8 nm thick Al capping layers on a semi-logarithmic (Figure 2a) and linear scale (Figure 2b).
In Figure 2, ID, VGS, and VDS represent the drain current, gate-source voltage, and drain-source
voltage, respectively. Electrical characterization was conducted by sweeping VGS from −20 to 20 V at
VDS = 1.0 V for all IGTO TFTs. Table 1 lists the electrical parameters extracted from the IGTO TFTs
without and with 3, 5, and 8 nm thick Al capping layers. The threshold voltage (VTH) was defined as
the VGS value giving ID = W/L × 10−8 (A), and the field-effect mobility (µFE) was extracted from the
maximum transconductance at VDS = 1.0 V using Equation (1):

µFE =
Lgm

WCiVDS
(1)

where Ci and gm are the gate dielectric capacitance per unit area and transconductance, respectively.
The subthreshold swing (SS) was calculated from the semi-logarithmic scale transfer curve using
Equation (2).

SS =
dVGS

d(logID)
(2)
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capping layers on a (a) semi-logarithmic and (b) linear scale. Electrical characterization was conducted
by sweeping VGS from −20 to 20 V at VDS = 1.0 V.
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Table 1. Electrical parameters extracted from the indium–gallium–tin oxide (IGTO) thin-film transistors
(TFTs) without and with 3, 5, and 8 nm thick Al capping layers.

tAl [nm] VTH [V] µFE [cm2
·V−1·S−1] SS [V/decade] ION/OFF

0 (w/o Al) −0.1 25.9 0.42 3.51 ×107

3 −1.7 26.4 0.20 5.52 ×108

5 −3.7 27.6 0.37 3.90 ×107

8 −14.0 - 1.31 2.50 ×106

The on/off current ratio (ION/OFF) was defined as the ratio between the maximum value of the
on-current and the minimum value of the off-current for VGS ranging from −20 to 20 V at a VDS of
1.0 V. From Figure 2, it is observed that the IGTO TFTs without an Al capping layer and those having
Al capping layers with tAls of 3 and 5 nm exhibit normal transfer characteristics; however, the TFT
with tAl of 8 nm shows nonideal double slope characteristics in the transfer curve. µFE of the IGTO
TFT increases and VTH shifts in the negative direction with an increase in tAl. The IGTO TFT with a
3 nm thick Al capping layer exhibits the minimum value of SS (0.2 V/dec) with satisfactory values of
µFE (26.4 cm2/ V s) and VTH (−1.7 V). The obtained results clearly demonstrate that the thickness of the
Al capping layer significantly influences the electrical performance of IGTO TFTs.

Figure 3a–d depict the time dependences of transfer curves for IGTO TFTs without and with 3, 5,
and 8 nm thick Al capping layers, respectively, under a PBS of VOV = 20 V, where VOV = VGS – VTH.
Figure 3e summarizes the VTH shift (∆VTH) obtained from IGTO TFTs without an Al capping layer and
those with Al capping layers having different tAl values after each PBS time. The transfer curves shift
in the positive direction for all IGTO TFTs as the PBS time increases. From Figure 3, it is observed that
the formation of the Al capping layer effectively reduces the magnitude of ∆VTH after PBS in IGTO
TFTs. However, no significant difference was observed in the PBS stabilities of the Al-capped IGTO
TFTs having tAl values of 3, 5, and 8 nm. Figure 4a–d and e depict the time dependence of transfer
curves and ∆VTH for IGTO TFTs without and with 3, 5, and 8 nm thick Al capping layers under an
NBIS of VOV = −20 V and a white light (luminance: 2000 lx). Transfer curves shift in the negative
direction for all IGTO TFTs as the NBIS time increases. Figure 4 shows that the magnitudes of ∆VTH

after being exposed to NBIS have similar values for the uncapped IGTO TFT and that having a 3 nm
thick Al capping layer. However, the transfer curves shift in the negative direction more significantly
when tAl is greater than 3 nm. Figures 3 and 4 show that the thickness of the Al capping layer strongly
influences not only the electrical characteristics, but also the PBS and NBIS stabilities of the IGTO TFTs.

To elucidate the physical mechanism responsible for the observed phenomena, we compared the
O1s spectra of the IGTO thin films without and with 3, 5, and 8 nm thick Al capping layers using
XPS. Figure 5a–d depict the XPS O1s spectra of the IGTO thin films without and with 3, 5, and 8 nm
thick Al capping layers, respectively. The XPS spectra were obtained for the middle sections of each
IGTO thin film. The three sub-peaks at 530.0, 531.0, and 532.5 eV deconvoluted from the XPS spectra
were assigned to the fully-coordinated metal ions (metal–oxygen lattice) (OI), oxygen deficiencies
(OII), and weakly bonded oxygen components such as an interstitial oxygen and a hydroxyl group
(OIII), respectively [19]. Figure 5e displays the relative areas of each sub-peak corresponding to OI,
OII, and OIII, obtained from the IGTO thin films without and with Al capping layers. The XPS results
in Figure 5 show that the weakly bonded oxygen-related components decreased from 25.0 to 10.0%,
whereas the oxygen-deficient portion was maintained at 24.4% after the formation of the 3 nm thick Al
capping layer. In contrast, a significant increase in the oxygen-deficient portion was observed after
the formation of Al capping layers with tAl values greater than 3 nm (24.4% for uncapped IGTO thin
film and that having a 3 nm thick Al capping layer, 26.5% for IGTO thin film with tAl value of 5 nm,
and 34.1% for IGTO thin film with tAl value of 8 nm). These results imply that the thickness of the
Al capping layer strongly affects the chemical composition of the underlying IGTO channel layer.
The Gibbs free energies of formation (∆Gf) for In2O3, Ga2O3, SnO2, and Al2O3 are −830.7, −998.3,
−516.0, and −1582.3 kJ/mol, respectively [25,26], and the lowest ∆Gf value corresponding to that of
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Al2O3 implies that Al has a stronger oxidation power than In, Ga, and Sn. Therefore, the Al capping
layer causes a reduction in the IGTO channel and becomes aluminum oxide (AlOX) after thermal
annealing, which eliminates the weakly bonded oxygen such as an interstitial oxygen and a hydroxyl
group and the lattice oxygen bonded to In, Ga, and Sn from the IGTO. The results in Figure 5 show
that the gathering power of the oxygen species strongly depends on the thickness of the Al capping
layer. The breaking of the cation–oxygen bonds requires a high activation energy; therefore, the 3 nm
thick, thin Al layer eliminates only the weakly bonded oxygen such as an interstitial oxygen and a
hydroxyl group. However, the Al capping layers thicker than 3 nm have a stronger gathering power
of the oxygen species; therefore, the lattice oxygen is also eliminated from the IGTO after thermal
annealing. The weakly bonded oxygen such as an interstitial oxygen and a hydroxyl group generates
acceptor-like trap states near the conduction band (CB) edge and enhances electron trapping during
the application of PBS in IGTO [27]. Therefore, a higher value of µFE, smaller value of SS, and better
PBS stability of the IGTO TFT with a 3 nm thick Al capping layer can probably be attributed to the
lower concentration of the weakly bonded oxygen species within the IGTO channel layer than the
IGTO TFT without a capping layer. Oxygen vacancies (VO) generate shallow and deep donor states
within the IGTO channel layer [28,29]. Shallow donor states provide electrons to the CB; therefore,
the electron concentration increases as the number of VO increases within the IGTO channel layer.
The increase in the electron concentration enhances the formation of the percolation conduction path
in IGTO and makes it difficult to turn off the TFT [30–32]. In addition, a higher carrier concentration
within the channel increases the SS value of the TFT [33,34]. Therefore, a lower value of VTH and
higher values of µFE and SS in the 5 and 8 nm thick Al-capped IGTO TFTs than in the uncapped and
3 nm thick Al-capped IGTO TFTs can be attributed to the larger concentration of VO within the IGTO
channel layer caused by the stronger oxidation power of the thicker Al capping layer. The poorest
NBIS stability exhibited by TFTs with tAl values of 5 and 8 nm can also be attributed to the high density
of VO within the IGTO channel, because the doubly ionized VOs are generated from VO and diffuse
toward the gate dielectric/channel interface under NBIS [35,36].Electronics 2020, 9, x FOR PEER REVIEW 5 of 13 
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Figure 3. Time dependence of the transfer curves for IGTO TFTs (a) without and with (b) 3, (c) 5, and (d)
8 nm thick Al capping layers, under a positive bias stress (PBS) of VOV = 20 V. (e) ∆VTH obtained from
IGTO TFTs without and with 3, 5, and 8 nm thick Al capping layers after each PBS time.
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Figure 4. Time dependence of the transfer curves for IGTO TFTs (a) without and with (b) 3, (c) 5,
and (d) 8 nm thick Al capping layers, under a negative bias illumination stress (NBIS) of VOV = −20 V
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5 nm thick Al capping layers after each NBIS time.
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Figure 5. X-ray photoelectron spectroscopy (XPS) O1s spectra of the IGTO thin films (a) without
and with (b) 3, (c) 5, and (d) 8 nm thick Al capping layers, obtained at the middle of the thin films.
(e) Relative areas of each peak corresponding to OI (metal–oxygen lattice), OII (oxygen deficiencies),
and OIII (weakly bonded oxygens), obtained from the IGTO thin films without and with 3, 5, and 8 nm
thick Al capping layers.
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The non-ideal double slope transfer characteristics of the Al-capped IGTO TFT with tAl of 8 nm
are considered to be a result of the partial oxidation of the Al capping layer during thermal annealing.
Figure 6 displays the time-of-flight secondary ion mass spectrometry (ToF-SIMS) negative ion depth
profile for AlO2- ions obtained from the 8 nm thick Al capping layer in the fabricated Al-capped IGTO
TFT. Figure 6 shows that the AlO2-signal exhibits high values at the surface and near the IGTO channel
layer; however, relatively lower values of the AlO2-signal are observed between these two regions.
Considering that the AlO2-ion is a representative of AlOX, this implies that the 8 nm thick capping
layer is composed of three regions: AlOX (near the surface), Al, and AlOX (near IGTO), as depicted
in Figure 6. The AlOX layers at the surface and near the IGTO layer are likely to be formed as a
result of the oxidation of the Al capping layer by oxygen in the environmental air and that in the
IGTO channel layer, respectively. Figure 7 illustrates the schematic energy band diagram for the
Al-AlOX-Si MOS capacitor, where the Φ and Eg values of the IGTO were determined to be 4.95 and
3.88 eV, respectively. Considering that the Φ value of Al (4.0 ~ 4.28 eV) [37,38] is smaller than that
of the IGTO, the accumulation layer can be formed at the interface between the AlOX and IGTO,
as observed in Figure 7, which can act as the parasitic channel causing the non-ideal double slope
transfer characteristics of the Al-capped IGTO TFT with tAl of 8 nm.
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Figure 8a displays the technology computer-aided design (TCAD) simulation results for the
transfer characteristics of the IGTO TFT with and without an Al/AlOX stacked layer on top of the IGTO
channel layer. The simulation results show that the transfer characteristics of the IGTO TFT with an
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Al/AlOX stacked layer exhibit non-ideal double slope transfer characteristics. Figure 8b depicts the
TCAD simulation results for the conduction band energy in the IGTO TFT with an Al/AlOX stacked
layer along A-A’ in the inset figure. The TCAD simulation results in Figure 8b show that the main
channel is formed near the top AlOX layer at low VGS’s, but is formed near the bottom SiO2 layer at
high VGS’s. These results show that the parasitic channel formed between the AlOX and IGTO is the
reason for the non-ideal double slope transfer characteristics of the Al-capped IGTO TFT with tAl of
8 nm.
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Figure 8. (a) Technology computer-aided design (TCAD) simulation results for the transfer
characteristics of the IGTO TFT without and with an Al/AlOX stacked layer on top of the IGTO
channel layer. (b) TCAD simulation results for the conduction band energy in the IGTO TFT with an
Al/AlOX stacked layer along A-A’ in the inset figure.

4. Conclusions

In this work, we studied the effect of Al capping layer thickness on the electrical performance
and stability of high-mobility IGTO TFTs. An Al capping layer with tAl values of 3, 5, and 8 nm
were deposited on top of the IGTO thin film and the fabricated IGTO TFTs without and with Al
capping layers were thermally annealed at 200 ◦C for 1 h in air. Among the IGTO TFTs, the TFT with
a 3 nm thick Al capping layer exhibited excellent electrical properties and better electrical stability
under PBS and NBIS than the other TFTs. The IGTO TFT without an Al capping layer exhibited a
lower value of µFE, higher value of SS, and inferior PBS stability compared with the IGTO TFT with
a 3 nm thick Al capping layer. The IGTO TFTs with 5 and 8 nm thick Al capping layers exhibited
significantly lower values of VTH, higher values of SS, and poorer NBIS stabilities compared with
the IGTO TFT with a 3 nm thick Al capping layer. The observed phenomenon was attributed to the
thickness dependent oxidation power of the Al capping layer. The oxidation power of the Al capping
layer increased with increasing tAl and 3 nm was found to be the optimum thickness of the Al capping
layer, which can selectively eliminate the weakly bonded oxygen species from the IGTO channel layer
without significantly generating VO within the IGTO. Our experimental results show that the electrical
performance and stability of IGTO TFTs can be effectively improved by forming an Al capping layer
with optimal thickness.
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