
electronics

Article

WhatsTrust: A Trust Management System for WhatsApp

Fatimah Almuzaini 1 , Sarah Alromaih 2 , Alhanoof Althnian 3 and Heba Kurdi 1,4,*
1 Department of Computer Science, College of Computer and Information Sciences, King Saud University,

Riyadh 11451, Saudi Arabia; 437204130@student.ksu.edu.sa
2 The National Center for Cybersecurity Technology, King Abdulaziz City for Science and Technology,

Riyadh 11442, Saudi Arabia; salromaih@kacst.edu.sa
3 Department of Information Technology, College of Computer and Information Sciences,

King Saud University, Riyadh 11451, Saudi Arabia; aalthnian@ksu.edu.sa
4 Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT),

Cambridge, MA 02139, USA
* Correspondence: hkurdi@ksu.edu.sa

Received: 13 November 2020; Accepted: 14 December 2020; Published: 18 December 2020 ����������
�������

Abstract: Online communication platforms face security and privacy challenges, especially in broad
ecosystems, such as online social networks, where users are unfamiliar with each other. Consequently,
employing trust management systems is crucial to ensuring the trustworthiness of participants,
and thus, the content they share in the network. WhatsApp is one of the most popular message-based
online social networks with over one billion users worldwide. Therefore, it is considered an attractive
platform for cybercriminals who spread malware to gain unauthorized access to users’ accounts to steal
their data or corrupt the system. None of the few trust management systems proposed in the online
social network literature have considered WhatsApp as a use case. To this end, this paper introduces
WhatsTrust, a trust management system for WhatsApp that evaluates the trustworthiness of users.
A trust value accompanies each message to help the receiver make an informed decision regarding how
to deal with the message. WhatsTrust is extensively evaluated through a strictly controlled empirical
evaluation framework with two well-established trust management systems, namely EigenTrust and
trust network analysis with subjective logic (TNA-SL) algorithms, as benchmarks. The experimental
results demonstrate WhatsTrust’s dominance with respect to the success rate and execution time.

Keywords: trust; social networks; subjective logic; WhatsApp

1. Introduction

Online social networks (OSNs) have become incredibly popular and an integral part of our daily
activities. These networks build active communities for individuals who share common behaviors,
interests, backgrounds, and/or friendships [1]. An OSN can be classified into different categories, such as
social relation connections, messaging social networks, academic social networks, and professional
social networks. These networks differ primarily in terms of the content shared by users and the
network architecture. One of the most popular messaging social networks is WhatsApp, which is
actively used by more than two billion users [2] to send and receive messages, including text messages,
photos, voice messages, videos, and documents, free of charge, as an alternative to the short message
service (SMS) [3].

WhatsApp has been a target to many cyber-attacks to distribute destructive content or gain
unauthorized access to users’ accounts [4]. For instance, WhatsApp users have recently been attacked
by cybercriminals, who use Uniform Resource Locators (URLs) to deliver malware to gain unauthorized
access to user accounts. Many WhatsApp users have fallen prey to what appears a hacking trend,
which occurs as follows: a malicious user sends a message that contains catchy news, but with a

Electronics 2020, 9, 2190; doi:10.3390/electronics9122190 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-0010-3216
https://orcid.org/0000-0003-0527-3350
https://orcid.org/0000-0003-1837-3860
https://orcid.org/0000-0001-6110-9657
http://dx.doi.org/10.3390/electronics9122190
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/12/2190?type=check_update&version=3

Electronics 2020, 9, 2190 2 of 17

compromised URL. When the recipient clicks on the URL, the malicious user gains access to the
recipient’s account. They then start texting friends and family members of the recipient, pretending to
be in a financial emergency and demanding a quick cash transfer or credit card details. This represents
a real threat, as many unsuspecting users do respond to such requests. Such incidents call for a trust
management system for WhatsApp, with which a user would receive a trust value along with the
message and thus they can recognize harmful messages and block or report the sender.

Trust management systems are crucial components in online communication platforms to ensure
the trustworthiness of participants, and thus, the content they share in the network. Trust and reputation
are strongly related concepts although quite different [5]. On one hand, trust takes place between two
parties, and a trust value reflects the opinion of one party on the trustworthiness of another party [6,7].
Basically, trust management systems classify network users, based on their behavior, into good users
and malicious users. Good users deliver valuable content and give honest feedback, while malicious
users inject the network with malignant content and give deceptive feedback. Malicious users may
work individually or in groups (henceforth referred to as collectively malicious users) to achieve their
goals. Collectively malicious users usually have more devastating harm to the network and are harder
to detect [8–10].

Several trust management systems have been proposed in the literature for various
platforms, such as peer-to-peer (P2P) networks [6,8,11–14], vehicular networks [15], wireless sensor
networks [16–18], cloud [19,20], and OSNs [21–25]. However, designing an efficient trust management
system for OSNs poses more challenges as OSNs are diverse, and thus, different factors need to be
considered when designing a trust management system for a specific OSN. Recently, several studies
have focused on developing trust management systems for generic OSNs [21–23], but only a few
contributions have addressed trust in a specific OSN, such as Twitter [26,27].

This paper proposes WhatsTrust, a trust management system tailored to the WhatsApp social
network based on subjective logic (SL). Subjective logic is a probabilistic logic that computes subjective
opinions or beliefs about one or more domain elements [28]. Subjective logic has been exploited for
this work due to its successful application in a wide range of domains, such as monitoring nodes
behavior [15], measuring the quality of web services [7], and assessing nodes trustworthiness in P2P
systems [14] and cloud computing [23].

WhatsTrust applies subjective logic [28] to compute the local trust value (opinion) between two
WhatsApp users and proposes a novel model to compute the global trust value (reputation) for each
user. Therefore, when a WhatsApp user receives a message, WhatsTrust provides them with a trust
value, of the sender to help decide on how to react to the message accordingly. To the best of our
knowledge, this is the first trust management system tailored for WhatsApp social network. However,
the proposed approach can be adapted to any other messaging social network by modifying the system
model to reflect that of the considered social network. Additionally, the proposed algorithm is scalable,
since it avoids building a large opinion matrix, which is a common problem in SL-based systems.
Furthermore, WhatsTrust is immune against collectively malicious users, which are usually hard to
detect and cause devastating harm.

In summary, the main contributions of this paper are:

• A trust management system for one of the most popular social networking applications with high
security risks, WhatsApp, which has not been targeted by any other previous work.

• A new approach to calculate a user’s reputation in a way that marginalizes the harm of collectively
malicious users.

• A well-controlled experimental framework for evaluating the proposed approach.

The rest of this paper is organized as follows: Section 2 reviews the related trust management
systems in P2P networks and OSNs. Section 3 illustrates the system model while Section 4 introduces
the WhatsTrust algorithms. The evaluation methodology and results are explained in Section 5. Finally,
a summary with concluding remarks are provided in Section 6.

Electronics 2020, 9, 2190 3 of 17

2. Literature Review

The main purpose of trust management systems is to help maintain trustworthy communication
among users [29]. Trust management systems are popular in P2P networks due to the vulnerable
nature of these networks. A classical trust management system for P2P file-sharing networks is
EigenTrust [30], which assigns each peer a unique global trust value and effectively reduces the
number of inauthentic file downloads in the network. However, the algorithm suffers from two main
drawbacks. First, EigenTrust depends on the concept of pre-trusted peers, and hence, the system might
be compromised if any pre-trusted peer is deceived by a malicious peer. Second, the algorithm cannot
express negative trust values. Due to the special characteristics of EigenTrust, it has been subject to
frequent improvements and several variants. For instance, HonestPeer [10] is one of the proposals
to tackle the pre-trusted peers’ problem in EigenTrust. HonestPeer moderates the dependency on
pre-trusted peers by involving peers with high reputation values, i.e., honest peers, in the calculation
of the reputation values of other peers. The negative trust value problem is addressed by the trust
network analysis with subjective logic (TNA-SL) algorithm [9] which allows negative ratings to be
propagated through the network.

The TNA-SL algorithm [9] is a rival algorithm that exploits graph theory and SL to manage trust
between peers. It represents the relationship between peers as a directed serial parallel graph (DSPG)
with no cycles. The algorithm expresses the trust value between two peers as a subjective opinion
that comprises four factors: belief, disbelief, uncertainty, and base rate. The main advantage of this
algorithm is the accuracy of its trust information. On the other hand, it suffers from losing some trust
information during the pruning process to ensure an acyclic graph [13]. Besides, its running time is
exponential due to long matrix chain multiplications required to locate a trusted peer in the indirect
trust relationship between peers, which negatively reflects the algorithm scalability. Owing to TNA-SL
advantages, many variations and enhancement to it have emerged. For instance, a heuristic is proposed
in [31] to find a sub-optimal path with minimal information loss, while in [32], an edge-splitting
approach is utilized to refine the trust network graph. The work in [23] addresses the runtime overheads
and the scalability problems by introducing a lightweight algorithm, InterTrust, which replaces large
trust matrices with simpler lists.

Compared to P2P, OSNs are considered a recent paradigm, and hence, trust in OSNs has been less
studied. Reviews show that SL has also been widely used in OSNs to compute trust values of users.
For example, the three-valued SL (3VSL), proposed in [21], calculates multi-hop trust values in arbitrary
graphs using SL by distinguishing between posteriori and priori uncertainties. In Reference [19],
an opinion walk algorithm is introduced which calculates trust based on 3VSL. Opinion walk starts the
trustor’s walk through the network using the breadth-first search technique and iteratively calculates
users’ trust values. A trust framework, SWTrust, which focuses on building trusted graphs from large
OSNs is proposed in [33]. The proposed trusted graphs can be applied to existing trust algorithms to
make them more efficient and practical.

Unlike many existing works, [34] proposes a trust model in OSNs based on observing disclosure
of personal information rather than friendship. Trust evaluation model (T-OSN) is presented in [35],
which considers the number of friends (degree) and contact frequency as two main factors to calculate
trust values. In Reference [36], the authors proposed a trust and reputation framework for social
networks, which takes into account the users relationships, the historic evolution of their reputations,
and their profile similarity.

In Reference [26], a reputation-based credibility analysis model is proposed for Twitter users,
where user reputation to score them based on popularity and sentimentality. In Reference [37],
the authors presented CoRank, a method to evaluate the trustworthiness of users and tweets
by analyzing user or tweet behaviors on Twitter. A framework for calculating trust on multiple
heterogeneous social networks is introduced in [38] based on semantic web technology. The proposed
approach applied weighted ordered weighted averaging data fusion technique to aggregate individual
networks without distorting trust.

Electronics 2020, 9, 2190 4 of 17

Artificial intelligence techniques, including machine learning and optimization, have been used
to compute and evaluate trust in OSNs. For instance, Reference [39] proposed a multi-feature
framework based on machine learning. It considers four trust features, which include profile-based trust,
behavior-based trust, feedback-based trust, and link-based trust. In Reference [40] the author presented a
metaheuristic algorithm based on the artificial bee colony (ABC) optimization for calculating the maximal
trust and the trust route between any two users in an OSN. A dynamic algorithm for stochastic trust
propagation in OSNs is proposed in [25] to infer the trust value between two indirectly connected users.
The presented method utilized distributed learning automata to capture dynamic trust during the process
of trust propagation and dynamically updated the trust paths. In Reference [24], a machine learning-based
approach is followed to calculate the trust value for nodes in social networks. The approach first selects
the best features then trains a logistic regression model to compute the node trust values.

Overall, previous studies that applied SL to address trust in OSNs are unscalable [22] due to the
large computation overheads. While contributions that used machine learning models require large
datasets, which are difficult to have and introduces space and runtime overheads. Above all, although
some previous studies have considered specific OSN such as Twitter [26,37], no previous study has
investigated trust in WhatsApp. On the other hand, WhatsApp has much wider reach than twitter [2],
which attracts cybercriminals to spread malware threats via infected files or links. Based on the above,
there is fundamental need for a trust management system for WhatsApp. This work seeks to fill that
gap. This paper proposes WhatsTrust, an SL-based trust management system for WhatsApp.

3. System Model

3.1. Network Model

WhatsApp can be viewed as a P2P message-exchange network. Any user in the network can
exchange messages with any other user or a group of users, irrespective of whether they are part of
the user’s contact list or not. As shown in Figure 1, WhatsTrust constructs a trust overlay network
(ToN) on top of the WhatsApp OSN to provide a substrate for the structure of a large-scale system [41].
The ToN represents the underlying network as a directed graph. Each node in the graph denotes a
WhatsApp user and each directed edge denotes the opinion of the source node in the destination node.
For instance, a directed edge from node ni to node nj denotes the opinion of node ni in node nj based
on the validity of previous messages received at node ni from node nj.

Electronics 2020, 9, x FOR PEER REVIEW 4 of 17

framework based on machine learning. It considers four trust features, which include profile-based
trust, behavior-based trust, feedback-based trust, and link-based trust. In Reference [40] the author
presented a metaheuristic algorithm based on the artificial bee colony (ABC) optimization for
calculating the maximal trust and the trust route between any two users in an OSN. A dynamic
algorithm for stochastic trust propagation in OSNs is proposed in [25] to infer the trust value between
two indirectly connected users. The presented method utilized distributed learning automata to
capture dynamic trust during the process of trust propagation and dynamically updated the trust
paths. In Reference [24], a machine learning-based approach is followed to calculate the trust value
for nodes in social networks. The approach first selects the best features then trains a logistic
regression model to compute the node trust values.

Overall, previous studies that applied SL to address trust in OSNs are unscalable [22] due to the
large computation overheads. While contributions that used machine learning models require large
datasets, which are difficult to have and introduces space and runtime overheads. Above all,
although some previous studies have considered specific OSN such as Twitter [26,37], no previous
study has investigated trust in WhatsApp. On the other hand, WhatsApp has much wider reach than
twitter [2], which attracts cybercriminals to spread malware threats via infected files or links. Based
on the above, there is fundamental need for a trust management system for WhatsApp. This work
seeks to fill that gap. This paper proposes WhatsTrust, an SL-based trust management system for
WhatsApp.

3. System Model

3.1. Network Model

WhatsApp can be viewed as a P2P message-exchange network. Any user in the network can
exchange messages with any other user or a group of users, irrespective of whether they are part of
the user’s contact list or not. As shown in Figure 1, WhatsTrust constructs a trust overlay network
(ToN) on top of the WhatsApp OSN to provide a substrate for the structure of a large-scale system [41].
The ToN represents the underlying network as a directed graph. Each node in the graph denotes a
WhatsApp user and each directed edge denotes the opinion of the source node in the destination
node. For instance, a directed edge from node ni to node nj denotes the opinion of node ni in node nj
based on the validity of previous messages received at node ni from node nj.

Figure 1. WhatsTrust trust overlay network (ToN). Figure 1. WhatsTrust trust overlay network (ToN).

Electronics 2020, 9, 2190 5 of 17

3.2. User Models

Similar to P2P networks, WhatsTrust’s nodes can be classified as follows:

• Good nodes: these are nodes that provide valid content and fair ratings about other nodes.
• Malicious nodes: these are nodes that intend to harm other nodes and distort their reputation.

WhatsTrust considers two types of malicious nodes.
• Naive malicious nodes: these are malicious nodes that work individually to deliver invalid

contents and unfair ratings to other nodes.
• Collectively malicious nodes: these are malicious nodes that form groups to distribute invalid contents

and harm other nodes. A collectively malicious node gives positive ratings to the nodes within its group,
to raise their reputations, and unfair negative ratings to all other nodes to distort their reputations.

3.3. Relationship Models

In WhatsTrust, different relationship models are considered based on user interactions in
WhatsApp. Figure 2 illustrates these different relations for node n0 (the top figure) based on the
interaction of the corresponding WhatsApp user u0 (the bottom figure). As shown in Section 4.1,
each node maintains a local trust list, which keeps the trust information for all nodes with which he has
previously interacted. More details on when a sender is added to a node’s local trust list is provided
in Section 4.2.1. The relationships between nodes are determined based on whether the sender node
exists in the receiver node’s local trust list and/or contact list or in his friends’ contact lists. Below,
we explain the relations based on the figure.

• Friend: a node n0 considers another node ni (e.g., n2, n3, and n4) a friend if ni’s mobile phone
number (ID number) exists in n0’s contact list.

• Acquaintance: A node n0 considers another node (e.g., n7) an acquaintance if n7 exists in n0’s local
trust list but is not in the contact list. Acquaintances may also include group members.

• Friend of a friend (FoF): A node n0 considers another node (e.g., n6) a FoF if n6 does not exist in
n0’s local trust list or contact list, but exists in his friends’ contact list. As explained in Section 4.2.1,
when a node n0 receives a message from n6 for the first time, n0 checks with his friends (e.g., n4)
if n6 is in their contact list. If so, n0 considers n6 to be a FoF.

• Blocked: a node n0 may block another node (e.g., n1), which prevents node n1 from sending
messages to n0.

• Stranger: In all other cases, a node n0 considers other nodes (e.g., n5) to be strangers. This indicates
that n5 is not in n0’s contact list or local trust list, nor is he in his friends’ contact lists.

Electronics 2020, 9, x FOR PEER REVIEW 5 of 17

3.2. User Models

Similar to P2P networks, WhatsTrust’s nodes can be classified as follows:

• Good nodes: these are nodes that provide valid content and fair ratings about other nodes.
• Malicious nodes: these are nodes that intend to harm other nodes and distort their reputation.

WhatsTrust considers two types of malicious nodes.
• Naive malicious nodes: these are malicious nodes that work individually to deliver invalid

contents and unfair ratings to other nodes.
• Collectively malicious nodes: these are malicious nodes that form groups to distribute invalid

contents and harm other nodes. A collectively malicious node gives positive ratings to the nodes
within its group, to raise their reputations, and unfair negative ratings to all other nodes to
distort their reputations.

3.3. Relationship Models

In WhatsTrust, different relationship models are considered based on user interactions in
WhatsApp. Figure 2 illustrates these different relations for node n0 (the top figure) based on the
interaction of the corresponding WhatsApp user u0 (the bottom figure). As shown in Section 4.1, each
node maintains a local trust list, which keeps the trust information for all nodes with which he has
previously interacted. More details on when a sender is added to a node’s local trust list is provided
in Section 4.2.1. The relationships between nodes are determined based on whether the sender node
exists in the receiver node’s local trust list and/or contact list or in his friends’ contact lists. Below, we
explain the relations based on the figure.

• Friend: a node n0 considers another node ni (e.g., n2, n3, and n4) a friend if ni’s mobile phone
number (ID number) exists in n0′s contact list.

• Acquaintance: A node n0 considers another node (e.g., n7) an acquaintance if n7 exists in n0′s local
trust list but is not in the contact list. Acquaintances may also include group members.

• Friend of a friend (FoF): A node n0 considers another node (e.g., n6) a FoF if n6 does not exist in
n0′s local trust list or contact list, but exists in his friends’ contact list. As explained in Section
4.2.1, when a node n0 receives a message from n6 for the first time, n0 checks with his friends (e.g.,
n4) if n6 is in their contact list. If so, n0 considers n6 to be a FoF.

• Blocked: a node n0 may block another node (e.g., n1), which prevents node n1 from sending
messages to n0.

• Stranger: In all other cases, a node n0 considers other nodes (e.g., n5) to be strangers. This
indicates that n5 is not in n0′s contact list or local trust list, nor is he in his friends’ contact lists.

Figure 2. WhatsTrust relations model. Figure 2. WhatsTrust relations model.

Electronics 2020, 9, 2190 6 of 17

3.4. Message-Exchange Models

• Message-sending models:

• A user may send a message to another user (one to one).
• A user may send a message to a group of users using group chat (one to many). WhatsApp

has a maximum group size of 256 users.
• A user may broadcast a message to all contacts (one to all).
• A user may send a message m1 to request a reply message. When the recipient replies, m1 is

considered a request.

• Message-receiving models:

• A user may not receive a message from a friend or any other user on the network unless the
user is blocked.

• Once a user opens a received message, the following actions may be taken:

• Reply by responding to the message in a private chat with a user or a group chat with
multiple users.

• Forward the message to a friend, an acquaintance, or a group of users. Forwarded
messages are labeled, which allows receiving users to identify whether the message is
written by the sender.

• Copy the content of a message and paste it in an outgoing message.
• Delete a received message.
• Star a received message by marking it with a star.

3.5. Rating Model

• Positive rating: WhatsTrust considers the following actions of a user who received a message
(recipient) to be positive, and hence, assign the user who sends the message (sender) a
positive rating.

• The recipient user adds the sender to his contacts.
• The recipient replies to the sender’s message.
• The recipient stars the message received from the sender.

• Negative rating: WhatsTrust considers the following actions of a recipient to be negative, and hence,
assigns the sender a negative rating.

• The recipient blocks the sender.
• The recipient reports the sender.

4. WhatsTrust Algorithm Design

4.1. System Architecture

As shown in Figure 3, WhatsTrust comprises two main components: the system component and
the node component. The following points explain each component in detail.

Electronics 2020, 9, 2190 7 of 17

Electronics 2020, 9, x FOR PEER REVIEW 7 of 17

single or a group of users from significantly impacting a user’s reputation by repeatedly updating
their ratings. These global lists provide valuable information to the new users who have recently
joined the system, as they have no previous interactions with other users. The lists are also important
to the old users to know the reputations of other users whom they, neither their friends, have
previously interacted with. As the system needs to store the trust information of all WhatsApp users,
maintaining two lists rather than one can contribute to a decrease in search time. The total length of
the two lists is n, which is the total number of users in the system.

Node Component: This component comprises two main sub-components—trust calculator and
rating provider and a local list, trust list, as shown in Figure 3. The trust calculator calculates the
opinion about a sender node based on the rating received from the rating provider. The role of the
rating provider is to decide from where to get the rating about a sender to the receiver node. This can
be from the receiver’s local trust list, friends or the global lists based on the relation between the two
nodes. The local trust list of a node ni includes the trust information for all nodes with which ni has
previously interacted. The purpose of maintaining a local trust list for each node is to provide a fast,
efficient, and decentralized computation of trust opinions. Therefore, if a node has a history of
interactions with another node, the node does not need to communicate with others to assess the
trustworthiness of the other node. The list comprises three attributes: node ID, positive rating, and
negative rating. The node ID is the mobile phone number of a node nj with which ni has previously
interacted, the positive rating is the total number of previous positive ratings ni has given to nj, and
the negative rating is that of previous negative ratings.

Figure 3. WhatsTrust architecture.

4.2. How the Algorithm Works

This section presents the two algorithms for WhatsTrust that manages its main components,
node algorithm and system algorithm. We explain each algorithm in more detail below.

4.2.1. Node Algorithm

Consider a user 𝑛௜, which has newly joined WhatsApp (for illustration purposes, 𝑛௜ takes the
pronoun he). At system initialization, all contacts of 𝑛௜ are added to his local trust list with positive
rating set to one, as they are considered as friends, and negative rating set to zero as no negative
interactions have taken place yet. As 𝑛௜ interacts with other users, he updates their trust information
in his trust list as well as the global lists.

When a node 𝑛௜ (recipient) receives a message from node 𝑛௝ (sender), 𝑛௜ computes his opinion
about node 𝑛௝. As illustrated in Figure 4, WhatsTrust considers multiple cases based on whether 𝑛௝
is a friend or an acquaintance of 𝑛௜, a friend of a friend of 𝑛௜, a friend of multiple friends of 𝑛௜, or a
stranger. If 𝑛௝ is a friend or an acquaintance of 𝑛௜, then 𝑛௜ would use his own local trust information
in the trust list to compute his opinion about 𝑛௝ based on SL. Trust is modeled using four factors:
belief (b), disbelief (d), uncertainty (u), and base rate (α). Based on [9], the opinion of node 𝑛௜ about
another node 𝑛௝, denoted by 𝜔௡ೕ௡೔, can be calculated based on Equation (1).

Figure 3. WhatsTrust architecture.

System component: this is a centralized component that manages the system registry and
maintains two global lists: uncertain users and Reputable users lists. The former list includes rating
information of newly joined users or users with questionable trustworthiness, while the latter list
includes ratings of trusted users. Each list includes the user ID, positive rating, negative rating,
and number of raters. The user ID is the user’s mobile phone number. The positive rating is the total
number of positive reactions sent by other users after interacting with the user with this ID, while the
negative rating is that of negative reactions sent by others users after interacting with this user, based on
the rating model explained in Section 3.5. Finally, the number of raters is the number of distinct users
that contributed to the positive or negative ratings of this user. These values are important for the
calculation of the global reputation of a user (as explained in Section 4.2), in order to prevent a single or
a group of users from significantly impacting a user’s reputation by repeatedly updating their ratings.
These global lists provide valuable information to the new users who have recently joined the system,
as they have no previous interactions with other users. The lists are also important to the old users to
know the reputations of other users whom they, neither their friends, have previously interacted with.
As the system needs to store the trust information of all WhatsApp users, maintaining two lists rather
than one can contribute to a decrease in search time. The total length of the two lists is n, which is the
total number of users in the system.

Node Component: This component comprises two main sub-components—trust calculator and
rating provider and a local list, trust list, as shown in Figure 3. The trust calculator calculates the
opinion about a sender node based on the rating received from the rating provider. The role of the
rating provider is to decide from where to get the rating about a sender to the receiver node. This can be
from the receiver’s local trust list, friends or the global lists based on the relation between the two nodes.
The local trust list of a node ni includes the trust information for all nodes with which ni has previously
interacted. The purpose of maintaining a local trust list for each node is to provide a fast, efficient,
and decentralized computation of trust opinions. Therefore, if a node has a history of interactions with
another node, the node does not need to communicate with others to assess the trustworthiness of the
other node. The list comprises three attributes: node ID, positive rating, and negative rating. The node
ID is the mobile phone number of a node nj with which ni has previously interacted, the positive rating
is the total number of previous positive ratings ni has given to nj, and the negative rating is that of
previous negative ratings.

4.2. How the Algorithm Works

This section presents the two algorithms for WhatsTrust that manages its main components,
node algorithm and system algorithm. We explain each algorithm in more detail below.

Electronics 2020, 9, 2190 8 of 17

4.2.1. Node Algorithm

Consider a user ni, which has newly joined WhatsApp (for illustration purposes, ni takes the
pronoun he). At system initialization, all contacts of ni are added to his local trust list with positive
rating set to one, as they are considered as friends, and negative rating set to zero as no negative
interactions have taken place yet. As ni interacts with other users, he updates their trust information in
his trust list as well as the global lists.

When a node ni (recipient) receives a message from node n j (sender), ni computes his opinion
about node n j. As illustrated in Figure 4, WhatsTrust considers multiple cases based on whether n j
is a friend or an acquaintance of ni, a friend of a friend of ni, a friend of multiple friends of ni, or a
stranger. If n j is a friend or an acquaintance of ni, then ni would use his own local trust information in
the trust list to compute his opinion about n j based on SL. Trust is modeled using four factors: belief
(b), disbelief (d), uncertainty (u), and base rate (α). Based on [9], the opinion of node ni about another
node n j, denoted by ωni

n j
, can be calculated based on Equation (1).

ωni
n j
= b + (α× u) (1)

where b, d, u, and α ε [0, 1]. Their values are computed based on the ratings of previous interactions
between any two nodes according to Equations (2)–(4):

b =
P

(P + N + 2)
(2)

d =
N

(P + N + 2)
(3)

u =
2

(P + N + 2)
(4)

where P denotes the number of positive interactions and N denotes that of negative interactions.
The summation of b, d, and u is equal to one. The base rate α can take one of the two values based on
whether the node is a friend or not, as shown in Equation (5):

α =

{
1.0 i f user is a f riend
0.5 otherwise

(5)

If n j is not a friend or an acquaintance of ni, then, he would send a request to his friends to check
if they have interacted with n j, and hence, have local trust information. Three scenarios are possible:

First, only one friend (e.g., nc) responds, in which case ni would request the trust information
from nc and compute the trust opinion about n j according to Equation (6) below.

ωni:nc
n j

= ωni
nc

Electronics 2020, 9, x FOR PEER REVIEW 8 of 17

𝜔௡ೕ௡೔ = b + (α × u) (1)

where b, d, u, and α ϵ [0, 1]. Their values are computed based on the ratings of previous interactions
between any two nodes according to Equations (2)–(4): b = 𝑃(𝑃 + 𝑁 + 2) (2)

d = 𝑁(𝑃 + 𝑁 + 2) (3)

u = 2(𝑃 + 𝑁 + 2) (4)

where P denotes the number of positive interactions and N denotes that of negative interactions. The
summation of b, d, and u is equal to one. The base rate α can take one of the two values based on
whether the node is a friend or not, as shown in Equation (5): α = ቄ 1.0 𝑖𝑓 𝑢𝑠𝑒𝑟 𝑖𝑠 𝑎 𝑓𝑟𝑖𝑒𝑛𝑑 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (5)

If 𝑛௝ is not a friend or an acquaintance of 𝑛௜, then, he would send a request to his friends to
check if they have interacted with 𝑛௝, and hence, have local trust information. Three scenarios are
possible:

First, only one friend (e.g., 𝑛௖) responds, in which case 𝑛௜ would request the trust information
from 𝑛௖ and compute the trust opinion about 𝑛௝ according to Equation (6) below.

𝜔௡ೕ௡೔:௡೎ = 𝜔௡೎௡೔ ⨷ 𝜔௡ೕ௡೎
⎩⎪⎨
⎪⎧ b௡ೕ௡೔:௡೎ = b௡೎௡೔ b௡ೕ௡೎d௡ೕ௡೔:௡೎ = d௡೎௡೔ d௡ೕ௡೎ u௡ೕ௡೔:௡೎ = d௡೎௡೔ + u௡೎௡೔ + b௡೎௡೔ u௡ೕ௡೎ α௡ೕ௡೔:௡೎ = α௡ೕ௡೎

 (6)

Second, multiple friends (e.g., 𝑛௖ and 𝑛௞) respond. In this case, 𝑛௜ requests the trust
information and computes the trust opinion about 𝑛௝ based on Equation (7) below.

 𝜔௡ೕ௡೎⟡௡ೖ = 𝜔௡ೕ௡೎ ⨁𝜔௡ೕ௡ೖ
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎧

b௡ೕ௡೎⟡௡ೖ = b௡ೕ௡೎ u௡ೕ௡ೖ + b௡ೕ௡ೖ u௡ೕ௡೎ቀu௡ೕ௡೎+ u௡ೕ௡ೖቁ − ቀu௡ೕୡ u௡ೕ௡ೖቁd௡ೕ௡೎⟡௡ೖ = d௡ೕ௡೎ u௡ೕ௡ೖ + d௡ೕ௡ೖ u௡ೕ௡೎ቀu௡ೕ௡೎+u௡ೕ௡ೖቁ − ቀu௡ೕ௡೎ u௡ೕ௡ೖቁ u௡ೕ௡೎⟡௡ೖ = u௡ೕ௡೎ u௡ೕ௡ೖቀu௡ೕ௡೎+ u௡ೕ௡ೖቁ − ቀu௡ೕ௡೎ u௡ೕ௡ೖቁ

α௡ೕ௡೎⟡௡ೖ = α௡ೕ௡೎

 (7)

Third, if no friend responds within a predetermined period of time because they do not know 𝑛௝ or for any other communication issues, 𝑛௝ is considered a stranger. Therefore, 𝑛௜ requests 𝑛௝′𝑠
reputation value from the system, which, in turn, searches for the node’s ratings in the reputable and
uncertain user lists. Once it has been found, the system computes 𝑛௝′𝑠 reputation according to
Equation (10), presented in Section 4.2.2.

Once the opinion or reputation of 𝑛௝ is available, that value is compared to a trust threshold t
to decide if 𝑛௝ is trustworthy as shown in Figure 4. The node 𝑛௜ is then in a position to informatively
decide how to react to the message. If 𝑛௜ reacts positively to the message received by replying to the
message, starring the message, and/or adding the sender 𝑛௝ to his contact list, a positive rating of 𝑛௝
is sent to the system, while if 𝑛௜ reacts negatively by blocking or reporting 𝑛௝, a negative rating is
sent to the system, which accordingly updates the node reputation in one of the global lists.
Additionally, 𝑛௜ updates the trust information of the sender locally. Therefore, if 𝑛௝ is a friend or

ωnc
n j


bni:nc

n j
= bni

nc bnc
n j

dni:nc
n j

= dni
nc dnc

n j

uni:nc
n j

= dni
nc + uni

nc + bni
nc unc

n j

α
ni:nc
n j

= αnc
n j

(6)

Second, multiple friends (e.g., nc and nk) respond. In this case, ni requests the trust information
and computes the trust opinion about n j based on Equation (7) below.

Electronics 2020, 9, 2190 9 of 17

ωncnk
n j

= ωnc
n j
⊕ ωnk

n j



bnc

Electronics 2020, 9, x FOR PEER REVIEW 8 of 17

𝜔௡ೕ௡೔ = b + (α × u) (1)

where b, d, u, and α ϵ [0, 1]. Their values are computed based on the ratings of previous interactions
between any two nodes according to Equations (2)–(4): b = 𝑃(𝑃 + 𝑁 + 2) (2)

d = 𝑁(𝑃 + 𝑁 + 2) (3)

u = 2(𝑃 + 𝑁 + 2) (4)

where P denotes the number of positive interactions and N denotes that of negative interactions. The
summation of b, d, and u is equal to one. The base rate α can take one of the two values based on
whether the node is a friend or not, as shown in Equation (5): α = ቄ 1.0 𝑖𝑓 𝑢𝑠𝑒𝑟 𝑖𝑠 𝑎 𝑓𝑟𝑖𝑒𝑛𝑑 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (5)

If 𝑛௝ is not a friend or an acquaintance of 𝑛௜, then, he would send a request to his friends to
check if they have interacted with 𝑛௝, and hence, have local trust information. Three scenarios are
possible:

First, only one friend (e.g., 𝑛௖) responds, in which case 𝑛௜ would request the trust information
from 𝑛௖ and compute the trust opinion about 𝑛௝ according to Equation (6) below.

𝜔௡ೕ௡೔:௡೎ = 𝜔௡೎௡೔ ⨷ 𝜔௡ೕ௡೎
⎩⎪⎨
⎪⎧ b௡ೕ௡೔:௡೎ = b௡೎௡೔ b௡ೕ௡೎d௡ೕ௡೔:௡೎ = d௡೎௡೔ d௡ೕ௡೎ u௡ೕ௡೔:௡೎ = d௡೎௡೔ + u௡೎௡೔ + b௡೎௡೔ u௡ೕ௡೎ α௡ೕ௡೔:௡೎ = α௡ೕ௡೎

 (6)

Second, multiple friends (e.g., 𝑛௖ and 𝑛௞) respond. In this case, 𝑛௜ requests the trust
information and computes the trust opinion about 𝑛௝ based on Equation (7) below.

 𝜔௡ೕ௡೎⟡௡ೖ = 𝜔௡ೕ௡೎ ⨁𝜔௡ೕ௡ೖ
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎧

b௡ೕ௡೎⟡௡ೖ = b௡ೕ௡೎ u௡ೕ௡ೖ + b௡ೕ௡ೖ u௡ೕ௡೎ቀu௡ೕ௡೎+ u௡ೕ௡ೖቁ − ቀu௡ೕୡ u௡ೕ௡ೖቁd௡ೕ௡೎⟡௡ೖ = d௡ೕ௡೎ u௡ೕ௡ೖ + d௡ೕ௡ೖ u௡ೕ௡೎ቀu௡ೕ௡೎+u௡ೕ௡ೖቁ − ቀu௡ೕ௡೎ u௡ೕ௡ೖቁ u௡ೕ௡೎⟡௡ೖ = u௡ೕ௡೎ u௡ೕ௡ೖቀu௡ೕ௡೎+ u௡ೕ௡ೖቁ − ቀu௡ೕ௡೎ u௡ೕ௡ೖቁ

α௡ೕ௡೎⟡௡ೖ = α௡ೕ௡೎

 (7)

Third, if no friend responds within a predetermined period of time because they do not know 𝑛௝ or for any other communication issues, 𝑛௝ is considered a stranger. Therefore, 𝑛௜ requests 𝑛௝′𝑠
reputation value from the system, which, in turn, searches for the node’s ratings in the reputable and
uncertain user lists. Once it has been found, the system computes 𝑛௝′𝑠 reputation according to
Equation (10), presented in Section 4.2.2.

Once the opinion or reputation of 𝑛௝ is available, that value is compared to a trust threshold t
to decide if 𝑛௝ is trustworthy as shown in Figure 4. The node 𝑛௜ is then in a position to informatively
decide how to react to the message. If 𝑛௜ reacts positively to the message received by replying to the
message, starring the message, and/or adding the sender 𝑛௝ to his contact list, a positive rating of 𝑛௝
is sent to the system, while if 𝑛௜ reacts negatively by blocking or reporting 𝑛௝, a negative rating is
sent to the system, which accordingly updates the node reputation in one of the global lists.
Additionally, 𝑛௜ updates the trust information of the sender locally. Therefore, if 𝑛௝ is a friend or

nk
n j

=
bnc

nj
u

nk
nj
+b

nk
nj

unc
nj(

unc
nj
+ u

nk
nj

)
−

(
uc

nj
u

nk
nj

)
dnc

Electronics 2020, 9, x FOR PEER REVIEW 8 of 17

𝜔௡ೕ௡೔ = b + (α × u) (1)

where b, d, u, and α ϵ [0, 1]. Their values are computed based on the ratings of previous interactions
between any two nodes according to Equations (2)–(4): b = 𝑃(𝑃 + 𝑁 + 2) (2)

d = 𝑁(𝑃 + 𝑁 + 2) (3)

u = 2(𝑃 + 𝑁 + 2) (4)

where P denotes the number of positive interactions and N denotes that of negative interactions. The
summation of b, d, and u is equal to one. The base rate α can take one of the two values based on
whether the node is a friend or not, as shown in Equation (5): α = ቄ 1.0 𝑖𝑓 𝑢𝑠𝑒𝑟 𝑖𝑠 𝑎 𝑓𝑟𝑖𝑒𝑛𝑑 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (5)

If 𝑛௝ is not a friend or an acquaintance of 𝑛௜, then, he would send a request to his friends to
check if they have interacted with 𝑛௝, and hence, have local trust information. Three scenarios are
possible:

First, only one friend (e.g., 𝑛௖) responds, in which case 𝑛௜ would request the trust information
from 𝑛௖ and compute the trust opinion about 𝑛௝ according to Equation (6) below.

𝜔௡ೕ௡೔:௡೎ = 𝜔௡೎௡೔ ⨷ 𝜔௡ೕ௡೎
⎩⎪⎨
⎪⎧ b௡ೕ௡೔:௡೎ = b௡೎௡೔ b௡ೕ௡೎d௡ೕ௡೔:௡೎ = d௡೎௡೔ d௡ೕ௡೎ u௡ೕ௡೔:௡೎ = d௡೎௡೔ + u௡೎௡೔ + b௡೎௡೔ u௡ೕ௡೎ α௡ೕ௡೔:௡೎ = α௡ೕ௡೎

 (6)

Second, multiple friends (e.g., 𝑛௖ and 𝑛௞) respond. In this case, 𝑛௜ requests the trust
information and computes the trust opinion about 𝑛௝ based on Equation (7) below.

 𝜔௡ೕ௡೎⟡௡ೖ = 𝜔௡ೕ௡೎ ⨁𝜔௡ೕ௡ೖ
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎧

b௡ೕ௡೎⟡௡ೖ = b௡ೕ௡೎ u௡ೕ௡ೖ + b௡ೕ௡ೖ u௡ೕ௡೎ቀu௡ೕ௡೎+ u௡ೕ௡ೖቁ − ቀu௡ೕୡ u௡ೕ௡ೖቁd௡ೕ௡೎⟡௡ೖ = d௡ೕ௡೎ u௡ೕ௡ೖ + d௡ೕ௡ೖ u௡ೕ௡೎ቀu௡ೕ௡೎+u௡ೕ௡ೖቁ − ቀu௡ೕ௡೎ u௡ೕ௡ೖቁ u௡ೕ௡೎⟡௡ೖ = u௡ೕ௡೎ u௡ೕ௡ೖቀu௡ೕ௡೎+ u௡ೕ௡ೖቁ − ቀu௡ೕ௡೎ u௡ೕ௡ೖቁ

α௡ೕ௡೎⟡௡ೖ = α௡ೕ௡೎

 (7)

Third, if no friend responds within a predetermined period of time because they do not know 𝑛௝ or for any other communication issues, 𝑛௝ is considered a stranger. Therefore, 𝑛௜ requests 𝑛௝′𝑠
reputation value from the system, which, in turn, searches for the node’s ratings in the reputable and
uncertain user lists. Once it has been found, the system computes 𝑛௝′𝑠 reputation according to
Equation (10), presented in Section 4.2.2.

Once the opinion or reputation of 𝑛௝ is available, that value is compared to a trust threshold t
to decide if 𝑛௝ is trustworthy as shown in Figure 4. The node 𝑛௜ is then in a position to informatively
decide how to react to the message. If 𝑛௜ reacts positively to the message received by replying to the
message, starring the message, and/or adding the sender 𝑛௝ to his contact list, a positive rating of 𝑛௝
is sent to the system, while if 𝑛௜ reacts negatively by blocking or reporting 𝑛௝, a negative rating is
sent to the system, which accordingly updates the node reputation in one of the global lists.
Additionally, 𝑛௜ updates the trust information of the sender locally. Therefore, if 𝑛௝ is a friend or

nk
n j

=
dnc

nj
u

nk
nj
+d

nk
nj

unc
nj(

unc
nj
+u

nk
nj

)
−

(
unc

nj
u

nk
nj

)
unc

Electronics 2020, 9, x FOR PEER REVIEW 8 of 17

𝜔௡ೕ௡೔ = b + (α × u) (1)

where b, d, u, and α ϵ [0, 1]. Their values are computed based on the ratings of previous interactions
between any two nodes according to Equations (2)–(4): b = 𝑃(𝑃 + 𝑁 + 2) (2)

d = 𝑁(𝑃 + 𝑁 + 2) (3)

u = 2(𝑃 + 𝑁 + 2) (4)

where P denotes the number of positive interactions and N denotes that of negative interactions. The
summation of b, d, and u is equal to one. The base rate α can take one of the two values based on
whether the node is a friend or not, as shown in Equation (5): α = ቄ 1.0 𝑖𝑓 𝑢𝑠𝑒𝑟 𝑖𝑠 𝑎 𝑓𝑟𝑖𝑒𝑛𝑑 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (5)

If 𝑛௝ is not a friend or an acquaintance of 𝑛௜, then, he would send a request to his friends to
check if they have interacted with 𝑛௝, and hence, have local trust information. Three scenarios are
possible:

First, only one friend (e.g., 𝑛௖) responds, in which case 𝑛௜ would request the trust information
from 𝑛௖ and compute the trust opinion about 𝑛௝ according to Equation (6) below.

𝜔௡ೕ௡೔:௡೎ = 𝜔௡೎௡೔ ⨷ 𝜔௡ೕ௡೎
⎩⎪⎨
⎪⎧ b௡ೕ௡೔:௡೎ = b௡೎௡೔ b௡ೕ௡೎d௡ೕ௡೔:௡೎ = d௡೎௡೔ d௡ೕ௡೎ u௡ೕ௡೔:௡೎ = d௡೎௡೔ + u௡೎௡೔ + b௡೎௡೔ u௡ೕ௡೎ α௡ೕ௡೔:௡೎ = α௡ೕ௡೎

 (6)

Second, multiple friends (e.g., 𝑛௖ and 𝑛௞) respond. In this case, 𝑛௜ requests the trust
information and computes the trust opinion about 𝑛௝ based on Equation (7) below.

 𝜔௡ೕ௡೎⟡௡ೖ = 𝜔௡ೕ௡೎ ⨁𝜔௡ೕ௡ೖ
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎧

b௡ೕ௡೎⟡௡ೖ = b௡ೕ௡೎ u௡ೕ௡ೖ + b௡ೕ௡ೖ u௡ೕ௡೎ቀu௡ೕ௡೎+ u௡ೕ௡ೖቁ − ቀu௡ೕୡ u௡ೕ௡ೖቁd௡ೕ௡೎⟡௡ೖ = d௡ೕ௡೎ u௡ೕ௡ೖ + d௡ೕ௡ೖ u௡ೕ௡೎ቀu௡ೕ௡೎+u௡ೕ௡ೖቁ − ቀu௡ೕ௡೎ u௡ೕ௡ೖቁ u௡ೕ௡೎⟡௡ೖ = u௡ೕ௡೎ u௡ೕ௡ೖቀu௡ೕ௡೎+ u௡ೕ௡ೖቁ − ቀu௡ೕ௡೎ u௡ೕ௡ೖቁ

α௡ೕ௡೎⟡௡ೖ = α௡ೕ௡೎

 (7)

Third, if no friend responds within a predetermined period of time because they do not know 𝑛௝ or for any other communication issues, 𝑛௝ is considered a stranger. Therefore, 𝑛௜ requests 𝑛௝′𝑠
reputation value from the system, which, in turn, searches for the node’s ratings in the reputable and
uncertain user lists. Once it has been found, the system computes 𝑛௝′𝑠 reputation according to
Equation (10), presented in Section 4.2.2.

Once the opinion or reputation of 𝑛௝ is available, that value is compared to a trust threshold t
to decide if 𝑛௝ is trustworthy as shown in Figure 4. The node 𝑛௜ is then in a position to informatively
decide how to react to the message. If 𝑛௜ reacts positively to the message received by replying to the
message, starring the message, and/or adding the sender 𝑛௝ to his contact list, a positive rating of 𝑛௝
is sent to the system, while if 𝑛௜ reacts negatively by blocking or reporting 𝑛௝, a negative rating is
sent to the system, which accordingly updates the node reputation in one of the global lists.
Additionally, 𝑛௜ updates the trust information of the sender locally. Therefore, if 𝑛௝ is a friend or

nk
n j

=
unc

nj
u

nk
nj(

unc
nj
+ u

nk
nj

)
−

(
unc

nj
u

nk
nj

)
α

nc

Electronics 2020, 9, x FOR PEER REVIEW 8 of 17

𝜔௡ೕ௡೔ = b + (α × u) (1)

where b, d, u, and α ϵ [0, 1]. Their values are computed based on the ratings of previous interactions
between any two nodes according to Equations (2)–(4): b = 𝑃(𝑃 + 𝑁 + 2) (2)

d = 𝑁(𝑃 + 𝑁 + 2) (3)

u = 2(𝑃 + 𝑁 + 2) (4)

where P denotes the number of positive interactions and N denotes that of negative interactions. The
summation of b, d, and u is equal to one. The base rate α can take one of the two values based on
whether the node is a friend or not, as shown in Equation (5): α = ቄ 1.0 𝑖𝑓 𝑢𝑠𝑒𝑟 𝑖𝑠 𝑎 𝑓𝑟𝑖𝑒𝑛𝑑 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (5)

If 𝑛௝ is not a friend or an acquaintance of 𝑛௜, then, he would send a request to his friends to
check if they have interacted with 𝑛௝, and hence, have local trust information. Three scenarios are
possible:

First, only one friend (e.g., 𝑛௖) responds, in which case 𝑛௜ would request the trust information
from 𝑛௖ and compute the trust opinion about 𝑛௝ according to Equation (6) below.

𝜔௡ೕ௡೔:௡೎ = 𝜔௡೎௡೔ ⨷ 𝜔௡ೕ௡೎
⎩⎪⎨
⎪⎧ b௡ೕ௡೔:௡೎ = b௡೎௡೔ b௡ೕ௡೎d௡ೕ௡೔:௡೎ = d௡೎௡೔ d௡ೕ௡೎ u௡ೕ௡೔:௡೎ = d௡೎௡೔ + u௡೎௡೔ + b௡೎௡೔ u௡ೕ௡೎ α௡ೕ௡೔:௡೎ = α௡ೕ௡೎

 (6)

Second, multiple friends (e.g., 𝑛௖ and 𝑛௞) respond. In this case, 𝑛௜ requests the trust
information and computes the trust opinion about 𝑛௝ based on Equation (7) below.

 𝜔௡ೕ௡೎⟡௡ೖ = 𝜔௡ೕ௡೎ ⨁𝜔௡ೕ௡ೖ
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎧

b௡ೕ௡೎⟡௡ೖ = b௡ೕ௡೎ u௡ೕ௡ೖ + b௡ೕ௡ೖ u௡ೕ௡೎ቀu௡ೕ௡೎+ u௡ೕ௡ೖቁ − ቀu௡ೕୡ u௡ೕ௡ೖቁd௡ೕ௡೎⟡௡ೖ = d௡ೕ௡೎ u௡ೕ௡ೖ + d௡ೕ௡ೖ u௡ೕ௡೎ቀu௡ೕ௡೎+u௡ೕ௡ೖቁ − ቀu௡ೕ௡೎ u௡ೕ௡ೖቁ u௡ೕ௡೎⟡௡ೖ = u௡ೕ௡೎ u௡ೕ௡ೖቀu௡ೕ௡೎+ u௡ೕ௡ೖቁ − ቀu௡ೕ௡೎ u௡ೕ௡ೖቁ

α௡ೕ௡೎⟡௡ೖ = α௡ೕ௡೎

 (7)

Third, if no friend responds within a predetermined period of time because they do not know 𝑛௝ or for any other communication issues, 𝑛௝ is considered a stranger. Therefore, 𝑛௜ requests 𝑛௝′𝑠
reputation value from the system, which, in turn, searches for the node’s ratings in the reputable and
uncertain user lists. Once it has been found, the system computes 𝑛௝′𝑠 reputation according to
Equation (10), presented in Section 4.2.2.

Once the opinion or reputation of 𝑛௝ is available, that value is compared to a trust threshold t
to decide if 𝑛௝ is trustworthy as shown in Figure 4. The node 𝑛௜ is then in a position to informatively
decide how to react to the message. If 𝑛௜ reacts positively to the message received by replying to the
message, starring the message, and/or adding the sender 𝑛௝ to his contact list, a positive rating of 𝑛௝
is sent to the system, while if 𝑛௜ reacts negatively by blocking or reporting 𝑛௝, a negative rating is
sent to the system, which accordingly updates the node reputation in one of the global lists.
Additionally, 𝑛௜ updates the trust information of the sender locally. Therefore, if 𝑛௝ is a friend or

nk
n j

= αnc
n j

(7)

Electronics 2020, 9, x FOR PEER REVIEW 9 of 17

acquaintance of 𝑛௜, the node will update his information in the local list, and if not, the node will be
added to 𝑛௜′s local trust list. The node’s information is updated to reflect whether the recipient’s
reaction is positive or negative. If the reaction is positive, the sender’s positive rating is incremented
by one in both the local and global lists, while if the reaction is negative, the sender’s negative rating
is incremented by one in both the local and global trust lists. The number of rating users in the global
list is only incremented if this is the first time the sender has been rated by the recipient, which is an
important constraint to eliminate the false ratings coming from collectively malicious nodes.

Figure 4. WhatsTrust node algorithm.

4.2.2. System Algorithm

The WhatsTrust system algorithm for updating nodes’ global ratings and calculating their
reputations is shown in Figure 5. The system algorithm is designed to take into account the behavior
of collectively malicious nodes. As explained earlier in Section 1, collectively malicious nodes
distribute harmful content and work together, to deceive other nodes, by giving each other positive
ratings, to increase their reputation scores while negatively rates all other nodes. WhatsTrust
considers two factors, namely the number of raters and the node reputation weight, to marginalize
the harm of such behavior. Below, we explain the two factors in detail and how they are embedded
within the algorithm.

Figure 4. WhatsTrust node algorithm.

Third, if no friend responds within a predetermined period of time because they do not know n j or
for any other communication issues, n j is considered a stranger. Therefore, ni requests n j’s reputation
value from the system, which, in turn, searches for the node’s ratings in the reputable and uncertain
user lists. Once it has been found, the system computes n j’s reputation according to Equation (10),
presented in Section 4.2.2.

Electronics 2020, 9, 2190 10 of 17

Once the opinion or reputation of n j is available, that value is compared to a trust threshold t
to decide if n j is trustworthy as shown in Figure 4. The node ni is then in a position to informatively
decide how to react to the message. If ni reacts positively to the message received by replying to the
message, starring the message, and/or adding the sender n j to his contact list, a positive rating of n j is
sent to the system, while if ni reacts negatively by blocking or reporting n j, a negative rating is sent to
the system, which accordingly updates the node reputation in one of the global lists. Additionally,
ni updates the trust information of the sender locally. Therefore, if n j is a friend or acquaintance of ni,
the node will update his information in the local list, and if not, the node will be added to ni’s local
trust list. The node’s information is updated to reflect whether the recipient’s reaction is positive or
negative. If the reaction is positive, the sender’s positive rating is incremented by one in both the local
and global lists, while if the reaction is negative, the sender’s negative rating is incremented by one in
both the local and global trust lists. The number of rating users in the global list is only incremented if
this is the first time the sender has been rated by the recipient, which is an important constraint to
eliminate the false ratings coming from collectively malicious nodes.

4.2.2. System Algorithm

The WhatsTrust system algorithm for updating nodes’ global ratings and calculating their
reputations is shown in Figure 5. The system algorithm is designed to take into account the behavior of
collectively malicious nodes. As explained earlier in Section 1, collectively malicious nodes distribute
harmful content and work together, to deceive other nodes, by giving each other positive ratings,
to increase their reputation scores while negatively rates all other nodes. WhatsTrust considers two
factors, namely the number of raters and the node reputation weight, to marginalize the harm of such
behavior. Below, we explain the two factors in detail and how they are embedded within the algorithm.

Electronics 2020, 9, x FOR PEER REVIEW 10 of 17

When a new user 𝑛௜ joins WhatsApp, he will be added to the uncertain users list. Once a rating
of this node has been received from a node 𝑛௝ , the system updates 𝑛௜ rating in the list by
incrementing the node’s positive or negative rating according to the rating received and increases the
number of rating nodes if the node rates 𝑛௜ for the first time. The system computes 𝑛௜’s reputation
based on Equation (8): 𝑅௡௜ = 𝑃 × 𝑚(𝑃 + 𝑁)ଶ + 2.0 (8)

where P is 𝑛௜’s positive rating, N is his negative rating, and m is the number of unique nodes who
rated 𝑛௜. As shown in Equation (8), the positive rating of a node is multiplied by the number of rating
nodes, and hence, a (good) node that receives his positive rating from a wide range of distinct nodes
has higher reputation than a collectively malicious node that has the same positive rating but given
by a smaller number of other collectively malicious nodes. After each update of the trust information
of the node in the global lists, the system evaluates the node’s candidacy to move from the current
list to the other based on the following rule: 𝐼𝑓 (𝑅௡௜ ≥ 𝑟) ∧ (𝑛௜ ∈ 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑢𝑠𝑒𝑟𝑠 𝑙𝑖𝑠𝑡), 𝑚𝑜𝑣𝑒 𝑛௜ 𝑡𝑜 𝑅𝑒𝑝𝑢𝑡𝑎𝑏𝑙𝑒 𝑢𝑠𝑒𝑟𝑠 𝑙𝑖𝑠𝑡 𝑒𝑙𝑠𝑒 (𝑖𝑓 𝑅௡௜ < 𝑟) ∧ (𝑛௜ ∈ 𝑅𝑒𝑝𝑢𝑡𝑎𝑏𝑙𝑒 𝑢𝑠𝑒𝑟𝑠 𝑙𝑖𝑠𝑡), 𝑚𝑜𝑣𝑒 𝑛௜ 𝑡𝑜 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑢𝑠𝑒𝑟𝑠 𝑙𝑖𝑠𝑡

Therefore, if 𝑛௜ is reputable (i.e., 𝑅௡௜ ≥ r) and currently exists in the uncertain users’ list, it is
moved to the reputable users list. On the other hand, if the node is uncertain (i.e., 𝑅௡௜ < r) and is
currently stored in the reputable users list, the system moves the node to the uncertain users list. In
our experiments, the value r = 0.5 gives the best results.

Figure 5. WhatsTrust system algorithm.

Figure 5. WhatsTrust system algorithm.

Electronics 2020, 9, 2190 11 of 17

When a new user ni joins WhatsApp, he will be added to the uncertain users list. Once a rating of
this node has been received from a node n j, the system updates ni rating in the list by incrementing the
node’s positive or negative rating according to the rating received and increases the number of rating
nodes if the node rates ni for the first time. The system computes ni’s reputation based on Equation (8):

Rni =
P×m

(P + N)2 + 2.0
(8)

where P is ni’s positive rating, N is his negative rating, and m is the number of unique nodes who rated
ni. As shown in Equation (8), the positive rating of a node is multiplied by the number of rating nodes,
and hence, a (good) node that receives his positive rating from a wide range of distinct nodes has
higher reputation than a collectively malicious node that has the same positive rating but given by a
smaller number of other collectively malicious nodes. After each update of the trust information of the
node in the global lists, the system evaluates the node’s candidacy to move from the current list to the
other based on the following rule:

I f (Rni ≥ r) ∧ (ni ∈ Uncertain users list), move ni to Reputable users list
else (i f Rni < r) ∧ (ni ∈ Reputable users list), move ni to Uncertain users list

Therefore, if ni is reputable (i.e., Rni ≥ r) and currently exists in the uncertain users’ list, it is
moved to the reputable users list. On the other hand, if the node is uncertain (i.e., Rni < r) and is
currently stored in the reputable users list, the system moves the node to the uncertain users list. In our
experiments, the value r = 0.5 gives the best results.

If the system receives a request for the reputation of a node ni, it calculates the node’s reputation
according to Equation (8). Next, the system computes the node’s reputation weight wni, which reflects
the consensus of the ratings that a node receives. More weight is given to the rating of good nodes that
have received consensus ratings from others, while less weight is given to the rating nodes that have
received varying ratings from others. The reputation weight is calculated using Equation (9).

wni =


0 i f P = 0, N = 0
1 i f P > 0, N = 0
P−N
P+N otherwise

(9)

where P is ni’s positive rating and N is his negative rating. Then the system computes the ni weighted
reputation, wRni, according to Equation (10), and then, sent to the node that requested it.

wRni = wni ×Rni (10)

5. Evaluation Methodology

5.1. Evaluation Framework

The performance of the WhatsTrust algorithm was evaluated by simulating some WhatsApp
OSN scenarios using the quantitative trust management system (QTM) simulator for P2P networks [8].
WhatsTrust performance was compared with two well-established trust management algorithms,
namely EigenTrust [30] and TNA-SL [9]. Additionally, the behaviors of the three algorithms were
contrasted to the situation where no trust management system is utilized, the none algorithm, to serve
as a baseline scenario.

To get a clear insight into the algorithm scalability, experiments were conducted with different
number of populations; 100, 200 and 300 nodes and different number of transactions in the range
between 2000 and 4000. Additionally, to examine the algorithm robustness under different number of
malicious node, different percentages of malicious nodes were considered, including 20%, 40% and

Electronics 2020, 9, 2190 12 of 17

60% of the total number of nodes taking into account both naïve and collective strategies of malicious
nodes. We evaluated the WhatsTrust algorithm with respect to the following two performance metrics.

• Success rate: This metric is measured by dividing the total number of valid messages received
from good nodes by that of transactions performed by good nodes, as shown in Equation (11).

Success rate =
number of authentic messages received by good nodes

total number of messages received by good nodes
× 100 (11)

• Execution time: This metric measures the simulation running time of each algorithm: WhatsTrust,
EigenTrust, TNA-SL and the none scenario. It is important to note that all algorithms were
executed on the same computer cluster at the same load, so this measure can give a clear insight
on the computing complexity and overheads of each algorithm.

5.2. Results and Discussion

This section presents the experimental results of the WhatsTrust algorithm in terms of the
success rate and execution time. We compare the obtained results with EigenTrust [30], TNA-SL [9],
and none algorithms. All reported results are averaged over ten simulation runs on the SANAM
computer cluster [42].

5.2.1. Success Rate

The performance of the WhatsTrust algorithm with respect to the success rate, when nodes
perform 2000, 3000 and 4000 transactions is shown in Figures 6–8. For each figure, the performance is
presented when malicious nodes follow the naïve strategy (first row) and collective strategy (second
row). Each sub-figure presents the success rate for WhatsTrust, EigenTrust, TNA-SL and none (as a
baseline) over an increasing value of percentage of malicious nodes and total number of nodes.

Electronics 2020, 9, x FOR PEER REVIEW 12 of 17

none (as a baseline) over an increasing value of percentage of malicious nodes and total number of
nodes.

Success rate is measured for good nodes as the total number of valid messages received by good
nodes divided by the total number of messages received. A high success rate suggests that most
messages received by good nodes are valid because they can identify malicious nodes using the trust
management algorithm, while a low success rate indicates that good nodes cannot identify malicious
nodes, and hence, receive many invalid messages.

Figure 6. Success rate for 2000 transactions.

Figure 7. Success rate for 3000 transactions.

Figure 6. Success rate for 2000 transactions.

Electronics 2020, 9, 2190 13 of 17

Electronics 2020, 9, x FOR PEER REVIEW 12 of 17

none (as a baseline) over an increasing value of percentage of malicious nodes and total number of
nodes.

Success rate is measured for good nodes as the total number of valid messages received by good
nodes divided by the total number of messages received. A high success rate suggests that most
messages received by good nodes are valid because they can identify malicious nodes using the trust
management algorithm, while a low success rate indicates that good nodes cannot identify malicious
nodes, and hence, receive many invalid messages.

Figure 6. Success rate for 2000 transactions.

Figure 7. Success rate for 3000 transactions. Figure 7. Success rate for 3000 transactions.Electronics 2020, 9, x FOR PEER REVIEW 13 of 17

Figure 8. Success rate for 4000 transactions.

The figures suggest that WhatsTrust (for both naïve and collective strategies) outperforms the
benchmarks, EigenTrust and TNA-SL in most of the scenarios presented in Figures 6–8 especially
those of large number of nodes (more than 200 nodes) and high percentages of malicious nodes
(above 20%) which clearly indicates the algorithms scalability and robustness. In fact, WhatsTrust
exhibits reliability as it maintains a high success rate (>95%) across all scenarios, while the
benchmarks show fluctuating performance where the success rate may drop significantly in some
scenarios. For instance, as the percentage of malicious nodes increases, the success rate of EigenTrust
decreases remarkably when 200 nodes performed 3000 transactions in Figure 7. In the same scenario,
the success rate of TNA-SL drops significantly when 40% of nodes are malicious following the
collective strategy, compared to the success rate when only 20% of the nodes are malicious.

Similar observations can be made by comparing scenarios of increasing number of transactions
in Figures 6–8. For EigenTrust, consider the scenario of 200 nodes performing a minimum number of
transactions (i.e., 2000 transactions in Figure 6) and a maximum number of transactions (i.e., 4000
transactions in Figure 8) with 40% malicious nodes. In the former case, both WhatsTrust and
EigenTrust have a success rate of ≥5%. WhatsTrust maintains a similar rate in the latter scenario,
while the performance of EigenTrust drops. Similar trends can be seen for TNA-SL and WhatsTrust
in the scenario of 100 nodes performing 2000 (Figure 6) and 4000 transactions (Figure 8) with 60%
malicious nodes.

5.2.2. Execution Time

We have measured the simulation run time, of each algorithm each scenario under both naïve
and collective strategies. The results are presented in Figure 9. Each sub-figure corresponds to a
specific number of nodes and shows the execution time, measured in seconds, required to perform
an increasing number of transactions.

The figures demonstrate the speed efficiency and low complexity of the proposed algorithm,
WhatsTrust, where it shows almost a linear running time (at n) in all scenarios. Both WhatsTrust and
EigenTrust exhibit similar performance especially when the collectively malicious nodes are
considered. It is only for naïve strategy when WhatsTrust presents a slightly longer running time
than EigenTrust. On the other hand, the TNA-SL algorithm presents a significantly higher running

Figure 8. Success rate for 4000 transactions.

Success rate is measured for good nodes as the total number of valid messages received by good
nodes divided by the total number of messages received. A high success rate suggests that most
messages received by good nodes are valid because they can identify malicious nodes using the trust
management algorithm, while a low success rate indicates that good nodes cannot identify malicious
nodes, and hence, receive many invalid messages.

Electronics 2020, 9, 2190 14 of 17

The figures suggest that WhatsTrust (for both naïve and collective strategies) outperforms the
benchmarks, EigenTrust and TNA-SL in most of the scenarios presented in Figures 6–8 especially those
of large number of nodes (more than 200 nodes) and high percentages of malicious nodes (above 20%)
which clearly indicates the algorithms scalability and robustness. In fact, WhatsTrust exhibits reliability
as it maintains a high success rate (>95%) across all scenarios, while the benchmarks show fluctuating
performance where the success rate may drop significantly in some scenarios. For instance, as the
percentage of malicious nodes increases, the success rate of EigenTrust decreases remarkably when
200 nodes performed 3000 transactions in Figure 7. In the same scenario, the success rate of TNA-SL
drops significantly when 40% of nodes are malicious following the collective strategy, compared to the
success rate when only 20% of the nodes are malicious.

Similar observations can be made by comparing scenarios of increasing number of transactions
in Figures 6–8. For EigenTrust, consider the scenario of 200 nodes performing a minimum
number of transactions (i.e., 2000 transactions in Figure 6) and a maximum number of transactions
(i.e., 4000 transactions in Figure 8) with 40% malicious nodes. In the former case, both WhatsTrust
and EigenTrust have a success rate of ≥5%. WhatsTrust maintains a similar rate in the latter scenario,
while the performance of EigenTrust drops. Similar trends can be seen for TNA-SL and WhatsTrust
in the scenario of 100 nodes performing 2000 (Figure 6) and 4000 transactions (Figure 8) with 60%
malicious nodes.

5.2.2. Execution Time

We have measured the simulation run time, of each algorithm each scenario under both naïve
and collective strategies. The results are presented in Figure 9. Each sub-figure corresponds to a
specific number of nodes and shows the execution time, measured in seconds, required to perform an
increasing number of transactions.

Electronics 2020, 9, x FOR PEER REVIEW 14 of 17

time than all of three algorithms in all scenarios due to the expensive long chains of matrix
multiplications needed by this algorithm when a message is received from a FoF.

Figure 9. Execution times for EigenTrust, trust network analysis with subjective logic (TNA-SL),
WhatsTrust, and none.

6. Conclusions

This paper presents WhatsTrust, an SL-based trust management system. The proposed
algorithm is tailored for one of the most popular message-based social networks, WhatsApp.
WhatsTrust builds a ToN on top of the WhatsApp OSN, which represents the underlying network as
a directed graph in which each node denotes a WhatsApp user and each directed edge from one node
to another denotes his opinion. WhatsTrust comprises two algorithms: node and system. The node
algorithm allows users who receive a message to compute their own opinions about the sender based
on their past interactions in a decentralized manner, using SL. The system algorithm introduces an
approach that allows the system to compute reputation for nodes based on global ratings, so that the
users can assess the trust of unknown senders. WhatsTrust is designed to detect the behavior of
collectively malicious nodes, thus assigning them low reputation.

The experimental results suggest that WhatsTrust outperforms two well-established trust
management systems, namely EigenTrust and TNA-SL, in terms of success rate. Furthermore,
WhatsTrust proves to be reliable because it maintains a high success rate (>95%) across all scenarios
of increasing number of nodes and transactions as well as percentage of malicious nodes. In addition,
the algorithm performs comparably with both naïve and collective strategies, which shows that it can
reduce the chance of collectively malicious nodes deceiving other nodes. Moreover, WhatsTrust
outperforms TNA-SL in terms of execution time and performs comparably to EigenTrust when
focusing on collectively malicious nodes.

Although WhatsApp is a closed system with no Application Programming Interface (API) for
external access, the authors recognizes the urgent need for a trust management system for WhatsApp.
Hence, the proposed system is meant to be a proof of concept, which can be adopted by WhatsApp.
The system component can be implemented as increment to the main application and the node
component can be offered as an application update to the users. As a future work, it is intended to

Figure 9. Execution times for EigenTrust, trust network analysis with subjective logic (TNA-SL),
WhatsTrust, and none.

Electronics 2020, 9, 2190 15 of 17

The figures demonstrate the speed efficiency and low complexity of the proposed algorithm,
WhatsTrust, where it shows almost a linear running time (at n) in all scenarios. Both WhatsTrust and
EigenTrust exhibit similar performance especially when the collectively malicious nodes are considered.
It is only for naïve strategy when WhatsTrust presents a slightly longer running time than EigenTrust.
On the other hand, the TNA-SL algorithm presents a significantly higher running time than all of three
algorithms in all scenarios due to the expensive long chains of matrix multiplications needed by this
algorithm when a message is received from a FoF.

6. Conclusions

This paper presents WhatsTrust, an SL-based trust management system. The proposed algorithm
is tailored for one of the most popular message-based social networks, WhatsApp. WhatsTrust builds
a ToN on top of the WhatsApp OSN, which represents the underlying network as a directed graph in
which each node denotes a WhatsApp user and each directed edge from one node to another denotes
his opinion. WhatsTrust comprises two algorithms: node and system. The node algorithm allows
users who receive a message to compute their own opinions about the sender based on their past
interactions in a decentralized manner, using SL. The system algorithm introduces an approach that
allows the system to compute reputation for nodes based on global ratings, so that the users can assess
the trust of unknown senders. WhatsTrust is designed to detect the behavior of collectively malicious
nodes, thus assigning them low reputation.

The experimental results suggest that WhatsTrust outperforms two well-established trust
management systems, namely EigenTrust and TNA-SL, in terms of success rate. Furthermore,
WhatsTrust proves to be reliable because it maintains a high success rate (>95%) across all scenarios of
increasing number of nodes and transactions as well as percentage of malicious nodes. In addition,
the algorithm performs comparably with both naïve and collective strategies, which shows that it
can reduce the chance of collectively malicious nodes deceiving other nodes. Moreover, WhatsTrust
outperforms TNA-SL in terms of execution time and performs comparably to EigenTrust when focusing
on collectively malicious nodes.

Although WhatsApp is a closed system with no Application Programming Interface (API) for
external access, the authors recognizes the urgent need for a trust management system for WhatsApp.
Hence, the proposed system is meant to be a proof of concept, which can be adopted by WhatsApp.
The system component can be implemented as increment to the main application and the node
component can be offered as an application update to the users. As a future work, it is intended to
extend WhatsTrust to include not only user-based trust but also message-based trust management
systems as due to the extremely large number of active WhatsApp users, many infected messages may
be forwarded mistakenly by good users, and hence, recipients trust the content of the received message.

Author Contributions: Conceptualization, F.A. and A.A.; Data curation, S.A.; Formal analysis, F.A., A.A. and H.K.;
Funding acquisition, H.K.; Methodology, H.K.; Software, F.A.; Visualization, S.A.; writing—original draft,
F.A.; writing—review & editing, A.A. and H.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Acknowledgments: This research was supported by a grant from Researchers Supporting Unit, project number
(RSP-2020/204), King Saud University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Schneider, F.; Feldmann, A.; Krishnamurthy, B.; Willinger, W. Understanding online social network usage
from a network perspective. In Proceedings of the 9th ACM SIGCOMM conference on Internet measurement,
Chicago, IL, USA, 4–6 November 2009; pp. 35–48. [CrossRef]

2. Statista. Available online: https://www.statista.com/statistics/272014/global-social-networks-ranked-by-
number-of-users/ (accessed on 8 November 2020).

http://dx.doi.org/10.1145/1644893.1644899
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/

Electronics 2020, 9, 2190 16 of 17

3. WhatsApp. Available online: https://www.whatsapp.com/ (accessed on 8 November 2020).
4. Nassif, L.N. Conspiracy communication reconstitution from distributed instant messages timeline.

In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW),
Marrakech, Morocco, 15–18 April 2019; pp. 1–6. [CrossRef]

5. Hendrikx, F.; Bubendorfer, K.; Chard, R. Reputation systems: A survey and taxonomy. J. Parallel Distr. Comput.
2015, 75, 184–197. [CrossRef]

6. West, A.G.; Kannan, S.; Lee, I.; Sokolsky, O. An evaluation framework for reputation management system.
In Trust Modeling and Management in Digital Environments: From Social Concept to System Development;
Zheng, Y., Ed.; IGI Global: Helsinki, Finland, 2009; pp. 282–308.

7. Zhou, R.; Hwang, K. PowerTrust: A robust and scalable reputation system for trusted peer-to-peer computing.
IEEE T. Parall. Distr. 2007, 18, 460–473. [CrossRef]

8. QTM. 2020. Available online: https://rtg.cis.upenn.edu/qtm/ (accessed on 5 February 2020).
9. Jøsang, A.; Hayward, R.; Pope, S. Trust network analysis with subjective logic. In Proceedings of the 29th

Australasian Computer Science Conference, Hobart, Australia, 16–19 January 2006; pp. 85–94.
10. Kurdi, H.A. HonestPeer: An enhanced EigenTrust algorithm for reputation management in P2P systems.

J. King Saud Univ. 2015, 27, 315–322. [CrossRef]
11. Fan, X.; Li, M.; Zhao, H.; Chen, X.; Guo, Z.; Jiao, D.; Sun, W. Peer cluster: A maximum flow-based trust

mechanism in P2P file sharing networks. Secur. Commun. Netw. 2013, 6, 1126–1142. [CrossRef]
12. Kurdi, H.; Alshayban, B.; Altoaimy, L.; Alsalamah, S. TrustyFeer: A subjective logic trust model for smart

city peer-to-peer federated clouds. Wirel. Commun. Mob. Comput. 2018, 2018, 1–13. [CrossRef]
13. Alhussain, A.; Kurdi, H.; Altoaimy, L. A Neural Network-Based Trust Management System for Edge Devices

in Peer-to-Peer Networks. CMC-Comput. Mater. Contin. 2019, 59, 805–815. [CrossRef]
14. Ma, X.; Wang, Z.; Liu, F.; Bian, J. A trust model based on the extended subjective logic for P2P networks.

In Proceedings of the IEEE 2nd International Conference on e-Business and Information System Security,
Wuhan, China, 31 May–1 June 2010; pp. 1–4.

15. Dietzel, S.; van der Heijden, R.; Decke, H.; Kargl, F. A flexible, subjective logic-based framework for
misbehavior detection in V2V networks. In Proceedings of the IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks, Sydney, Australia, 19 June 2014; pp. 1–6.

16. Zhu, C.; Nicanfar, H.; Leung, V.C.; Yang, L.T. An authenticated trust and reputation calculation and
management system for cloud and sensor networks integration. IEEE Trans. Inf. Forensics Secur. 2014,
10, 118–131.

17. Kurdi, H.; Alnasser, S.; Alhelal, M. AuthenticPeer: A reputation management system for peer-to-peer
wireless sensor networks. Int. J. Distrib. Sens. Netw. 2015, 11, 637831. [CrossRef]

18. Anwar, R.W.; Zainal, A.; Outay, F.; Yasar, A.; Iqbal, S. BTEM: Belief based trust evaluation mechanism for
Wireless Sensor Networks. Future Gener. Comp. Syst. 2019, 96, 605–616. [CrossRef]

19. Kurdi, H.; Alfaries, A.; Al-Anazi, A.; Alkharji, S.; Addegaither, M.; Altoaimy, L.; Ahmed, S.H. A lightweight
trust management algorithm based on subjective logic for interconnected cloud computing environments.
J. Supercomput. 2018, 75, 3534–3554. [CrossRef]

20. Tang, M.; Dai, X.; Liu, J.; Chen, J. Towards a trust evaluation middleware for cloud service selection.
Future Gener. Comp. Syst. 2017, 74, 302–312. [CrossRef]

21. Liu, G.; Yang, Q.; Wang, H.; Lin, X.; Wittie, M.P. Assessment of multi-hop interpersonal trust in social
networks by three-valued subjective logic. In Proceedings of the 2014 IEEE Conference on Computer
Communications, Toronto, ON, Canada, 27 April–2 May 2014; pp. 1698–1706.

22. Liu, G.; Chen, Q.; Yang, Q.; Zhu, B.; Wang, H.; Wang, W. Opinionwalk: An efficient solution to massive
trust assessment in online social networks. In Proceedings of the 2017 IEEE Conference on Computer
Communications, Atlanta, GA, USA, 1–4 May 2017; pp. 1–9.

23. Ghavipour, M.; Meybodi, M.R. Trust propagation algorithm based on learning automata for inferring local
trust in online social networks. Knowl.-Based Syst. 2018, 143, 307–316. [CrossRef]

24. Yuji, W. The trust value calculating for social network based on machine learning. In Proceedings of the
9th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China,
26–27 August 2017; pp. 133–136.

25. Ghavipour, M.; Meybodi, M.R. A dynamic algorithm for stochastic trust propagation in online social
networks: Learning automata approach. Comput. Commun. 2018, 123, 11–23. [CrossRef]

https://www.whatsapp.com/
http://dx.doi.org/10.1109/WCNCW.2019.8902574
http://dx.doi.org/10.1016/j.jpdc.2014.08.004
http://dx.doi.org/10.1109/TPDS.2007.1021
https://rtg.cis.upenn.edu/qtm/
http://dx.doi.org/10.1016/j.jksuci.2014.10.002
http://dx.doi.org/10.1002/sec.682
http://dx.doi.org/10.1155/2018/1073216
http://dx.doi.org/10.32604/cmc.2019.05848
http://dx.doi.org/10.1155/2015/637831
http://dx.doi.org/10.1016/j.future.2019.02.004
http://dx.doi.org/10.1007/s11227-018-2669-y
http://dx.doi.org/10.1016/j.future.2016.01.009
http://dx.doi.org/10.1016/j.knosys.2017.06.034
http://dx.doi.org/10.1016/j.comcom.2018.04.004

Electronics 2020, 9, 2190 17 of 17

26. AlRubaian, M.; Al-Qurishi, M.; Al-Rakhami, M.; Hassan, M.M.; Alamri, A. CredFinder: A real-time
tweets credibility assessing system. In Proceedings of the 2016 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM), San Francisco, CA, USA, 18–21 August 2016;
pp. 1406–1409.

27. AlRubaian, M.; Al-Qurishi, M.; Al-Rakhami, M.; Hassan, M.M.; Alamri, A. Reputation-based credibility
analysis of Twitter social network users. Concurr. Comp. Pract. E 2017, 29, e3873. [CrossRef]

28. Jøsang, A. Subjective Logic; Springer: Berlin/Heidelberg, Germany, 2016.
29. Ruan, Y.; Durresi, A. A survey of trust management systems for online social communities–trust modeling,

trust inference and attacks. Knowl.-Based Syst. 2016, 106, 150–163. [CrossRef]
30. Kamvar, S.D.; Schlosser, M.T.; Garcia-Molina, H. The Eigentrust algorithm for reputation management in

p2p networks. In Proceedings of the 12th international conference on World Wide Web, Budapest, Hungary,
20–24 May 2003; pp. 640–651. [CrossRef]

31. Jøsang, A.; Bhuiyan, T. Optimal trust network analysis with subjective logic. In Proceedings of the 2nd
International Conference on Emerging Security Information, Systems and Technologies, Cap Esterel, France,
25–31 August 2008; pp. 179–184.

32. Bhuiyan, T.; Josang, A.; Xu, Y. Trust and reputation management in web-based social network. In Web
Intelligence and Intelligent Agents; InTech: Rijeka, Croatia, 2010; pp. 207–232.

33. Jiang, W.; Wang, G.; Wu, J. Generating trusted graphs for trust evaluation in online social networks.
Future Gener. Comp. Syst. 2014, 31, 48–58. [CrossRef]

34. Barbian, G. Assessing trust by disclosure in online social networks. In Proceedings of the IEEE International
Conference on Advances in Social Networks Analysis and Mining, Kaohsiung, Taiwan, 25–27 July 2011;
pp. 163–170.

35. Li, M.; Bonti, A. T-OSN: A trust evaluation model in online social networks. In Proceedings of the
IEEE IFIP 9th International Conference on Embedded and Ubiquitous Computing, Melbourne, Australia,
24–26 October 2011; pp. 469–473.

36. Ureña, R.; Chiclana, F.; Herrera-Viedma, E. DeciTrustNET: A graph based trust and reputation framework
for social networks. Inform. Fusion. 2020, 61, 101–112. [CrossRef]

37. Li, P.; Zhao, W.; Yang, J.; Sheng, Q.Z.; Wu, J. Let’s CoRank: Trust of users and tweets on social networks.
World Wide Web 2020, 23, 2877–2901. [CrossRef]

38. Imran, M.; Khattak, H.A.; Millard, D.; Tiropanis, T.; Bashir, T.; Ahmed, G. Calculating Trust Using Multiple
Heterogeneous Social Networks. Wirel. Commun. Mob. Comput. 2020, 2020, 1–14. [CrossRef]

39. Chen, X.; Yuan, Y.; Lu, L.; Yang, J. A multidimensional trust evaluation framework for online social networks
based on machine learning. IEEE ACCESS 2019, 7, 175499–175513. [CrossRef]

40. Saeidi, S. A new model for calculating the maximum trust in Online Social Networks and solving by Artificial
Bee Colony algorithm. Comput. Soc. Netw. 2020, 7, 1–21. [CrossRef]

41. Zhou, R.; Hwang, K. Trust overlay networks for global reputation aggregation in P2P grid computing.
In Proceedings of the 20th IEEE International Parallel & Distributed Processing Symposium, Rhodes, Greece,
25–29 April 2006; p. 29. [CrossRef]

42. Rohr, D.; Kalcher, S.; Bach, M.; Alaqeeli, A.; Alzaid, H.; Eschweiler, D.; Lindenstruth, V.; Sakhar, A.;
Alharthi, A.; Almubarak, A.; et al. An energy-efficient multi-GPU supercomputer. In Proceedings of the
16th IEEE International Conference on High Performance Computing and Communications, Paris, France,
20–22 August 2014; pp. 42–45.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/cpe.3873
http://dx.doi.org/10.1016/j.knosys.2016.05.042
http://dx.doi.org/10.1145/775152.775242
http://dx.doi.org/10.1016/j.future.2012.06.010
http://dx.doi.org/10.1016/j.inffus.2020.03.006
http://dx.doi.org/10.1007/s11280-020-00829-4
http://dx.doi.org/10.1155/2020/8545128
http://dx.doi.org/10.1109/ACCESS.2019.2957779
http://dx.doi.org/10.1186/s40649-020-00077-6
http://dx.doi.org/10.1109/ipdps.2006.1639268
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	System Model
	Network Model
	User Models
	Relationship Models
	Message-Exchange Models
	Rating Model

	WhatsTrust Algorithm Design
	System Architecture
	How the Algorithm Works
	Node Algorithm
	System Algorithm

	Evaluation Methodology
	Evaluation Framework
	Results and Discussion
	Success Rate
	Execution Time

	Conclusions
	References

