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Abstract: This paper proposes a novel pulse width modulation (PWM) for a three-level neutral point
clamped (NPC) voltage source inverter (VSI). When the conventional PWM method is used in three-level
NPC VSI, dead time is required to prevent a short circuit caused by the operation of complementary
devices on the upper and lower arms. However, current distortion is increased because of the dead
time and it can also cause a voltage unbalance in the dc-link. To solve this problem, we propose a zero
dead-time width modulation (ZDPWM) which does not require dead time used in complementary
operation. The proposed technique applies the offset voltage to the space vector pulse width modulation
(SVPWM) reference voltage for the same modulation index (MI) as the conventional SVPWM, but any
complementary switching operation needs dead time. In addition, the proposed method is divided into
four operation sections using the reference voltage and phase current to operate switching devices which
flow the current depending on the section. This ZDPWM method is simply implemented by carrier
and reference voltage that reduce the current distortion, because complementary operation that needs
dead time is not implemented. However, the operation section is delayed due to the sampling delay that
occurs during the experiment. Therefore, in this paper, we conduct a modeling of sampling delay to
improve the delay of operation section. To verify the principle and feasibility of the proposed ZDPWM
method, a simulation and experiment are implemented.

Keywords: three-level NPC VSI; zero dead-time PWM; sampling delay; current distortion

1. Introduction

In high power applications such as medium voltage motor drives, solar cells, vehicles, and most
recently, wind generation system, etc., multilevel topologies introduced in [1] have been widely applied
to reduce harmonic in the grid current, to downsize the physical filter size, and to mitigate the switching
losses of the used devices as compared with the conventional two-level pulse width modulation (PWM)
inverter. These multilevel topologies allow the output voltage to be closer to the sinusoidal wave
by increasing the number of voltage levels, and reducing the harmonic distortion, as reported in the
literature [2–4]. The major multilevel topologies that have been studied are neutral point clamped
(NPC) [5,6], active net point clamped (ANPC) [7–9], flying capacitor (FC) [10–12], and cascaded
multilevel inverter (CMLI) [13,14]. The ANPC application has a high cost since it has a relatively large
number of switching devices. The capacitor used in FC requires precharging, and the high number of
flying capacitors required with increasing output levels reduces system reliability. The disadvantages
of CMLI are the complexity of synchronization and the unbalanced power losses between power
modules. Among these topologies, the three-level neutral point clamped (NPC) voltage source inverter
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(VSI) is the most popular topology as compared with other three-level topologies because it has some
advantages such as simple operating sequence, low voltage stress, and low switching losses [15,16].
Figure 1 illustrates a three-level NPC VSI topology.
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Figure 1. Configuration of the three-level neutral point clamped (NPC) voltage source inverter (VSI).

Each leg consists of four switching devices which are connected in series, two diodes, and a
neutral point of dc-link as shown in Figure 1.

The performance including the efficiency and total harmonic distortion (THD) of the three-level
NPC VSI is affected by the PWM method such as sinusoidal pulse width modulation (SPWM), space
vector pulse width modulation (SVPWM), and discontinuous pulse width modulation (DPWM), etc.;
the available output voltage area is determined depending on the PWM method [17–20]. The previously
explained PWM techniques all require dead time when transitioning from positive to zero, or reverse,
switching transition conditions. In this transition time, the switching device, Tx1, is turned off and the
switching device, Tx3, is turned on, in parallel. During the transition time, the dead time is applied to
prevent a short circuit caused by the on/off delay of the switching devices.

However, the dead time in the complementary switching method causes distortion in the output
voltage, and therefore increases the THD in the phase current. For this reason, dead-time compensation
methods are widely studied to reduce the THD in phase current [21–24]. In [21], the authors proposed
a method to improve the harmonic components caused by dead time by applying the offset voltage
which consisted of the reference voltage and distorted output voltage in an inverter. Selective harmonic
elimination (SHE) modulation is also one of the ways to solve harmonic component, considering
dead-time effect [25]. However, since this method is based on the PWM which operates complementarily,
these methods have the characteristic of turning on the switching device even when there is no current
flowing into the switching devices.

Another research integrated the sixth harmonic of the synchronous d-axis proportional-integral
(PI) current regulator [22]. This method imposes high computational burden and is difficult to realize,
because of the detection of harmonics by integrated operation with integral controller. A previous
study used a parameter adjustment mechanism for adaptive dead-time compensation [23]. Because this
method utilized the dc-bus voltage and three-phase voltage, it was difficult to achieve an accurate effect
if an imbalance of three-phase voltage and dc-bus voltage existed. In [26], dead-time compensation
was performed with a dead-time correction state machine. This method was based on the error from
measured three-phase voltage and current, and sensitiveness existed from the disturbance, which was
a disadvantage.

In the case of the previous studies, there are limitations to the compensation of current disturbance
due to dead time, because of the modulation or complicated control configuration and mechanism,
and based on various infarction signals.
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In this paper, to solve these limitations, the zero dead-time width modulation (ZDPWM) method
is proposed which does not need the dead-time, and therefore there improve the distortion of output
current. A short circuit which is caused by the on/off delay of switching devices does not appear when
the complementary switching operation is not used. Thus, in this paper, we describe the ZDPWM
method that operates without dead time, and how this PWM is implemented by comparing the carrier
and reference voltage. We also suggest an improved method that can solve the sampling delay of a
microcontroller unit (MCU) that is seen in the experiment.

This paper is organized as follows: In Section 2, we describe the basic structure and theory of the
existing three-level NPC topology; in Section 3, we describe the analysis of the proposed ZDPWM
method and how to implement the proposed technique; in Section 4, we describe the impact of
sampling delay on the proposed ZDPWM method and the technique to improve this; in Section 5,
we describe the simulation and experimental results for validation of the proposed control; and in
Section 6, we provide the conclusions.

2. Configuration of the Three-level Neutral Point Clamped (NPC) Inverter and Operation Principle

In this section, first, we describe the basic configuration and operating principles of NPC topology
and the effects of dead time before describing the proposed techniques.

The three-level NPC inverter, as shown in Figure 1, is connected to the neutral point, the neutral
point clamp diode, and the dc-link capacitor, each leg consists of four switches, and two neutral point
clamp diodes. Since the two neutral point clamp diodes are connected to the neutral point of the
dc-link, unlike the two-level inverter, an output state of “zero” is possible.

Table 1 shows the switching state of the three-level NPC inverter according to the output voltage.
Switching states can be divided into three states depending on the output voltage. Figure 2 shows the
flow of current with switching status in a three-level NPC inverter. The state, in Figure 2a, outputs a
voltage of "positive" with current flowing under load from the top capacitor and switches Tx1 and
Tx2 on one leg. Tx1 and Tx3, Tx2 and Tx4 perform reciprocal actions, therefore, Tx3 and Tx4 are off.
The state, in Figure 2b, is that the current is flowing from the neutral point to the load, the voltage
output is “zero”, with switches Tx2 and Tx3 on and switches Tx1 and Tx4 off. The state, in Figure 2c,
is that the current is flowing from the lower capacitor to the load, the voltage output is "negative", with
switches Tx3 and Tx4 on and switches Tx1 and Tx2 off.

Table 1. Switching state of three-level NPC inverter depending on output voltage.

State Tx1 Tx2 Tx3 Tx4

Positive 1 1 0 0
Zero 0 1 1 0

Negative 0 0 1 1

These three-level NPC inverters can be designed to have a lower voltage on each switch than
conventional two-level inverters because one leg consists of four switches. In addition, the level
of voltage is higher than that of a two-level inverter, therefore, the THD is lower. All elements are
switched to the fundamental frequency, which gives the inverter a high efficiency advantage [27].

The three-level NPC is generally adapting SVPWM, the same as the two-level inverters [28].
With SVPWM, the three-level NPC inverter consists of a total of 27 switching states and 19 voltage
vectors, as shown in Figure 3.
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Figure 2. Current flow of three-level NPC inverter depending on the switching state.
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At this time, vectors requiring dead time are divided into three forms, as shown in Figure 4,
depending on the state of the load. First, a unit vector, representing 120 degrees phase displacement,
is as shown in Equation (1), in order to express the phase voltage of the load as:

a = e j2π/3 = −
1
2
+ j

√
3/2 (1)
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The space vector of the phase voltage of the load can be expressed as shown in Equation (2):

V =
2
3
(va0 + avb0 + a2vc0) (2)

With equation (2), the voltage vector of the zero vector in Figure 4a–c can be expressed as (3):

V(PPP) =
2
3

(Vdc
2 + a Vdc

2 + a2 Vdc
2

)
= 0

V(OOO) =
2
3

(
0 + a + a2

)
= 0

V(NNN) =
2
3

(
−

Vdc
2 − a Vdc

2 − a2 Vdc
2

)
= 0

(3)

Figure 4d,e shows a small vector. When switching states are (POO) and (ONN), voltage vectors
can be expressed in the following ways:

V(POO) =
2
3

(Vdc
2 + a0 + a20

)
=

Vdc
3

V(oNN) =
2
3

(
0− a Vdc

2 − a2 Vdc
2

)
=

Vdc
3

(4)

In addition, Figure 4f shows the medium vector, and if the switching state is (PON), the dc-link
neutral point is connected to the load stage, which affects the voltage variation of the neutral point.
In the above state, the voltage vector may be shown as follows:

V(PON) =
2
3

(Vdc
2

+ a0− a2 Vdc
2

)
=

Vdc
3

(1− a2) =
Vdc
√

3
e jπ/6 (5)

In order to make the above load conditions, the three-level NPC inverter must perform a
complementary operation of four insulated gate bipolar transistor (IGBT) and two reverse parallel
diodes, as described earlier.

Figure 5 shows the characteristics of power switching devices that use dead time, when performing
complementary operation. The upper side represents switching signals, and the bottom side represents
collector-emitter voltage and output current. As shown in Figure 5, the transition between the on/off

states may cause a short circuit, due to the time difference between rising time and falling time,
and therefore dead time is applied to the on/off signals to prevent such short circuit accidents. However,
due to the effect of dead time, an error occurs between the commanded voltage and the actual voltage.
These voltage errors vary with the inverter current direction.

Electronics 2020, 9, 2195 5 of 27 

 

In addition, Figure 4f shows the medium vector, and if the switching state is (PON), the dc-link 

neutral point is connected to the load stage, which affects the voltage variation of the neutral point. 

In the above state, the voltage vector may be shown as follows: 

2 2 /6

( )

2
0 (1 )

3 2 2 3 3

jdc dc dc dc
PON

V V V V
V a a a e  

      
 

 (5) 

 

Figure 4. Voltage vector depending on the switching state: (a) PPP; (b) OOO; (c) NNN; (d) POO; (e) 

ONN; (f) PON. 

In order to make the above load conditions, the three-level NPC inverter must perform a 

complementary operation of four insulated gate bipolar transistor(IGBT) and two reverse parallel 

diodes, as described earlier. 

Figure 5 shows the characteristics of power switching devices that use dead time, when 

performing complementary operation. The upper side represents switching signals, and the bottom 

side represents collector-emitter voltage and output current. As shown in Figure 5, the transition 

between the on/off states may cause a short circuit, due to the time difference between rising time 

and falling time, and therefore dead time is applied to the on/off signals to prevent such short circuit 

accidents. However, due to the effect of dead time, an error occurs between the commanded voltage 

and the actual voltage. These voltage errors vary with the inverter current direction. 

 

Figure 5. Turn-on/off characteristics of a switching power device. 

PPP

CTop

CBottom

O

Za Zb Zc

P

N

2

dcV

2

dcV

OOO

CTop

CBottom

O

Za

Zb

Zc

P

N

2

dcV

2

dcV

NNN
CTop

CBottom

O

P

N

2

dcV

2

dcV
Za Zb Zc

ONN

CTop

CBottom

O

Za

Zb Zc

P

N

POO

CTop

CBottom

O

Za

Zb Zc

P

N

2

dcV

2

dcV

2

dcV

2

dcV

PON
CTop

CBottom

O

Za

Zb

Zc

P

N

2

dcV

2

dcV

(a) (b) (c)

(d) (e) (f)

Figure 5. Turn-on/off characteristics of a switching power device.



Electronics 2020, 9, 2195 6 of 26

Figure 6 shows the switching state and output voltage during dead time. Switch Tx2 is always on,
and Tx4 is always off. When the direction of the current is io > 0, applying the dead time by tdead to
switch Tx1 causes an error between the command switching and the actual switching, resulting in an
error voltage equal to Verror in the output voltage. Similarly, when the direction of the current is io < 0,
applying dead time to Tx3 produces a voltage error as much as Verror at the output voltage. The error
voltage generated by such dead time causes distortion of the output current, higher distortion of the
electric wave, and lower stability of the system, due to the distorted output current [29].
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First, Figure 7b illustrates when the direction of the current is in the “+” direction. In section I, 
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Figure 6. Switching state and output voltage during dead time.

3. Proposed Zero Dead-Time PWM Method

In this section, we describe the proposed zero dead-time PWM (ZDPWM) which totally removes
dead-time utilization for PWM generation, in order to improve the previously explained current
distortion caused by dead time in a three-level NPC inverter.

Figure 7 shows the switching mode according to the reference voltage and phase current.
The proposed method focuses on turning on the switching devices which are flowing the current,
and is divided into four operation areas depending on the direction of the reference voltage and phase
current as shown in Figure 7b–e. The reference voltage and phase current conditions in each section
are as follows:

In Secion 1, vx_re f &ix_out > 0

In Secion 2, vx_re f < 0, ix_out > 0

In Secion 3, vx_re f &ix_out < 0

In Secion 4, vx_re f > 0, ix_out < 0

(6)
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Figure 7. Switching state and current path according to each section divided by the reference voltage
and phase current.

First, Figure 7b illustrates when the direction of the current is in the “+” direction. In section I,
the switch Tx3, which is affected by dead time, does not turn on when switching from “positive” to
“zero” state. Therefore, because it does not operate the more than three switching devices, there is no
dead-time interval without implementing the complementary operation. Figure 7c illustrates when
the direction of the current is in the “+” direction, as in case of Figure 7b. In Section II, switch Tx3,
which is affected by dead time, does not turn on when switching from the “negative” to “zero” state.
Therefore, the complementary operation is also not performed in Section II. Figure 7d shows when the
direction of the current is in the “−“ direction. In Section III, the switch Tx2, which is affected by dead
time does not turn on when switching from the “negative” to “zero” state. Thus, because it does not
operate the more than three switching devices, there is also no implementation of the complementary
operation. Figure 7e illustrates when the direction of the current is in the “+” direction, as in case of
the Figure 7d. In Section IV, the switch Tx2 does not turn on when switching from the “positive” to
“zero” state. Therefore, the complementary operation is also not implemented in Section IV. As a result,
the switching states can remove dead time from any of the operation modes as there is no short circuit
fault resulted from turn on/off delay between the switching transient [30].

Figure 8 shows the switching signal and reference voltage waveforms of phase A of the proposed
ZDPWM method used in the three-level NPC VSI. Depending on the direction of the output current,
two offset voltages Va_offsetx are generated, and the magnitude of the offset voltage is determined by the
maximum modulation index (MI), as shown in Figure 8 and Equation (7) as:

i f ix_out > 0, then Va_o f f set = Va_o f f set1 = +1.1547 (modulation index)
i f ix_out < 0, then Va_o f f set = Va_o f f set2 = −1.1547 (modulation index)

(7)
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Figure 8. The switching signal and reference voltage waveforms of the proposed zero dead-time width
modulation (ZDPWM) method.

The proposed technique is based on the SVPWM method; the maximum MI value of SVPWM is
1.1547. When the SVPWM generates a voltage reference from the output of the PI current controller,
the offset value is designated as the maximum MI value, as described in Equation (7), in order to use
the same maximum capable output voltage as the maximum voltage of SVPWM.

Two new reference voltages are generated by adding two offset voltage to the reference voltage,
as shown in Figure 8. On the one hand, when V*

a_ref1, which is generated by merging with the “−”
offset voltage, is greater than the upper carrier Carriertop, the switching signal is generated by switch
Tx1, and when V*

a_ref1 is greater than the lower carrier Carrierbottom, the switching signal is generated
by switch Tx2.

On the other hand, when V*
a_ref2, which is generated by merging with the “+” offset voltage, is less

than the upper carrier Carriertop, the switching signal is generated by switch Tx3, and when V*
a_ref2 is

less than the lower carrier Carrierbottom, the switching signal is generated by switch Tx4. The switching
condition are expressed as follows:

1) i f v∗re f 1 > CarrierTop, then Tx1 = 1 2) i f v∗re f 1 > CarrierBottom, then Tx2 = 1

else Tx1 = 0 else Tx2 = 0

3) i f v∗re f 2 < CarrierTop, then Tx3 = 1 4) i f v∗re f 2 < CarrierBottom, then Tx4 = 1

else Tx3 = 0 else Tx4 = 0

(8)
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Therefore, in the proposed ZDPWM method, since each switching signal is compared only in each
area, switches Tx1 and Tx3, and switches Tx2 and Tx4 do not perform the complementary operation to
each other, unlike conventional SPWM, SVPWM method.

Figure 9 also shows that, when using the proposed ZDPWM method, there is no need for dead
time at the transition of each section. As shown in Figure 9, unlike conventional techniques, a switch
can be seen to perform switching operations in each area, in contrast to conventional complementary
operation. The switching state in the proposed ZDPWM technique can be defined as in Table 2.Electronics 2020, 9, 2195 9 of 27 
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Table 2. Switching state of the proposed ZDPWM depending on the section.

Section I Section II Section III Section IV

State

Reference
Voltage Positive Negative Negative Positive

Phase current Positive Positive Negative Negative
Phase Voltage Positive Zero Negative Zero Negative Zero Positive Zero

Switch Tx1 On Off Off Off Off Off Off Off
Switch Tx2 On On Off On Off Off Off Off
Switch Tx3 Off Off On Off On On Off On
Switch Tx4 Off Off On Off On Off Off Off

Figure 10 illustrates the determination of short-circuit accidents at the transition of a three-level
NPC inverter using the proposed ZDPWM technique. Figure 10a shows the switching state of the four
switches when transitioning from Section I to Section II. In Section I, Tx1 and Tx2 are determined by the
top carrier, the bottom carrier, and the first reference voltage v*a_ref1, and Tx3 and Tx4 are determined
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by the second reference voltage v*a_ref2. Due to this, transition from Section I to section II is not affected
by short circuit accidents.
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Figure 10. Switching state of proposed ZDPWM when transition of section: (a) from I to II; (b) from II
to III; (c) from III to IV; (d) from IV to I.

Figure 10b shows the switching state when transitioning from Section II to Section III. Because
switch Tx1 was off when transitioning from Section I to Section II, it does not affect the state in Figure 10b.
Switch Tx2 is off before transitioning from Section II to Section III, and switches Tx3 and Tx4 are on at
the transitioning from Section II to Section III. Due to this, transition from section II to section III is
also not affected by short circuit accidents, because the three switches do not simultaneously change
the state.

Figure 10c shows the switching state when transitioning from Section III to Section IV. Switches
Tx1 and Tx2 are off state, switches Tx3 are determined by the top carrier, bottom carrier, and second
reference voltage v*a_ref2, and switch Tx4 are switched off when transitioning from Section III to Section
IV. Therefore, no short circuit accident is occurred because the three switches do not change the
state simultaneously.

Figure 10d shows the switching state when transitioning from Section IV to Section I. Three switches
are turned on when the section is changed, but no short circuit accident occurs because switches Tx1

and Tx2 do not change at the same time.
Figure 11 shows a control block diagram of the proposed ZDPWM technique based on previous

illustration. As shown on the figure, it can be easily implemented based on the SVPWM technique.
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Figure 11. Control block diagram of proposed ZDPWM method.

However, since this method determines the offset of reference voltage according to the polarity
of the phase current, unexpected distortion may occur if the delay occurs in the analog-to-digital
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converter (ADC) modules that senses the phase current. Therefore, in this paper, simple phase delay
modeling was performed, and it was applied to the proposed ZDPWM method.

4. Phase Delay Modeling and Compensation Method

In this section we describe the problems that can arise when the proposed ZDPWM technique is
actually implemented and how to optimize it.

Figure 12 shows the delay in sampling data caused by the ADC module in MCU. Since the
sampling period of ADC modules is determined using the interrupt of the PWM modules in MCU,
the initiation of the ADC for real-time data sampling is associated with the switching period, as shown
in Figure 12. The ADC modules which sense the current needs more than a certain amount of time to
converter analog-to-digital data. Therefore, the phase current data are not immediately converted at
the beginning of the sampling, and the data sampled at the previous time is used at the start of the next
sampling. The sampled phase current is calculated as the lagging current relative to the real current
and, consequently, the current controller or voltage controller of the inverter is operated through these
sampled current data.
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Figure 12. Sampling delay caused by analog-to-digital converter (ADC) module in a microcontroller
unit (MCU).

When the conventional PWM is used, it does not significantly affect switching operation even if it
is sensed as a lagging current, because the delayed phase is compensated by using the d-axis current
control. However, in the case of the proposed ZDPWM, because the phase of voltage and current are
shifted by the sampling delay, it causes a delayed transition of the operation section. This delay of
section transition delays the recognition of the zero-crossing of the phase current and causes distortion
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of the phase current. This delay of section transition also cannot be improved by only the d-axis control
used in the conventional SPWM, SVPWM method. Therefore, the sampling delay should be improved
to have the same phase with real current for the ideal operation of the proposed ZDPWM method.

The sampling delay tdelay can be calculated by Equation (9) as:

tdelay =
1

fsw
(9)

where fsw is the switching frequency of the inverter. The relation formula both the delay angle of
phase current, which is output AC phase, and the sampling delay are calculated through proportional
trigonometric equation as follows:

2π :
1

fre f
= θdelay : tdelay (10)

In Equation (10), fref is the frequency of the reference voltage. In this paper, we propose the
sampling delay compensation method through phase angle of d-q transformation using the delay
angle which is calculated from the Equation (11) as:

θdelay =
2π fre f

fsw
(11)

The delayed phase current through sampling can be defined as follows:
ia
ib
ic

 =


Ipeak cos(θ− θdelay)

Ipeak cos(θ− 2π/3− θdelay)

Ipeak cos(θ+ 2π/3− θdelay)

 (12)

Equation (12) can be expressed as a d-q axis current using the d-q transformation as follows:


ia
ib
ic

T(0)R(θ− θdelay) =

[
Ie
q

Ie
d

]
=

[
Ipeak cos(0)
Ipeak sin(0)

] T(0) = 2
3


1 −1/2 −1/2
0

√
3/2 −

√
3/2

1/
√

2 1/
√

2 1/
√

2

, R(θ) =
[

cosθ sinθ
− sinθ cosθ

] (13)

In general, the phase angle which is used in d-q transformation is obtained by phase locked
loop (PLL). T(0) and R(θ) are transfer matrix of the Park transformation and Clark Transformation.
As shown in the Equation (13), finally, the current of d and q axis does not affect the sampling delay of
the ADC modules.

Therefore, to prevent the phase delay caused by the sampling delay, as shown in Equation (14),
the delayed phase angle obtained by Equation (11) is compensated when performing the reverse d-q
transformation as:

[
Ie
q

Ie
d

]
R−1({θ− θdelay}+ θdelay)T−1(0) =


Ipeak cos(θ)

Ipeak cos(θ− 2π/3)
Ipeak cos(θ+ 2π/3)

 (14)

Figure 13 shows a flowchart to compensate for the phase angle delay of the phase current.
When sensing the current, as shown in Figure 13, the phase angle of the current is delayed by the sampling
delay. This delayed current is converted to a synchronous reference frame via d-q transformation,
and harmonics within this value are removed by digital filters such as low pass filter. Then, the values of
these converted synchronous reference frame are converted to a stationary reference frame again using
the compensated phase angle shown in the Equation (14) via reverse d-q transformation. Therefore,
the proposed ZDPWM method can use the phase current, which is not delayed, to calculate the offset
voltage. The phase angle used in this time is compensated as much as it is delayed.
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Figure 13. Flowchart of the compensating of the delayed phase angle of the phase current.

5. Simulation and Experimental Results

In order to verify the principle and feasibility of the proposed ZDPWM method, a simulation
was developed using the PSIM software program. The simulation schematic in which the three-level
NPC VSI back-to-back system is illustrated in Figure 14. The systems parameters of the simulation are
shown in Table 3.
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Figure 14. Three-level NPC VSI back-to-back schematic used in simulation.

Table 3. Simulation parameters.

Parameter
Conventional PWM Method Proposed PWM Method

Value Unit Value Unit

Dead time 5 (µs) 0 (µs)
Input voltage 380 (Vrms) 380 (Vrms)

Grid frequency 60 (Hz) 60 (Hz)
Switching frequency 10 (kHz) 10 (kHz)
DC-link capacitance 6000 (µF) 6000 (µF)

DC-link voltage 650 (Vdc) 650 (Vdc)

LCL filter

Grid side filter
inductance 700 (µH) 700 (µH)

Filter capacitance 10 (µF) 10 (µF)
Converter side filter

inductance 1000 (µH) 1000 (µH)

PMSG

Maximum speed 190 (rpm) 190 (rpm)
Resistance 0.466 (ohm) 0.466 (ohm)
Inductance 12.975 (mH) 12.975 (mH)

Pole 24 (pole) 24 (pole)
Maximum torque 670 (Nm) 670 (Nm)

Figure 15 shows the results of a permanent magnet synchronous motor (PMSG) torque control
simulation using a conventional SVPWM with dead time. When the control starts, the grid side inverter
operates as a converter to perform voltage control. After reaching the normal state, the torque command
is applied to the load side inverter at 0→ 670 (Nm)→−670 (Nm)→ 670 (Nm). From the top, it shows
dc-link voltage, torque, grid side measured current, grid side reference voltages, and current and reference
voltages to motor load. In order to figure out the dead-time effect, grid side current, LCL filter current,
and motor current are shown on Figure 16. As previously explained, dead time is applied to prevent a
short circuit accident, but it causes current distortion. This distortion appears in the form of low-order
harmonics when performing fast Fourier transform (FFT) analysis, as shown in Figure 17.

Figure 18 shows the simulation results when applying the proposed ZDPWM in the same
conditions without dead time as the previous SVPWM. The applied load is the same as the previous
condition 0→ 670 (Nm)→−670 (Nm)→ 670 (Nm). As shown in Figure 19, the proposed ZDPWM
does not use dead time, and current distortion cannot be seen caused by dead-time effect of the current
in the grid side, the LCL filter, and the load motor. Thus, the FFT analysis, as shown in Figure 20,
indicate that the low-order harmonics produced by dead time are significantly reduced as compared
with SVPWM.
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Figure 16. Simulation results of grid side current, LCL filter current, and three-phase motor current
using the conventional SVPWM with dead time.
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Figure 19. Simulation results of grid side current, LCL filter current and three-phase motor current
using the proposed ZDPWM method.
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Figure 20. FFT analysis results of grid side LCL filter current and motor side current using the proposed
ZDPWM method.



Electronics 2020, 9, 2195 19 of 26

Figure 21 shows the comparison simulation result of the conventional SVPWM and proposed
ZDPWM method. As previously mentioned, when using the conventional SVPWM method, dead time
increases the distortion in the phase current, which causes an increase in the THD. However,
the proposed ZDPWM method does not require dead time because it does not perform a complementary
operation, as shown in Figure 21, and therefore it reduces the distortion in the phase current.
Consequently, when using the conventional SVPWM method with dead time, the THD of the current
is about 2.4%, but the THD of the current is about 1.2% when using the proposed method.Electronics 2020, 9, 2195 20 of 27 
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Figure 21. Simulation results of the conventional SVPWM method and proposed ZDPWM method
with delay compensation applied in three-level NPC VSI (20 ms/div).

Figure 22 also shows the simulation waveforms before and after applying proposed ZDPWM with
sampling delay compensation. We can see that the proposed ZDPWM method is more distorted by
the sampling delay of the phase current at the section where it is transmitted, as shown in Figure 22a.
At this time, the THD of current is about 2.8% and is higher than the conventional SVPWM method.
Figure 22b shows that by compensating the delay, the distortion caused by the delay is reduced.
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Figure 22. Simulation results of the proposed ZDPWM method applied in three-level NPC VSI:
(a) Without delay compensation (10 ms/div); (b) With delay compensation (10 ms/div).

In this case, the compensated phase angle, which is calculated by using the Equation (11), is shown
in Figure 23. Therefore, although the phase of the sensed current is delayed more than the real current,
the phase current used in the proposed ZDPWM method has the same phase as the real current because
delay is compensated during the reverse d-q transformation.
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Figure 23. Simulation results of the real phase angle and compensated phase angle.

Simulation results of three methods are summarized as Table 4. The THD characteristics of the
conventional SVPWM, proposed ZDPWM without delay compensation and proposed ZDPWM with
delay compensation are 2.4%, 2.8%, 1.2% respectively. As a result, proposed ZDPWM with delay
compensation is the best method to improve current distortion of a three-level NPC inverter.

Table 4. Comparison of the THD characteristics of the conventional SVPWM and proposed methods.

Control Method THD (%)

Conventional SVPWM (5µs dead time) 2.4
Proposed ZDPWM without sampling delay

compensation (no dead time) 2.8

Proposed ZDPWM with sampling delay
compensation (no dead time) 1.2

In addition, in the NPC topology, in this paper, voltage unbalancing occurs in the dc-link due to
load condition, difference in charging/discharging status according to current direction, etc. Therefore,
as illustrated in [31,32], voltage balancing in dc-link is generally achieved by applying offset voltage to
the PWM output from SVPWM, PSPWM, or LSPWM. In this paper, we also applied offset voltage to
compensate dc-link unbalancing at the output end of ZDPWM, and conducted simulation by applying
offset voltage the same as the conventional SVPWM.

Figures 24 and 25 show the simulation results applying SVPWM and the proposed ZDPWM
in a three-level inverter, respectively. As shown in the figure, all applications in this paper perform
voltage balance control, and therefore the dc-link voltage imbalance in the upper/lower capacitors does
not occur.

An experiment was performed to verify the feasibility of the proposed ZDPWM method applied
in a three-level NPC VSI. The configurations of the experimental system and power stacks are as
follows in Figures 26 and 27.

The controller is implemented on TMS320F28346 and that of a floating point microcontroller unit
at 300 MHz rate frequency. The switching and sampling frequency is 10 kHz. The power is supplied to
the three-level NPC inverter through the three-level NPC PWM converter.

Figure 28a shows the output phase current waveforms of each phase when the conventional
SVPWM method is used in a three-level NPC VSI. In this experiment, the dead time was 5 us. As shown
in Figure 28, we can see that dead time causes the distortion of the output current and, in particular,
large distortion of the current, at zero crossing points. Figure 28b shows the phase A output current and
reference voltage waveform, and the switching signal according to the reference voltage is generated,
as shown in Figure 28c. As a result, it can be seen that the THD of the output current has deteriorated
to about 2.5% due to the dead time.
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Figure 24. Simulation results using the dc-link balancing control applied in the SVPWM method.
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Figure 25. Simulation results using the dc-link balancing control applied in the proposed ZDPWM method.
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Figure 27. Configuration of the experimental setup: (a) The dc-link, switching devices, and gate driver;
(b) The control board.

Figure 29a shows the output phase current waveforms of each phase when the proposed ZDPWM
method with delay compensation is used in a three-level NPC VSI. In this experiment, the dead time
was not applied. Figure 29b shows the phase A output current and reference voltage waveform.
Figure 29c shows the switching signal generated by two reference voltage which are adding the offset
voltage to reference voltage. In the conventional SVPWM method, each switching signal is generated
by applying the dead time in order to perform the complementary operation and prevent the short
circuit, but in the proposed ZDPWM method, it is possible to verify that the switches Ta1 and Ta3,
and the switches Ta2 and Ta4 do not perform the complementary operation, as shown Figure 29d.
As a result, we can see that the THD of the output current is about 1.2% better than the conventional
SVPWM method by about 1.3%.
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Figure 28. Waveforms of the experimental results using the conventional SVPWM method: (a) Each
phase current; (b) Reference voltage; (c) Switching signal of the one leg switching devices.
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Figure 29. Waveforms of the experimental results using the proposed ZDPWM method with compensation
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6. Conclusions

In this paper, we have proposed the ZDPWM method with compensation of the sampling delay
in three-level NPC VSI. It can reduce the current distortion caused by the dead time and it is easy
to implement.

We discovered that complementary switching operation of the NPC VSI was the reason dead
time was needed and we described how to operate the NPC VSI without dead time. In addition,
the sampling delay modeling was described to compensate the delay of the phase current.
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In this paper, a simulation and an experiment were performed and presented to verify the
proposed ZDPWM method as well as their feasibility. From them, the proposed method resulted in
better performance of lower current harmonic distortion.

From the simulation result, the current regulated by conventional SVPWM has a THD of about
2.4%, the current regulated by proposed ZDPWM without sampling delay compensation has a THD
of about 2.8%, and the current regulated by proposed ZDPWM with sampling delay compensation
has a THD of about 1.2%. Additionally, in experimental result shows that the current regulated by
proposed ZDPWM without sampling delay compensation has a THD of about 2.5% and the current
regulated by proposed ZDPWM with sampling delay compensation has a THD of about 1.2%, similar
to the simulation result. These results indicate that THD can be significantly reduced by the proposed
method. As a result, the proposed ZDPWM is a good PWM strategy for three-level NPC VSI systems.
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