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Abstract: Artificial Neural Networks (ANNs) have become an accepted approach for a wide range of
challenges. Meanwhile, the advancement of chip manufacturing processes is approaching saturation
which calls for new computing solutions. This work presents a novel approach of an FPGA-based
accelerator development for fully connected feed-forward neural networks (FFNNs). A specialized
tool was developed to facilitate different implementations, which splits FFNN into elementary layers,
allocates computational resources and generates high-level C++ description for high-level synthesis
(HLS) tools. Various topologies are implemented and benchmarked, and a comparison with related
work is provided. The proposed methodology is applied for the implementation of high-throughput
virtual sensor.
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1. Introduction

Since ImageNet Image Classification competition was assuredly won by Krizhevsky, Sutskever and
Hinton with their deep-learning-based solution in 2012 [1], it became evident that Deep Learning
(DL) algorithms bear the potential for a variety of applications. With the increasing availability of
computational resources, Machine Learning (ML) has become a widely used technique for solving
a variety of different problems, e.g., object identification, cluster classification, pattern recognition,
functional regression, etc. [2]. Ever since Deep Neural Networks (DNNs) demonstrated their superior
performance, they have been considered for a wide range of use-cases and processing architectures.
Considerable effort has been devoted to improving computational efficiency by developing new
Artificial Neural Network (ANN) architectures [3,4] and optimizing implementations for specific
use-cases [5-7].

DNNs constitute their power through massively parallel distributed structures and their ability
to learn and, therefore, generalize [8]. These two information processing capabilities raise the potential
of solving complex problems. The parallel nature suggests that it is worthwhile to implement DNNs
in parallel architectures, e.g., Field Programmable Gate Arrays (FPGAs).

FPGA technology was developed in the middle of 1980s with the original intent to be a prototyping
medium [9]. As the underlying silicon technology improved, it became widely accepted in most
communication technologies. Currently, FPGAs are well established in almost all areas of computing.
The potential of ML has been widely recognized by major FPGA vendors [10-13] and has even led
to the creation of specialized development flows [14]. Nevertheless, resource availability and costs
limit FPGA usage in ML applications. A notable effort has been devoted to solving this problem by
designing different hardware architectures [15].

In this article, authors examine Feed-Forward Neural Networks (FFNNs) and investigate their
implementation by adopting a pipelining design technique. It is proposed to revise the implementation
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challenge and view the problem in terms of elementary structures. FFNN is split into elementary layers,
where each layer can be characterized by its resource and its respective latency, e.g., adder, multiplier,
activation function. The resource count is varied between layers so that the latency throughout the
network is evenly distributed, thus resulting in an optimally pipelined implementation. A dedicated
tool has been designed to convert the given network’s topology into C++ code which is compatible with
High-Level Synthesis (HLS) tools. The generated code incorporates the necessary directives to ensure a
resource-limited and pipelined solution. The created tool is made available online (http://git.edi.lv/rih
ards.novickis/generation_tool_hls_c_fully_connected_feed_forward_neural_network) and is used for
different, previously published topologies, for which the results are compared. Finally, the developed
methodology is validated by implementing a virtual sensor for a torque vectoring use-case.

The rest of this paper is organized as follows. Section 2 is devoted to the related work in the field,
Section 3 describes the theoretical background of FPGAs and FFNNSs, Section 4 describes different
FFNN FPGA design considerations which are relevant for the approach, the proposed approach itself
is described in Section 5, FFNN implementation and comparison with related work is discussed in
Section 6, Section 7 describes the adoption of the design methodology for a virtual sensor use-case
and concluding discussion is carried out in Section 8.

2. Related Work

Ever since early formalization of NNs [16], a significant effort has been made and various
paradigms used to adopt different NN structures for digital circuit implementation. For example,
Convolutional Neural Networks (CNNs) are widely used for image recognition and classification,
although classification itself is carried out by a fully connected FFNN. Different kinds of paradigms
ranging from co-processor systems [17] to OpenCL-based solutions [18-22] have been used to find
the optimal trade-off between resource use, latency, and throughput. This section highlights relevant
aspects of previous FFNN implementations and summarizes the main design challenges.

An implementation of a FFNN using VHDL is presented in [23]. The proposed network is based
on a collection of simple-interconnected processing elements (neurons), which are organized into a
topology composed of individual layers. The neurons between layers can communicate concurrently.
Network’s coefficients are represented using one’s complement signed fixed-point binary numbers. Different
hardware optimization techniques have been suggested, i.e., weight storage in internal memory, Booth’s
multiplication algorithm and activation function’s bilinear approximation using a counter and shift registers.
The authors implemented a simple FENN with a 2-2-1 topology. Network’s pipelined performance is
estimated to be 34 ns per single output estimation, although latency and clock period is not provided.

Joint software and hardware implementation is presented in [24]. Architecture is based on a control
unit, neurons and shared Look-Up Table or LUT-based activation function. The implementation’s
control unit uses user-defined code to dynamically load weights and inputs, store neuron outputs
and reset accumulators in neuron cells. The paper investigates two simple topologies with 1 and
4 neurons. The implementations are tested against time series prediction network, which uses a 2-4-1
structure. The provided solution’s maximum performance is 0.66 ps and 0.44 ps for 1 and 4 neuron
implementations respectively.

It is important to achieve reduced area and increased performance of the circuit, but this becomes
increasingly difficult to carry out if low approximation error is required. In Referrence [25], the authors
propose a hybrid approximation method of hyperbolic tangent activation function, which takes into
account the linear nature of the hyperbolic tangent when the argument value is small. This approach
is combined with a bit-level mapping of function’s non-linear region. Bit-level mapping returns an
average value of a sub-range of the region being approximated. Sub-ranges are split so that the
approximation error is below a certain threshold.

The approach [25] is used in an optical character recognition system [26], where a FFNN is
embedded into an FPGA. The authors use the aforementioned hybrid approximation method to
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implement a hyperbolic tangent activation function. The selected network’s topology is 189-160-36,
and implementation’s processing time is 4.36 ps.

A reconfigurable neural network architecture, composed of 20 neurons, is proposed
in [27]. Architecture is divided into four parts: instructions unit, memory unit, layer unit and
controller unit. Architecture adopts 8-bit precision. The approximation of the activation function is
based on direct transformation from input to output. The network is tested using 4-8-3-3 and 1-5-1
topologies. The architecture is generic, i.e., it applies to different topologies without reconfiguration.
The implementation uses VEDIC multiplier instead of available on-chip Digital Signal Processing
(DSP) blocks.

A valuable work exploring floating-point based implementation is carried out in [28].
Two approaches-resource-saving and parallel-have been developed. The exponent, used for hyperbolic
tangent and sigmoid function, is calculated using Padé approximation. The approach is benchmarked
with 5-16-12-16-5 topology and Xilinx ZEDBoard evaluation board with Zynq XC7020 chip.
The authors illustrate that implementation is advantageous over high-performance software platforms
due to its parallel execution.

In conclusion, the intrinsic programmable logic’s parallel nature suggests its suitability for the
implementation of FFNNs. Although different architectural approaches and design choices have
been investigated, FFNN implementations face a major challenge of limited hardware resources.
Furthermore, expansion of the NN topologies [29] and saturation of the manufacturing process
improvement [30] suggest the persistence of the resource challenge. The summary of different
topologies and performance metrics of previous FFNN design approaches is provided in Table 1.

Table 1. Summary of the NN topologies and the performance metrics from the related articles.

Paper Data Type Topology  Activation Function Approximation Method Latency (us) Throughput (Samples/s)
[23] Fixed < 16,7 > 2-2-1 Sigmoid/ Linear Piece-wise linear 0.034 29,412,000 (theoretical)
[24] Fixed < 32,7 > 2-4-1 Sigmoid LUT-based 0.44 2,272,700

. . Hybrid linear
[26] Fixed 189-160-36  Hyperbolic tangent + bit-level mapping 4.36 229,360
. Hyperbolic tangent . .

[27] Fixed < 8,3 > 4-8-3-3 . Direct mapping 116 862,070
/linear

[27]  Fixed < 8,3 > 1-5-1 Hyperbolic tangent Direct mapping 0.683 1,463,100
/linear

[28]A  Single precision 5-16-12-16.5 | yPerbolic tangent Padé 33,100 30.2

/linear

[28]B  Single precision 5-16-12-16-5  1yperbolic tangent Padé 24,700 405

glep
/linear
[28IC  Single precision 5-16-12-16-5 1 1yperbolic tangent Padé 5700 175.4
/linear
[28]D  Single precision 5-16-12-16-5 Hyperﬁ’ﬁﬁg;fngem Padé 3500 2857

An interesting use-case in terms of potential application of our developed approach is presented
in [31], where FFNNs enhance vehicle dynamics for a multi-motor electric vehicle. The authors train
a predictive NN for the estimation of the future slip values of each wheel for a batch of possible
torque-vectoring set points. These predictions determine the torque distribution that will reduce the
unnecessary slip. Furthermore, authors benchmark the trained topologies using parallel computing
platforms. One of the trained topologies is used in this article to validate the developed approach in a
virtual sensor use-case, which will be further described in Section 7.

3. Background

Further on, the authors assume that the reader is familiar with FPGAs, pipelining principles of
digital circuit design, HLS and basic theory of NNs. Nevertheless, as these concepts are essential part
of the developed approach for the FFNN implementation, this section is devoted to describing them.



Electronics 2020, 9, 2193 40f 16

3.1. FPGA and Circuit Design

A simplified FPGA structure is illustrated in Figure 1. It consists of general logic, memory,
DSP blocks, routing fabric and programmable input/output (I/0O) blocks [32].

/o /o /o /o

l Logic Embedded Logic Digital Signal l
Cell Memory Cell Processing

l Logic Embedded Logic Digital Signal l
Cell Memory Cell Processing

I Logic Embedded Logic Digital Signal I
Cell Memory Cell Processing

l Logic Embedded Logic Digital Signal I
Cell Memory Cell Processing
/o /o /o /o

Figure 1. Superficial FPGA structure.

FPGA development often involves balancing between the performance and the resource use of
the design. Unlike processor systems, where the execution of an algorithm is directed by the software,
in FPGAs different physical parts of a chip can be dedicated to a specific task. These parts can be
interconnected, enabling a special kind of concurrency-pipeline. Pipelining is an important technique
to increase the system’s performance by overlapping the processing of several tasks [33]. A fully
pipelined solution can accept new input data on every clock cycle, and it is characterized by a fixed
latency. The term Initiation Interval (II) denotes the number of clock cycles between consecutive input
transactions. Conceptual examples of non-optimized and optimized processing pipelines are shown
in Figure 2a,b, respectively. In these figures, functions represent different hardware blocks and DX
denotes data samples.

function 0 | DO b1 Idle function0 | DO | D1 | D2 | D3 | D4 | D5 | D6 | D7
function 1 Do D1 function 1 DO | D1|D2|D3|D4|D5|D6
. Idle
function2 | .~ [ DO b1 function2 | . ~ |DO|D1|D2|D3|D4|DS
function 3 Do | D1 function 3 DO | D1|D2| D3| D4
Time Time

@) (b)
Figure 2. Comparison of optimized and non-optimized pipelines. (a) Non-optimized processing
pipeline; (b) Optimized processing pipeline.

Hardware Description Languages (HDLs) allow designers to adapt existing tools for logic
synthesis and to explicitly describe hardware. Unfortunately, this approach requires the designer to
specify functionality at a low level of abstraction, where the cycle-by-cycle behaviour is completely
specified [34]. The use of such languages requires advanced hardware expertise and involves
cumbersome development which leads to increased time-to-market expenses.

To demonstrate the design principles, we have chosen an increasingly popular design
methodology involving the use of High-Level Synthesis (HLS) [34]. These tools enable the designer
to produce the circuit’s functional description using high-level software languages, e.g., C, C++ and
SystemC. In return, HLS tools generate a Register Transfer Level (RTL) description. While this approach
still requires some hardware expertise, it improves the maintainability and enables rapid exploration
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of the design space [34]. Nevertheless, it must be noted that HLS tools introduce additional overhead
as a result of the introduced data path scheduling logic.

3.2. Feed-Forward Neural Networks

A Neural Network is a system that is designed to model an oversimplification of how the brain
performs a particular task or a function of interest [8]. A network can be split into fundamental
information-processing units-neurons, which form the basis for designing artificial neural networks.
The block diagram in Figure 3 shows neuron’s mathematical model. Neuron’s inputs x; are multiplied
by coefficients wy;, referred to as weights, and summed up together with a bias by. This sum is passed
to an activation function ¢, which is used to normalize neuron’s output, k and 7 designate the specific
neuron and its corresponding input.

Multiplications Accumulator Activation
e A s A Y N
Wk1? x
X1 ™"
Wi2 ™ x n
Xop— ™"
. inwki + by, (P(')%Output
® i=1
* I
w >
X, kn™l X bk

Figure 3. Structure of a neuron.

A type of frequently used NN is constructed by arranging neurons in layers where all the neurons
in every layer connect to each neuron in the adjacent forward layer, i.e., fully connected FFNN.
This type of network is illustrated in Figure 4.

Hidden Layers
Input Layer A Output Layer

Figure 4. General structure of a feed-forward neural network.

By using the NNs structure, it is possible to derive the number of fundamental operations for
each layer depending on its input and output count. Let Nj,;, Nout, Nagg, Nyui, Nact be the number of
inputs, outputs, adders, multipliers and activation function operations, respectively. The number of
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multipliers and adders corresponding to a fully pipelined implementation for a neuron is shown in
Equation (1) and for each layer in Equation (2), respectively.

Nyut = Nagg = N 1)

Nimut = Nigga = Nin X Nout )

Every neuron has one activation function, thus for a layer, the theoretical number of required
activation function calculations amounts to the number of outputs.

4. Consideration for the Design

Due to FENN's parallel nature, a fully pipelined implementation can require more resources
than it is available on the chip. Additionally, computational pipeline’s throughput is determined by
the slowest stage in the pipeline, thus provided with a limited communications bandwidth, a fully
pipelined implementation can even be wasteful. Likewise, there is a risk of over-committing resources
for some stages of the pipeline, while others are not suitable for pipelining at all.

For the implementation of an efficient pipeline, there is a need to develop a latency model of
the NN. The finest timing (delay) unit we adopt is the clock period. Conventionally, an FFNN can
be abstracted as a combination of neurons. If we denote the delay with 7 and take into account data
dependencies, as illustrated in Figure 3, neuron’s delay can be characterized by):

Ttotal = Tmul + Tadd + Tact 3)

where 7,1, T,44 and T+ are the respective delays of the total multiplication, addition and activation
function operations.

By studying NN’s structure and assuming every operation is characterized by some
operation-specific constant delay of 7., we can derive simple delay-resource relationships. For example,
if all multiplications are done in parallel the multiplication delay model is:

Nin
Tmul [Nmul—‘ X Tc. “)

As for the neuron’s summation model, all the inputs of a neuron are summed up together (bias is
treated as one of the inputs), which results in potential inter-dependencies for adders. Furthermore,
depending on the clock frequency, chosen data type and routing, multiple distinct adder chains
can be joined for processing in a single clock cycle. Nevertheless, for the convenience, we adopt
a simpler addition-per-period model. Another important consideration is the complexity of adder
scheduling, as different resource sharing arrangements can lead to different delay characterization.
This is illustrated in Figure 5. Notably, many FPGAs employ a multiply-accumulate circuit in their
DSP blocks; nevertheless, their use restrains the pipelining characteristics of the overall design.
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Figure 5. An illustration of different resource sharing policies, when two adders are shared between
two neurons with a total of 6 needed additions. The first scheduler prioritizes the first neuron which
results in an additional delay due to dependencies. The second approach prioritizes all of the neurons
equally, leading to a more efficient resource sharing policy.

Previous considerations imply that the minimum delay for the summation phase can be achieved
by using a tree-like adder structure which is:

Tadd = ”OgZ(Ninﬂ X Tc. (5)

In general, if the adder count is limited, the addition layer’s delay can be determined with the
following simple Algorithm 1:

Algorithm 1 Addition delay for single neuron
: N=Nj,

=0

: WHILEN > 1

N=N-—- min(N/Z, Nadd)

T+ +

S

Although neuron is an intuitive abstraction, it subdivides architecture and respective delay
models as its shown in Figure 6a. This approach omits resource sharing between parallel neurons.
Therefore we propose a different abstraction shown in Figure 6b. In this approach, the neural network
structure is separated into elementary layers, where each layer can be characterized by a specific
resource-adder, multiplier or activation function.

™ 4 ") 4 "\
g — —
- — — — ~N
v " v \ J » >
N ( 3 4 \ — —
— —_—
— > >
[— [—
y \ J J
sss sss sss
N f Ny ) — —
— —_—
l—s — ->
—_— —
v - v ) S
(a) (b)

Figure 6. Different delay models. (a) Delays are analyzed in terms of neurons in the layers (b) Joint
delay analysis for “primitive” multiplication, addition and activation layers. (a) Conventional delay
model for a single layer. (b) Proposed delay model with resource sharing for a single layer.
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If the main bottleneck (either bandwidth limitation or some resource availability) is identified,
it is possible to optimize the network by allocating the appropriate amount of resources for each layer.
One of the most common limitations in an FENN is the activation function as it is often challenging
to pipeline.

The delay calculation procedure is provided in Algorithm 2. It takes into account that unused
resources in one stage can be carried out to the next one. Variables are designated as follows:
Njin— elementary layer’s input count, N,;;— adder count, N,,;;— adders used in current stage,
Ncadq— adders carried to the next stage, T— delay cycles.

Algorithm 2 Delay of elementary addition layer
1: N = Ny,
22 1=0
3: Nuada = Nadd
4 WHILEN > 1

5: Neggg = N — Nygad

6: Nyadqa = min(N/Z, Naaq + Ncadd)
7 N =N — N,44

8: T+ +

An important consideration for the ANN implementation is the choice of the data type.
The floating-point data type contributes a high precision and range but is costly to implement and
pipeline. Furthermore, recent studies [12,35] show that the fixed-point data types can be used with a
small loss in precision, especially if anticipated by the ANN training procedure. Another important
aspect is the possibility of using multiple data types within a single network. This can enable the
implementation of larger networks, for example, by using data type of reduced precision for bigger
layers of the network. Of course, the precision loss should be evaluated beforehand.

Another trade-off concerns the storage of the network coefficients. Coefficients can be stored
in registers, thus ensuring parallel access to all of the coefficients, or written to on-chip memory
which limits their accessibility. This can be decided depending on the performance requirements of
the pipeline.

When examining the characteristics of the FFNN computation pipeline, the aforementioned
considerations play an important role in achieving a balance between throughput, resource use
and precision. These considerations lay the foundation for the throughput-optimized FFNN
implementation described in the next section.

5. The Proposed Approach

A tool has been designed to automate the implementation of different networks, which takes
FFNN topology as an input and generates C++ code for Xilinx HLS. The tool is based on the following
methodology. First, the network topology is split into “elementary” layers, where each layer can be
characterized by a specific resource, i.e., adder, multiplier, activation function, normalization function.
Resource sharing is accomplished with multiplexing logic as shown in Figure 7. The implementation
of this logic is managed by the HLS tool. Second, the network delay model is derived. This information
enables the latency calculation for each elementary layer and determines the made choices regarding
the FFNN's pipeline. Each layer’s delay decreases by increasing the number of its allocated resources.
In an optimal pipeline, all layers should have the same delay. This principle persists throughout
throughput optimization calculations. The developed tool can be integrated into a larger workflow,
e.g., as a part of CNN's classifier design. This is illustrated in Figure 8.

Besides the NN topology, the developed tool is supplied with a target interface for the FFNN
accelerator IP core, which is either streaming or memory-mapped. Furthermore, the tool can be used in
interactive mode, where the necessary configuration can be determined on-the-fly. Additionally,
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the tool supports data type specification per elementary layer. Feedback from the HLS tools,
e.g., timing estimation and resource use, is used iteratively by the user to find an optimal design.

One of the tool’s main parameters which steer the code generation process is the maximum
acceptable delay (expressed in clock cycles) for each stage of the pipeline. This parameter enables
allocating “just enough” resources to comply with the given constraint-pipeline’s initiation interval.
An example of such a resource relationship is shown in Figure 9, where the same FFNN topology is fed
into the developed tool while targeting a range of initiation intervals. Furthermore, the developed tool
supports different normalization, addition, multiplication and activation layers and can easily extend
to incorporate new calculations or operations described with LUTs. For example, activation function
can be calculated analytically by using Xilinx and LOGICore IPs or by implementing it in a LUT.
Nevertheless, when using Xilinx IP cores, the user should check the core’s support for the targeted
data type.

BUFFER BUFFER BUFFER

LR N ] LA R

Figure 7. Proposed resource implementation scheme.

Proje,
Iteration Interval ct
ANN Topolo FFNN Sources HLS Synthesis
Design £ o0y to HLS Testbench | Toolchain | IP Core Toolchain
Process  Test Vector (EDI Tool) (Vivado HLS) (Vivado)
Approximate Layer
Resource Utilization Tentative Timing and
Precision Estimation Resource Utilization

and Performance

Figure 8. Tool flow of the proposed ANN development.
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The generated code consists of NN implementation files in C++ programming language and
data files for the NN coefficients. Every elementary layer is abstracted as a function. Source code
incorporates pragma directives for the HLS compiler, which guide the synthesis of the RTL description.
The developed tool is open-source and made available online (http:/ /git.edi.lv/rihards.novickis/gene
ration_tool_hls_c_fully_connected_feed_forward_neural_network) under MIT license. The generated
FFENN IP cores are tested using two hardware interfaces: Memory-Mapped (MM) interface for the
latency estimation and Streaming (ST) interface for latency and throughput estimation. MM interface
implies active control from the Micro Processor Unit's (MPU’s) side, but ST interface is set up by using
LogiCORE DMA IP core [36] and AXI High-performance interface [37], thus transactions are carried
out with a non-cached memory. In release implementation, memory coherence can be achieved by
using coherent Processing System (PS)-Programmable Logic (PL) communication interfaces, by using
non-cached memory [38] or actively managing caches by flushing or other mechanisms.

All tests were performed on Xilinx Zynq ZC702 SoC evaluation board using bare metal
stack with FPGA logic being clocked at 100‘MHz frequency. Timing measurements are made
by using the Cortex-A9 Snoop Control Unit’s (SCU’s) timer. MM-based accelerator variant of
the core is benchmarked by running IP core for 100 times and measuring its time of operation.
Timer measurements are made before launching IP and after receiving the interrupt signal indicating
the end of the core’s operation. It must be noted that there are sub-microsecond measurement
errors brought in by the internal interconnect structure. The ST interface was tested 100 times with
10,000 continuous neural network data points for estimating throughput and 100 times with just a
single data point for estimating latency.

Activation functions for the fixed point networks were implemented using LUTs with a 12-bit
input where 4 bits are allocated for the integer part of the number, while the LUT’s output type
coincides with the globally set network’s data type. The related published work omits the trained
coefficients and even the training data, therefore, all weights and biases were generated randomly in
the range of the used data type.

Notably, the solution presented in this article is designed for FPGA implementation and does not
support on-the-fly reconfiguration for different network topologies as opposed to some other solutions.
Nevertheless, the developed tool and methodology can be integrated into larger ANN training and
deployment procedures, thus omitting the need for a generic architecture, of course, if an instant or
continuous reconfiguration is not a requirement.

6. Comparison with Other Approaches

As mentioned previously, the majority of the related work does not provide the actual coefficients
of the FFNN s therefore, for these networks, we chose to evaluate the synthesized circuits by comparing
their performance and use of the digital resources.

FFNN resource use, implementation details and comparison with related work [23,24,26,27] are
illustrated in Table 2. “Target Initiation Interval” denotes the targeted number of cycles for each pipeline
stage which is fed into FENN generation tool for throughput optimization. “Theoretical Initiation
Interval” and “Theoretical Latency” illustrates generated IP core’s theoretical performance obtained
from Xilinx Vivado HLS tool. o denotes the standard deviation of the measurements. Latency is
provided in clock cycles (synthesized for 100'MHz clock). A detailed comparison with [28] is shown
in Table 3 as the author targets the same FPGA technology and provides detailed data on the FPGA
resource use. The A and B refer to resource-saving implementations while C and D use parallel neuron
calculation within each layer. Additionally, A and C variants employ a single pair of the floating-point
multiplier-adder blocks, whereas the remaining variants use two pairs.

An interesting finding in Table 2 is the absence of DSP blocks in some implementations. This can
be explained by the use of low precision data types, i.e., because coefficients are “hardcoded” into the
fabric, synthesis tools are able to perform optimization.


http://git.edi.lv/rihards.novickis/generation_tool_hls_c_fully_connected_feed_forward_neural_network
http://git.edi.lv/rihards.novickis/generation_tool_hls_c_fully_connected_feed_forward_neural_network

Electronics 2020, 9, 2193 11 of 16

Table 2. Implementation resource use and benchmark result comparison table with [23,24,26,27].

Target Theoretical Theoretical Latency g‘:;uglzgg)t
Topology Interface LUTs FFs DSPs BRAM Initiation  Initiation P
Latency
Interval Interval

Original  Achieved Original  Achieved

Memory- 246 118 6 3 555 ns
1 2 6 1,803,200
0, 0, 0, 0, _ 7! 7
2[223]1 mapped  (046%) (0.11%)  (273%)  (2.14%) S . L .
2 . 205 135 6 3 2.68 ps
Streaming 390, (0.13%)  (2.73%)  (2.14%) 1 2 9 o =375ns 49,272,000
Memory- 980 800 48 9 586 ns
1 2 10 1,705,600
Y, 0, 0, 0, 0, 7 7 7
2[21;1]1 mapped  (184%) (0.75%) (21.82%)  (6.43%) ns 34D o0
4 . 983 946 48 9 2,69 ps
Streaming  gsor)  (2.92%) (21.82%)  (6.43%) 1 2 12 o= 44ns 49,231,000
Memory- 1304 912 0 3.5 620 ns
[26] mapped  (245%) (0.86%)  (0.0%)  (25%) 1 4 12 o =87ns 1,612,400
4-8-3-3 1356 1028 0 35 Hows 78 202070
) . 78 ps
Streaming o 550y (0.97%)  (0.0%)  (2.5%) 1 4 19 o =91ns 24,796,000
Memory- 257 78 0 15 578 ns
7 ! . > 1 3 5 >’ 1,730,100
1[_257_]1 mapped (0.5%)  (0.1%) (0.0%) (1.1%) 683 ns oc=95ns 1,463,100
Streaming 20/ 81 0 L5 1 3 7 268 s 33,005,000

(05%)  (0.1%)  (0.0%)  (1.1%) o =35ns
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Table 3. Implementation resource use and benchmark result comparison table with [28] (Theoretical II
=100, Theoretical Latency = 987). (LUT-Look-up-Table, FF-Flip Flop, DSP-Digital Signal Processor core,
BRAM-Block Random Access Memory).

Throughput

Implementation LUTs FFs DSPs BRAM Latency (Samples/s)

232 1210 2
[281A @2%) (1.1%) (09%) =~ S>ims 302

3306 1326 4
2818 62%) (13%) (1.8%) ~  247ms 405

41,297 33,395 33

[281C (77.6%) (31.4%) (15.0%) 5.7 ms 1754
51,028 35655 65
[28]D (95.9%) (33.5%) (29.5%) 3.5 ms 2857
Impl. 30,197 55231 122 6 104ps g,
Memory-Mapped (56.8%) (51.9%) (55.5%) (4.3%) o=0.011
Impl. 31246 56,067 122 6 1251 oo

Streaming  (58.7%) (52.7%) (55.5%) (4.3%) o =0.027

Although the precision of the related work’s implementations cannot be compared as the
estimated coefficients and training procedures are not provided, recent studies suggest that it is
possible to acquire good results by using a low precision data type [12,35]. This can be achieved
by adopting an additional training stage where the targeted data type is used, as opposed to a standard
training procedure which uses floating-point data type.

Results in Table 2 illustrate that ST-based implementation throughput approaches the theoretical
Initiation Interval and can be characterized with about 2.7 s latency. This is a result of different factors,
e.g., DRAM controller delay, interconnect hierarchy and high-performance interface buffering logic.
ST interface implementations provide higher throughput than any of the related work implementations,
which is due to the pipelined nature of the accelerator, thus making it suitable, as an example, for the
realization of virtual sensors.

Theoretical and practical measurements for the MM-based implementations are slower than
implementations presented in [23,24], although [23] does not provide a practical implementation.
Of course, additional latency, in this case as well, is introduced by the interconnect hierarchy.
Nevertheless, the presented approach performs better than [27]. The results in Table 2 suggest that the
developed approach excels at maximizing NN throughput. This is advantageous for virtual sensor
use-cases, one of which is further examined in Section 7.

Although for the topology presented in [28] the hyperbolic tangent function was implemented
using Xilinx LOGICore IPs, our implemented solution outperforms any of the versions presented in
the paper. This suggests the suitability of the available IP cores for a floating-point implementation.
The reason for such an impressive performance difference is the distinct design goals. In Reference [28],
the author prioritizes on-the-fly reconfiguration of the network, while we target maximum throughput
of the network.

7. Virtual Sensor Use-Case

To validate the developed methodology, a previously published [31] use-case has been chosen.
The publication brings forward an interesting torque-vectoring application where a controller is
proposed to estimate realistically unmeasurable signals of the vehicle’s future dynamics. These signal
values depend on the different control actions, therefore, it is necessary to process as many data
samples as possible. For more information on the algorithm, the reader is redirected to [31]. This work
provides not only a realistic use-case for the throughput-optimized implementation of the FFNN,
but the coefficients and data sets are available as well.
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For approach validation, an 8-16-12-8-4 topology was selected. The particular trained NN aims to
estimate vertical forces on all four wheels of the electric car. The network is fed with the following
inputs: steering angle, longitudinal acceleration, vertical acceleration, roll rate, pitch rate, yaw rate and
lateral acceleration derivative. The inputs of the network are generated using automotive simulator
Dynacar (http://www.dynacar.es/en/home.php), which runs a model of an actual vehicle.

The network topology was fed into the designed tool targeting Streaming (ST) interface,
different iteration intervals and data types. The choice of ST-interface was motivated by the requirement
of the virtual sensor, i.e., the necessity to maximize the throughput of estimations. The produced
code was further processed by the HLS toolset, and the resulting IP core was exported into the
synthesis toolchain. Latency for each of the cores was measured by using (a) integrated logic analyzer
(realized using FPGA logic) and (b) bare-metal software. As expected, integrated logic analyzer
measurements are equivalent to the ones predicted by the HLS tools, while the software measurements
provide a realistic baseline as it incorporates delays brought in by DMA engines, SDRAM controller
and SoC’s internal routing logic.

The implementation results are provided in Table 4. The output values of the network
are proportional to the vertical forces on the wheels (output normalization has been omitted).
Standard deviation for the throughput measurements refers to the time of the DMA transactions.
Sigmoid activation function has been implemented with LUTs, where the input corresponds to the NN
type while the output is specified by the table.

Table 4. Configuration settings, FPGA resource use and performance metrics for 8-16-12-8-4 FFNN [31].

Resource Utilization

NN Absolute
Data Act. Iter. BRAM Dsr Registers LUTs Latency Throughput Mean
T Func. Interv. (ps) (Samples/s) E

ype Tot. % Tot. % Tot. % Tot. % rror

Fixed LUT N . . . 10.221 152M

14,5 8,1 32 8 20.79% 14 5.71% 22,452 21.1% 8958 16.84% o =003 ps o — 0.046 s 0.0232
Fixed  LUT N ) . ) 8.067 202M o =0014

14,5 8,1 24 8 20.79% 20 9.09% 22,123 20.79% 8881 16.69% o =001 ps o = 0.063 s
Fixed LUT o o o o 8.058 2.02M 0.0189

14,5 10,1 24 10 21.02% 20 9.09% 22,369 21.02% 9607 18.06% o= 0111 ps o = 0.063 s o= 0011

Some of the configurations achieve an impressive two mega-samples per second, which even
overcomes the FPGA performance results in the original article [31]. The approach potentially could
outperform GPU implementation with six mega-samples if a bigger FPGA chip is used while having
the benefit of lower power consumption. As expected, the reduction of the targeted iteration interval
improves performance but increases resource use as well. Notably, the improvement in the precision
of the LUT output improves the overall precision of the network.

8. Conclusions

This work presents a novel throughput and latency aware FPGA implementation methodology for
fully connected FFNNS. In this method, the NN is split into elementary layers, e.g., adders, multipliers,
activation functions, where each layer has its delay characterization. This model steers the generation
of high-level C++ programming language description of the topology, which is suitable for HLS tools
and IP core generation. The developed workflow is designed for optimal throughput and can be
used as a part of a larger ANN implementation workflow, e.g., classifier implementation for CNNSs.
The proposed workflow was evaluated with a virtual sensor implementation as it can provide a high
sampling rate when compared to other implementations.

HLS tools can provide an advantage in terms of algorithm implementation and verification
due to the usage of high-level languages, thus omitting the cycle-by-cycle behavioural description
of the hardware. This article demonstrates that the proposed implementation paradigm together
with high-level workflow can outperform conventional FENN implementation approaches. Notably,
the proposed approach is not generic, i.e., tool flow has to be repeated for every topology and NN
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training procedure. Nevertheless, the developed workflow can be integrated into a larger DNN system
development pipeline.

The proposed approach was compared with NN implementations in the related work.
Although the latency characteristics of the generated accelerator IP core can be worse than in other
design approaches, the developed tool’s aim is the design of optimized processing pipeline, which in
turn yields superior throughput when compared to the other approaches. This suggests the suitability
of the developed approach in emerging use-cases, for example, in virtual sensor design.

The virtual sensor use-case was picked up from work done by Dendaluce et al. [31], where FFNN
is used for electric vehicle’s normal force estimation. This choice was motivated by the availability of
the trained model. Different optimization and data type variants were implemented, and the resulting
implementation even succeeds the one presented in the original work.

The developed tool for converting FFNN topology to the description for HLS is made available
online under MIT license. The proposed approach still could be improved because it failed to achieve
one cycle iteration interval for smaller FFNN topologies where it is certainly possible. Additionally,
the use of HLS introduces additional logic, which can be a limitation for the implementation of more
complex networks. Future work involves adding the support for ML compiler’s-Glow-low-level
intermediate representation language [39], supporting additional activation functions, improving the
delay model and enabling support for modern recursive neural networks.
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