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Abstract: The diagnostics of the condition of athletes has become a field of special scientific interest
and activity. The aim of this study was to verify the effect of a long (100 km) run on a group of runners,
as well as to assess the recovery time that is required for them to return to the pre-run state. The heart
rate (HR) data presented were collected the day before the extreme physical effort, on the same day
as, but after, the physical effort, as well as 24 and 48 h after. The Wavelet Transform (WT) and the
Wavelet-based Fractal Analysis (WBFA) were implemented in the analysis. A tool was constructed
that, based on quantitative data, enables one to confirm the completion of the recovery process that is
related to the extreme physical effort. Indirectly, a tool was constructed that enables one to confirm
the completion of the recovery process. The obtained information proves that the return to the resting
state of the body after a significant physical effort can be observed after two days entirely through the
analysis of the HR. Certain practical measures were used to differentiate between two substantially
different states of the human body, i.e., pre- and post-effort states were constructed. The obtained
results allow for us to state that WBFA appears to be a useful and robust tool in the determination of
hidden features of stochastic signals, such as HR time signals. The proposed method allows one to
differentiate between particular days of measurements with a mean probability of 92.2%.

Keywords: heart rate; recovery time; runners; wavelet transform

1. Introduction

The process of the differentiation of patients’ conditions as a function of their physical effort and
body positions is an important step in medical diagnostics regarding both healthy and unhealthy
individuals [1,2]. Recently, the diagnostics of the condition of athletes has become a field of special
scientific interest and activity. In the context of medical diagnostics, this is a group of healthy
individuals that were subjected regularly to substantial physical effort. Therefore, it is important
to evaluate any changes in their body functions based on pre- and post-effort medical assessment.
This can be done by regular monitoring of body functions that are represented next as time series,
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related to pre- and post-effort periods [3–6]. It is also possible to continue the monitoring process
for a number of days following the effort, which allows for one to estimate the time that is required
for body recovery, when all of the body functions return to their pre-effort state, i.e., the time of full
recovery [7–10].

As is widely known, a decrease in the vagal tone represents the initial response of a body to
physical effort and it is followed by an increase in the sympathetic activity of the autonomic nervous
system (ANS). An inverse process occurs after the effort cessation [11]. On the other hand, it is well
known that higher effort intensity can lead to a persistent increase in the adrenergic tone, the loss
of parasympathetic predominance of the ANS [12–16], or even to a marked shift in the autonomic
balance towards sympathetic predominance lasting for many hours after effort cessation [3,17–26].
Most previous studies analysing the effects of intense physical exercise included professional athletes.
In contrast, the research dealing with the effects of this type of exercise on the function of ANS
in amateur athletes is relatively sparse [15,16,27]. The differences between these two groups of
athletes seem to be important in relation to the specificity of their training and the resulting degree of
preparedness for overcoming exercise-related load.

Nowadays, signal processing, including biomedical signals, is based on a variety of different
methods. The leading signal analysis methods are the frequency methods, e.g., the Fourier transform.
However, the most important drawback of the Fourier transform lies in a possible loss of certain signal
features in the time domain. This may lead to overlooking important information regarding the signal
dynamics, which may then result in the loss of information about any transient action of regulation
systems. An example can be a resulting apparent dynamic balance between pre- and post-effort states.

The following years the development in signal processing techniques have brought about the
method of wavelet analysis (WA) [28–31]. This technique, employing the Wavelet Transform (WT),
allows for one to analyse signal at a selected detail level not only in the frequency domain, but also
in the time domain. Non-stationary signals, like biomedical signals, are well described by this
transformation, in contrast to other signal processing methods, e.g., the Fourier transform, which is
dedicated to periodic signals analysis. Nowadays, WA, which is frequently supported by WBFA in
order to appropriately assess defined spectral elements, is a powerful signal processing tool that can
be employed to prove or falsify various scientific hypotheses. WA techniques are proven methods for
the investigation of the work of the circulatory system [28,32,33].

The essence of the paper is to investigate changes in the circulatory system in a group of 13 athletes
before and after a run over a distance of 100 km, as well as to assess the recovery time that is required
for them to return to the pre-run state. The research is based on the analysis of the heart rate and it
follows a broadly accepted tendency in the measurements of extreme physical effort, especially in the
case of long distance runners.

The technical part of the paper is focused on the implementation of novel and robust signal
processing techniques, especially the Wavelet Transform (WT) and WBFA, in order to pick up subtle
changes in four independent responses (measurements) that were taken from the circulatory system,
these being: the heart rate, stroke volume, heather index, and velocity index. However, it should be
mentioned that substantial and usable changes for subsequent signal processing were only observed
in the case of the heart rate. For that reason, the authors’ scientific interest is mainly concentrated on
the thorough assessment and analysis of this single heart related parameter.

The scope of the presented article includes a detailed description of measurements that aimed at
collecting HR time signals, together with a description of two methodologies that are used to analyse
the collected data. The authors focused on one-dimensional CWT and WBFA supplemented with a
statistical approach. In the following chapters, the obtained results are presented and discussed.
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2. Methods

2.1. Study Description

The main purpose of the research is to investigate the changes in the circulatory system of long
distance runners before and after an extreme physical effort. A group of volunteers from the Sport
Centre of the Gdansk University of Physical Education and Sport have been selected as the test
subjects. They were obligated to take part in regular measurements of their HR before the physical
effort, just after the effort, as well as 24 and 48 h after the effort. The volunteers took part in a long
distance run.

The run covered 100 km on a 3375 m loop with the total altitude difference not being greater
than 2 m. The weather conditions during the run were as follows: air temperature of 4–5 degrees C
and relative air humidity 86% with no wind. The run started at 7:20 in the morning and it lasted for
approximately 10 h. The shortest recorded finishing time was 9 h and 11 min. and the longest was
12 h and 8 min., not including 3-min. breaks for collecting research data. Twelve hours before the race
the runners ate dinner, and thenm after a night rest, at 6:30 in the morning, they ate a light breakfast.
The runners were dressed according to their individual needs in sports shoes, cotton tracksuits, as well
as gloves and hats made of natural materials.

During the run, each athlete wore on their chest a telemetric HR meter (Polar Electro, Kempele,
Finland), which recorded their heart rate every 5 s. The time intervals of running and breaks
between sections were measured by an electronic Timex clock (Zug, Switzerland, 2009) with the
current reading visible on a board that was placed next to the starting line. During the run,
they consumed individually prepared sets of beverages and nutritional products whenever they
reported the need. The administration of food took place at designated stations. A standard meal
consisted of low-mineralized water, energy drinks, sandwiches with cheese or ham, energy bars,
and bananas. Runners consumed products with an average energy value of 1151 kcal per person,
whereas their average energy demand was at the level of 5610 kcal, which is equivalent to oxygen
consumption of 1.6 l/min.

Blood samples were collected immediately before the run and after 25, 50, 75, and 100 km of
running, as well as after 12 and 24 h of rest. The parameters of acid-base balance (arterial blood
gas—ABG) were measured in arterialized blood samples that were drawn from the fingertip.
During the analysis of blood parameters, the individual and mean values were taken into account,
as well as the reference values (standards): pH (7.35 ÷ 7.45), base excess in extracellular fluids
(BE ecf.; −2.3 to +2.3 mEq/L), bicarbonate level (HCO3; 21÷ 27 mmol/L), oxygen partial pressure
(pO2; 75 to 100 mmHg), carbon dioxide partial pressure (pCO2; 32 to 45 mmHg), oxygen saturation of
haemoglobin (O2 sat.; 95%÷ 98%), and lactate level (0.5÷ 2.22 mmol/L). The arterial blood gas levels
were determined with the use of the analyser type ABL 835 FLEX, which was produced by Radiometer
Medical ApS (Brønshøj, Denmark). For the determination of the lactate concentration in blood samples,
the enzymatic method with Randox reagent kit was used and reading of the extinction had been
done at 37 degrees C while using a spectrophotometer type EPOLL 200, produced by Serw-med s.c.
(Warsaw, Poland, 2006).

The HR of the runners was measured continuously for 12 min. and thanks to that 450-sample-long
time series were collected. All of the HR signals were recorded based on the time intervals between
successive R-waves of electrocardiographic signals (ECG). Their measurements were performed with
NiccomoTM device (Medis, Ilmenau, Germany). Eight spot electrodes and a cuff manometer were
used. The haemodynamic parameters were measured continuously and their values were recorded
beat-to-beat. The quality of all the measurements was high and no relevant errors were noted. The HR
of all volunteers measured before the run was around 64–72/min., while just after the run was around
141–158/min. For further analysis, only HR measurements from 13 male amateur runners were
selected. It should be mentioned that the runners represent different training levels that cover between
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25–35 years of running. Apart from running, they are also active in other sports, such as: swimming,
cycling, or strength sports.

The study was approved by Independent Bioethics Commission for Research at Medical
University of Gdansk. Written informed participation consent was obtained from all of the volunteers
taking part in the programme. All of the experiments presented were carried out in accordance with
the approved guidelines.

2.2. Wavelet Analysis

The Wavelet Transform (WT) employed in the current paper is a process of source signal
decomposition and its following representation by a linear combination of some base functions,
which are known in the literature as wavelets. As mathematical functions, wavelets are characterised
by zero mean value, finite signal power, rapid decay, as well as a finite time length. These features
of wavelets make them well localised bases in both time (or space) and frequency. For that reason,
wavelets are especially useful in the analysis of biomedical signals, in which singular points are
omnipresent and where the problem of decomposition and reconstruction of original non-periodic and
non-stationary signals is extremely important.

Based on the literature available [34–36] related to the analysis of discontinuous, non-stationary
signals of high variability, it was decided by the authors to use the Haar wavelet (synonymous with
Daubechies 1 [37]) in the present work. These wavelets were used in wavelet decomposition processes
that were subsequently used for HR assessment.

The first decomposition process was based on the use of the Continuous Wavelet Transform
(CWT), which generated certain coefficients describing the resemblance between a chosen wavelet
and the signal under investigation. The schematic diagram that is presented in Figure 1 illustrates
the methodology employed by the authors based on the application of CWT, which led them to the
calculation of the sums of wavelet coefficients.

WBFA was chosen as the second method. Its choice was supported by the fact that the analysed
HR signals can be understood as time series (stochastic processes). On the other hand, stochastic
processes can be well characterised by a physical quantity, known as a spectral power density (PSD).

Because the PSD represents the signal power that is associated with particular frequencies ω,
it becomes possible to investigate the frequency content of stochastic processes as well as identify
any periodic behaviour that is associated with them [38]. It should be also underlined, at this point,
that HR signals are characterised by the PSD distributions that correspond to 1/ f processes (pink
noise), which means, in practice, that their amplitudes are inversely proportional to frequency f [39,40].

The WBFA allows for an investigation of the HR correlation in a similar manner to that presented
by Tan et al. [41]. In their work, they analysed, by fractal methods, the influence of various drugs on
the heart rate variability (HRV) in the case of 10 healthy individuals. They pointed out the fact that
increasing the time signal lengths during the assessment, even up to 1.5 h, had no significant influence
on the quality of the results. Moreover, they suggested that the most appropriate signal lengths should
stay around 15–20 min. This kind of information is vital for the material that is presented in this work,
as all analysed time signals of HR include 450 samples, which is approximately equal to 12 min.

The self-similarity estimation of the signals under investigation was made based on the spectral
exponent γ, calculated by WBFA, by:

γ =
∆ log2 var dm,n

∆m
(1)

where dm,n denotes the wavelet coefficients that were obtained by the application of the Discrete
Wavelet Transform (DWT) [42]. The wavelet coefficients are dot products of the time signal and a series
of base functions. The schematic diagram that is presented in Figure 2 illustrates the methodology
employed by the authors, but, based on the application of DWT using Daubechies base wavelet (db3)
and eight decomposition levels, which led them to the calculation of the spectral exponent coefficients.
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In order to decompose a given source time signal s(t) by DWT, the signal is first separated into a
detail D1 and its approximation A1. In the following step, the number of time samples is reduced by
half and next detail D2 and its approximation A2 are obtained. This process can be continued further;
however, as the number of time samples is halved, such a discrete process can be carried out on a finite
number of decomposition levels. This constraint is not present in the case of CWT that was described
above earlier.

Differences between the scalograms representing two days of observation, thus a different
condition of the patients, can indicate the capture of certain subtle, but significant changes. They can
also confirm the robustness of the applied methodology and the numerical tool developed. In that
context, the essence of the application of CWT or DWT comes from the curves that represent the sums
of the wavelet coefficients as a function of the scale. In contrast, the essence of the application of WBFA
comes from the spectral coefficients, which carry all necessary resulting information.

Figure 1. A schematic diagram for the signal analysis methodology based of the application of
Continuous Wavelet Transform (CWT), used for calculation of the sums of wavelet coefficients.
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On every stage of numerical simulations standard procedures for calculations of wavelet
coefficients were used (in the case of the continuous as well as discrete wavelet transforms), which are
integral parts of MATLAB software. For these calculations we employed MATLAB cwt function.
Based on the documentation provided by the MATLAB software developer it can be stated that this
function uses the norm L2.

γ = ∆log2var dm,n

∆m

Figure 2. A schematic diagram for the signal analysis methodology based of the application of DWT,
used for calculation of spectral exponent parameters.

2.3. Statistical Analysis

The curves and coefficients that wereobtained thanks to the analysis performed in the steps
described above must be qualitatively assessed. In order to do that, the authors employed statistical
tools that are commonly used by many researchers and they are a gold standard in analysing signal
processing test results.

The fundamental analysis of the distributions of obtained values was performed by the use of
the box plots, which allowed for the detection of important statistical features, including information
regarding the mean and extreme values as well as the limitations that are related to 50% of test trials.
This kind of approach is especially useful in the demonstration of results that were obtained by
WBFA [29,42].

Apart from that, the normalised determination coefficient f it was used, which is a measure of the
absolute fit between two curves c1(x) and c2(x). The normalised determination coefficient f it is very
often used in technical problems [43,44]. It can be noted that, in the case of a perfect fit between curves
c1(x) and c2(x), the value of this coefficient is equal to 100% according to:
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f it = 100% ·

1− ‖c2(x)− c1(x)‖∥∥∥c1(x)− c1(x)
∥∥∥
 (2)

where c1(x) denotes the mean of c1(x) and ‖ ‖ denotes a vector norm.

A test of the hypothesis regarding the normal probability distribution of the set of n samples
x1, x2, . . . , xn was performed by the application of the Shapiro–Wilk (SW) test [45], which is based on
the following relation:

SW =

n
∑

i=1
(wi · xi)

2

n
∑

i=1
(xi · xm)

2
(3)

where wi is a constant of the SW test, while xm is the sample mean.
Here, it should be added that the value of the SW test should be compared with the critical test

value that is determined by the size of sample set.

3. Results

3.1. Data

The volunteers were obligated to take part in regular measurements of their heart rate before the
run, just after the run, as well as 24 and 48 h after the run. During the run, all of the volunteers had
run with an average speed of 2.65 m/s and their heart rate reached an average rate of 143.25 bpm
(Supplementary Table S1).

Each of HR time signals obtained during the measurement procedure [46] was initially
pre-processed in such a manner that the resulting time signals had the same time lengths for signal
comparison purposes. As a result, a set of 13 time signals was generated for the period of the four days
measurement programme. Figure 3 presents exemplary HR signals.

Figure 3. Typical heart rate signal recorded by electrocardiography (ECG). Particular HR signals were
pre-processed in order to reduce their time length to 12 min. Different colours indicate particular a
measurement day: 1st day, one day preceding the extreme physical effort; 2nd day, the day of the effort;
3rd day, one day following the effort, 4th day, two days following the effort.
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During the exercise time, the lactic acid level was measured. The samples were taken before the
run, every 25, 50, 75, and 100 km of the run, as well as after subsequent 12 and 24 h of rest after the run.
Figure 4 presents the pattern of lactic acid levels.

1–5

2–5

4–6
4–7

5–6
5–7

Figure 4. Changes in the concentration of lactic acid in blood of the runners examined.
The graph presents results obtained during the 100 km run and after 12 h and 24 h of rest
(<1.3 mmol/L— physiological norm). Bold numbers on the graph indicate statistically significant
differences between the studies (p < 0.05).

Table 1 presents the results regarding the physiological status of the subjects after 100 km run.
The correlation between HR and lactic acid (LA) was 0.69.

Table 1. Correlations between acid-base balance parameters of the runners during a run over a distance
of 100 km.

HR
[bpm] V [m/s] LA

[mmol/L] pH
BE

(Ecf.)
[mEq/L]

HCO3
Act.

[mmol/L]

pO2
[mmHg]

pCO2
[mmHg]

O2 sat.
[%]

HR [bpm] 1 −0.55 0.69 * −0.48 −0.27 −0.17 0.16 0.16 0.19
V [m/s] −0.55 1 −0.6 0.37 0.17 0.08 0.02 −0.17 −0.08
LA [mmol/L] 0.69 * −0.6 1 −0.5 0.01 0.11 −0.25 0.39 −0.35
pH −0.48 0.37 −0.5 1 0.1 −0.15 0.2 −0.73 * 0.23
BE (ecf.) [mEq/L] −0.27 0.17 0.01 0.1 1 0.97 * −0.36 0.61 −0.36
HCO3 act. [mmol/L] −0.17 0.08 0.11 −0.15 0.97 * 1 −0.39 0.79 * −0.41
pO2 [mmHg] 0.16 0.02 −0.25 0.2 −0.36 −0.39 1 −0.42 0.90 *
pCO2 [mmHg] 0.16 −0.17 0.39 −0.73 * 0.61 0.79 * −0.42 1 −0.45
O2 sat. [%] 0.19 −0.08 −0.35 0.23 −0.36 −0.41 0.90 * −0.45 1

* statistically significant correlations [r] <0.05.

3.2. Wavelet Decomposition of HR Data

In the first step, a HR time signal was pre-processed by the determination of the distribution of
HR values in the assumed range. Figure 5 shows the result of signal processing in the case of one
athlete. Figure 5a–d show the HR time signals for four consecutive days of the study before initial
signal processing as raw HR signals, while, in Figure 5e–h, the corresponding distribution of these
signals in the inverse domain, i.e., the number of samples vs HR. Such a procedure allowed for the
authors to present the non-stationary and discontinuous raw HR signals, independent of time by the
extraction of their global features. At the same time, the signals obtained are free of undesired edge
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phenomenon, which greatly simplifies the subsequent wavelet analysis by the selected wavelet as the
beginnings and ends of the analysed signals are smooth and zero valued (Figure 6).

a b

c d

e f

g h

Figure 5. The ECG signal measured and the corresponding HR value distributions: (a,b) day 1,
(c,d) day 2, (e,f) day 3, and (g,h) day 4.

Figure 6. The final form of the signal subjected to Continuous Wavelet Transform analysis.
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In the second step of the current HR signal assessment procedure, CWT was applied in order to
determine the necessary wavelet coefficients. This was carried out for 500 scales. The results of the
wavelet transformation in the form of scalograms were presented in a graphical form, which represent
the changes in wavelet coefficients as a function of the scale. Figure 7 shows the typical scalograms,
based on the Haar wavelet, for four different days of measurements.

Figure 7. Scalograms of heart rate (HR) signals that were obtained for Haar wavelet related to the
all days of the measurement programme. Scalograms show the result of the Continuous Wavelet
Transform, based on HR signals for a selected volunteer. Each plot indicates a particular measurement
day: 1st day, one day preceding the extreme physical effort; 2nd day, the day of the effort; 3rd day,
one day following the effort, 4th day, two days following the effort.

In the following step, the calculated wavelet coefficients were summed up related to the
succeeding scales in order to reveal any quantitative differences between the particular HR signals
measured. Figure 8 presents the calculated curves representing the state of a selected volunteer that
was related to four measurement days.

Based on the results that are shown in Figure 8, it was decided to compare curves that represent
all days of the measurement programme, for the two specific groups of volunteers. For each group,
the mean distribution of HR values representing particular days was determined. The first group
included four athletes, for which the results from all four days of the experiment were available.
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The distributions of the HR values for this group are shown in Supplementary Figure S1, while the
results that were obtained on their basis are shown in Supplementary Figure S2. The second group
included all athletes, regardless of the completeness of HR data. Supplementary Figures S3 and S4
present the distributions of HR values and the corresponding sums of wavelet coefficients for the
whole group of athletes, respectively.

Figure 8. Curves representing sums of wavelet coefficients. Each curve was obtained as a result
of summing up wavelet coefficients after the application of the Continuous Wavelet Transform of
HR signals for a selected volunteer during four days of measurement programme. Different colours
indicate a particular measurement day: 1st day, one day preceding the extreme physical effort; 2nd day,
the day of the effort; 3rd day, one day following the effort, 4th day, two days following the effort.

3.3. Statistical Validation

The significance of the results of the research programme was also statistically verified. For that
purpose, for each combination of the two curves, representing a particular measurement day, a set of
coefficients f it was calculated, according to Equation (2), which contains information regarding their
cross-similarity. Next, in order to check the hypothesis about the normal probability distribution of
data in each set, the Shapiro–Wilk test was used. Figure 9 shows the probability density functions for
each day of the measurement programme.

3.4. Wavelet-Based Fractal Analysis

The self-similarity of HR signals was evaluated by the calculation of the spectral exponent γ of
1/ f processes. It should be pointed out that, in the case of 1/ f processes, the observed changes in the
spectral exponent γ can correspond to subtle changes in signal features. For that reason, and based
on the results that were obtained thanks to the application of CWT, it was assumed that the spectral
exponents γ related to different days of observation should also be different. Their values were
established based on the calculation of wavelet coefficients by the use of DWT for 450-sample-long
time signals. According to Equation (1), the spectral exponent γ denotes an angle between a trend line
for the points that were obtained by the wavelet transformation, which is illustrated in Figure 10a.

The calculated values of the spectral exponent γ corresponding to the whole four day
measurement programme and related to four selected volunteers are, as follows: 0.67, 0.81, 0.74,
and 0.66 for day 1, 0.92, 1.03, 0.5, and 0.67 for day 2, 0.44, 0.79, 0.67, and 0.55 for day 3, 0.75, 0.82, 0.59,
and 0.61 for day 4 (all corresponding to athletes 1–4). It can be seen that, in the case of three out of
four volunteers, significant changes in the values of the spectral exponent γ can be noticed, which are
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associated with day 3, i.e., one day following the extreme physical effort. In order to analyse these
changes in more detail, box plots were prepared, illustrating similarities and differences between the
four volunteers, as shown in Figure 10b.
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Figure 9. Probability density functions for each day (day 1, day 2, day 3, or day 4) of the measurement
programme. Individual functions represent the coefficients that determine their association to a
particular measurement day. The presented coefficients p1, p2, p3, and p4 are the likelihood of qualifying
the data for a particular day, whereas p12, p13, . . . , p34 are the likelihood with which the data can be
distinguished from another for each pair of days considered. The functions are compared in pairs:
(a) day 1&2, (b) day 1&3, (c) day 1 & 4, (d) day 2 & 3, (e) day 2 & 4, and (f) day 3 & 4.
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Figure 10. The determination of the spectral exponent γ and its statistical representation. (a) Illustrates
the distribution of the spectral exponent γ, calculated according to Equation (1), as a function of
the decomposition level. The dashed line represents a trend line calculated by the method of least
squares. (b) Illustrates the minima and maxima of the spectral exponent γ together with the first,
second, and third quartiles Q1, Q2, and Q3 that are associated with the four days of the measurement
programme.
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Additional chemical analysis was made in order to confirm the runners’ changes of physical state.
Figure 4 and Table 1 present the acid-base balance parameters that were gathered during the study.
Changes in concentration of lactic acid in blood of the runners confirm the above presented claims that
signs of an extreme physical effort can still be differentiated two days after the effort.

4. Discussion

The observed changes in the scalograms indicate the existence of differences between the physical
condition of the volunteers taking part in the programme, as shown in Figure 7. However, this approach
did not allow any quantitative evaluation of the features of measured signals, which made the clear
evaluation of the physical condition of a particular volunteer impossible.

Sums of all wavelet coefficients, as presented in Figure 8, indicated changes between
particular obtained curves. It also indicated that the differentiation of the physical condition
of a particular volunteer by the use of appropriately constructed analytical criteria was possible.
Moreover, the distance between the curves associated with post-effort-related states carry information
about any recovery processes taking place.

The investigation of all the results obtained and that were related to particular measurement days
allows for us to note that the sums of wavelet coefficients that were calculated and that corresponded
to a particular effort state were concentrated in certain common domains. This is clear evidence of
not only the existence of representative signal features for a set of signals measured on the same day,
but also the successful identification of these features.

In most cases, the greatest changes were observed between the curves related to day 1 and day
2, as shown in Supplementary Figures S2 and S4. They differentiate these two effort-related states
since the sets of curves associated with them are clearly separated. Similar trends can be observed
in the case of day 2, day 3 and day 4. They indicate similarities between the physical conditions of
the pre-effort and full-recovery states related to the sets of the curves representing day 1 and day 4.
The curves representing day 3 and 4 are close to one another; however, they are fully separated from
the other curves. Based on that, it can be stated that a full recovery of the human body takes place not
earlier than after two full days following an extreme physical effort.

The statistical tests that were carried out confirmed the validity of the wavelet transform-based
approach used in the paper. It can be stated that an appropriate selection of the base wavelet, as well
as the scaling factor that is responsible for the number of scales, allowed for the determination of
certain common features of selected sets of data that represent the physical condition of a particular
volunteer. The first important indicators here are the means of the probability distributions that are
related to different effort-related states: one day preceding the effort x̄1 = 1.74× 105, the day of the
effort x̄2 = 2.40× 105, as well as two days following the effort x̄4 = 1.83× 105. By knowing the
value x̄1, it is possible to differentiate day 1 in relation to day 2, with a 92% probability and 2.36× 104

standard deviation. On the other hand, by knowing the value x̄2, it is possible to differentiate day 2
from day 1 with a 93% probability and 2.23× 104 standard deviation. Finally, based on the value x̄4

and its relation to x̄2, day 1 and day 4 can be differentiated and the probability of full recovery to the
pre-effort state can be calculated as 91.6%. The remaining statistical data carried no useful information
due to significant values of errors.

The obtained results allow for us to state that WBFA appears as a useful and robust tool in
the determination of hidden features of stochastic signals, such as HR time signals. The statistical
tests of the spectral exponent γ, as presented in Figure 9b and the above listed results, reinforce the
statement. Based on these tests, the application of the wavelet transformation, together with fractal
analysis, can be fully justified. The results obtained for the scaling factor related to the pre-effort state
concentrate in a narrow interval of values.

Similarly to CWT, the key elements that influence the effectiveness of WBFA investigation of the
HR signals is their quality and an appropriate choice of wavelet transform parameters. These HR
time signals that contain too few samples limit signal decomposition levels, thus preventing the
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extraction of the signal details determining the value of the spectral exponent and/or scaling coefficient.
The appropriate selection of the base wavelets in that process is equally important, as an inappropriate
base wavelet may lead to great discrepancy and inaccuracy of the obtained results. Based on the
simulation programme carried out, it can be stated that the best results were obtained for the 3rd-order
Daubechies wavelet at the maximal decomposition level, which, in the current case, was equal to 8.

The HR as such has been extensively investigated for many years and has been found as a
significant risk factor, especially in the case of cardiovascular events. Its predictive ability has been
proven at rest and during and after various physical efforts. Both HR and HRV may reflect autonomic
imbalance associated with different physiological and pathological states. However, the HRV provides
information on quantities, i.e., HR and its variability. The question that arises here is what part of
that information remains hidden, because of the non-linear relationship between the R-R intervals
and the dynamic HR frequency in pre- and post-effort states that are related to extreme physical
effort. It seems interesting to employ the wavelet transform-based analysis in the detection process
of additional modulation of the HR. Thanks to this approach, it has been found that dynamic HR
fluctuations have been present in the HR time signals measured until the second day following the
extreme physical effort.

The results of the study, as revealed by the wavelet analysis, stand in opposition to common
medical knowledge. A previous study, which concerned the influence of a 100 km run on the ANS
parameters, revealed that, during the next day after the run, all of the measured parameters came back
to their initial values [16]. Therefore, there was a clear indication of the lack of noticeable changes
during further periods of recuperation. This observation is backed by several other studies [5–8],
in which various cardiovascular indices measured ceased to change during the first day after a long run.
In turn, our study revealed that the lack of change in the case of dynamic HR fluctuations, and likely
many other cases, is associated with the selection of the analysis method, rather than the true response
of a human body.

5. Conclusions

The technical aspect of the research programme that was carried out by the authors allowed for
the construction of certain practical measures used to differentiate two substantially different states
of the human body, i.e., pre- and post-effort states. In order to assist in the analysis, the Wavelet
Transform and the Wavelet-based Fractal Analysis were implemented. Indirectly, the authors also
managed to construct a tool, entirely based on quantitative data, which enables for one to confirm
the completion of the recovery process related to extreme physical effort that is entirely based on the
quantitative data. The information that was obtained by the tool presented proves that the return to
the resting state of the body after a significant physical effort can be observed after two days entirely
through the analysis of the heart rate.

The main conclusion of the study was the slow return of a runner’s body to its original (resting)
state after a long, extreme physical effort on the next day after the run. Previous studies concerning the
influence of 100 km run on the ANS parameters revealed that, on the next day after the run, all of the
measured indices come back to their initial values. The studies suggested that the 100 km run seems
to be safer and, hence, more advisable to amateur athletes than, e.g., a marathon, which has become
a popular mass-event. In our present study, a slow return of a runner’s body to its original state is
demonstrated, which reveals the usefulness of our novel analytic techniques and shows that the full
recovery of measured parameters was observed within 48 h after the 100 km run.

Supplementary Materials: The following are available at http://www.mdpi.com/2079-9292/9/12/2189/s1,
Figure S1: HR value distributions for the group of four volunteers, Figure S2: Comparison of curves representing
sums of wavelet coefficients for the group of four volunteers, Figure S3: HR value distributions for the entire
group of volunteers, Figure S4: Comparison of curves representing sums of wavelet coefficients for the entire
group of volunteers, Table S1: Heart rate and running speed of amateur long distance runners (mean ± standard
deviation) measured during subsequent mileages on a distance of 100 km.
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Opielowska-Nowak, B.; Jastrzebski, Z.; Raczak, G. A 100 km Run Does Not Induce Persistent Predominance
of Sympathetic Activity During 24-Hour Recovery in Amateur Male Athletes. Hell. J. Cardiol. 2015,
56, 271–272.

17. Loimaala, A.; Huikuri, H.; Oja, P.; Pasanen, M.; Vuori, I. Controlled 5-mo aerobic training improves heart
rate but not heart rate variability or baroreflex sensitivity. J. Appl. Physiol. 2000, 89, 1825–1829. [CrossRef]

18. Pichot, V.; Roche, F.; Gaspoz, J.M.; Enjolras, F.; Antoniadis, A.; Minini, P.; Costes, F.; Busso, T.; Lacour,
J.R.; Barthelemy, J.C. Relation between heart rate variability and training load in middle-distance runners.
Med. Sci. Sport. Exerc. 2000, 32, 1729–1736. [CrossRef]

19. Pichot, V.; Busso, T.; Roche, F.; Garet, M.; Costes, F.; Duverney, D.; Lacour, J.R.; Barthélémy, J.C. Autonomic
adaptations to intensive and overload training periods: A laboratory study. Med. Sci. Sport. Exerc. 2002,
34, 1660–1666. [CrossRef]

20. Uusitalo, A.L.; Uusitalo, A.J.; Rusko, H.K. Heart rate and blood pressure variability during heavy training
and overtraining in the female athlete. Int. J. Sport. Med. 2000, 21, 45–53. [CrossRef]

21. Hautala, A.; Tulppo, M.P.; Mäkikallio, T.H.; Laukkanen, R.; Nissilä, S.; Huikuri, H.V. Changes in cardiac
autonomic regulation after prolonged maximal exercise. Clin. Physiol. 2001, 21, 238–245. [CrossRef]

22. Iellamo, F.; Legramante, J.M.; Pigozzi, F.; Spataro, A.; Norbiato, G.; Lucini, D.; Pagani, M. Conversion from
Vagal to Sympathetic Predominance With Strenuous Training in High-Performance World Class Athletes.
Circulation 2002, 105, 2719–2724. [CrossRef]

23. Daniłowicz-Szymanowicz, L.; Raczak, G.; Pinna, G.D.; Maestri, R.; Ratkowski, W.; Figura-Chmielewska, M.;
Szwoch, M.; Kobuszewska-Chwirot, M.; Kubica, J.; Ambrach-Dorniak, K. The effects of an extreme endurance
exercise event on autonomic nervous system activity. Pol. Merkur. Lek. Organ Pol. Tow. Lek. 2005, 19, 28–31.

24. Gratze, G.; Rudnicki, R.; Urban, W.; Mayer, H.; Schlögl, A.; Skrabal, F. Hemodynamic and autonomic
changes induced by Ironman: Prediction of competition time by blood pressure variability. J. Appl. Physiol. 2005,
99, 1728–1735. [CrossRef]

25. Sztajzel, J.; Atchou, G.; Adamec, R.; de Luna, A.B. Effects of Extreme Endurance Running on Cardiac
Autonomic Nervous Modulation in Healthy Trained Subjects. Am. J. Cardiol. 2006, 97, 276–278. [CrossRef]

26. Murrell, C.; Wilson, L.; Cotter, J.D.; Lucas, S.; Ogoh, S.; George, K.; Ainslie, P.N. Alterations in autonomic
function and cerebral hemodynamics to orthostatic challenge following a mountain marathon. J. Appl. Physiol.
2007, 103, 88–96. [CrossRef]

27. Rundfeldt, L.C.; Maggioni, M.A.; Coker, R.H.; Gunga, H.C.; Riveros-Rivera, A.; Schalt, A.; Steinach, M.
Cardiac Autonomic Modulations and Psychological Correlates in the Yukon Arctic Ultra: The Longest and
the Coldest Ultramarathon. Front. Physiol. 2018, 9, 35. [CrossRef]

28. Manis, G.; Arsenos, P.; Nikolopoulos, S.; Gatzoulis, K.; Stefanadis, C. Details on the Application of
Multiresolution Wavelet Analysis on Heartbeat Timeseries. Int. J. Bioelectromagn. 2013, 15, 60–64.

29. Janjarasjitt, S.; Loparo, K.A. Examination of scale-invariant characteristics of epileptic electroencephalograms
using wavelet-based analysis. Comput. Electr. Eng. 2014, 40, 1766–1773. [CrossRef]

30. Thurner, S.; Feurstein, M.C.; Teich, M.C. Multiresolution Wavelet Analysis of Heartbeat Intervals
Discriminates Healthy Patients from Those with Cardiac Pathology. Phys. Rev. Lett. 1998, 80, 1544–1547.
[CrossRef]

31. Teich, M.C. Multiresolution wavelet analysis of heart rate variability for heart-failure and heart-transplant
patients. In Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, Hong Kong, China, 1 November 1998; Volume 3, pp. 1136–1141. [CrossRef]

32. Winklewski, P.J.; Gruszecki, M.; Wolf, J.; Swierblewska, E.; Kunicka, K.; Wszedybyl-Winklewska, M.;
Guminski, W.; Zabulewicz, J.; Frydrychowski, A.F.; Bieniaszewski, L.; et al. Wavelet transform analysis to
assess oscillations in pial artery pulsation at the human cardiac frequency. Microvasc. Res. 2015, 99, 86–91.
[CrossRef] [PubMed]

33. Gamero, L.G.; Vila, J.; Palacios, F. Wavelet transform analysis of heart rate variability during myocardial
ischaemia. Med. Biol. Eng. Comput. 2002, 40, 72–78. [CrossRef] [PubMed]

34. Addison, P.S. Wavelet transforms and the ECG: A review. Physiol. Meas. 2005, 26, R155–R199. [CrossRef]
[PubMed]

35. Adeli, H.; Zhou, Z.; Dadmehr, N. Analysis of EEG records in an epileptic patient using wavelet transform.
J. Neurosci. Meth. 2003, 123, 69–87. [CrossRef]

http://dx.doi.org/10.1152/jappl.2000.89.5.1825
http://dx.doi.org/10.1097/00005768-200010000-00011
http://dx.doi.org/10.1097/00005768-200210000-00019
http://dx.doi.org/10.1055/s-2000-8853
http://dx.doi.org/10.1046/j.1365-2281.2001.00309.x
http://dx.doi.org/10.1161/01.CIR.0000018124.01299.AE
http://dx.doi.org/10.1152/japplphysiol.00487.2005
http://dx.doi.org/10.1016/j.amjcard.2005.08.040
http://dx.doi.org/10.1152/japplphysiol.01396.2006
http://dx.doi.org/10.3389/fphys.2018.00035
http://dx.doi.org/10.1016/j.compeleceng.2014.04.005
http://dx.doi.org/10.1103/PhysRevLett.80.1544
http://dx.doi.org/10.1109/IEMBS.1998.747071
http://dx.doi.org/10.1016/j.mvr.2015.03.003
http://www.ncbi.nlm.nih.gov/pubmed/25804326
http://dx.doi.org/10.1007/BF02347698
http://www.ncbi.nlm.nih.gov/pubmed/11954711
http://dx.doi.org/10.1088/0967-3334/26/5/R01
http://www.ncbi.nlm.nih.gov/pubmed/16088052
http://dx.doi.org/10.1016/S0165-0270(02)00340-0


Electronics 2020, 9, 2189 17 of 17

36. Gandhi, T.; Panigrahi, B.K.; Anand, S. A comparative study of wavelet families for EEG signal classification.
Neurocomputing 2011, 74, 3051–3057. [CrossRef]

37. Daubechies, I. Orthonormal bases of compactly supported wavelets. Commun. Pur. Appl. Math. 1988,
41, 909–996. [CrossRef]

38. Abry, P.; Gonçalvès, P.; Flandrin, P. Wavelets, spectrum analysis and 1/f processes. In Wavelets and Statistics;
Lecture Notes in Statistics; Antoniadis, A., Oppenheim, G., Eds.; Springer: New York, NY, USA, 1995;
Volume 103, pp. 15–29. [CrossRef]

39. Kobayashi, M.; Musha, T. 1/f fluctuation of heartbeat period. IEEE Trans. Biomed. Eng. 1982, 29, 456–457.
[CrossRef]

40. Tsuji, Y.; Nagasawa, K.; Satoh, H. Cross-correlation between 1/f-like fluctuations in heartbeat and diurnal
changes in the sleep-waking stage. Psychiatry Clin. Neurosci. 1998, 52, 174–176. [CrossRef]

41. Tan, C.O.; Cohen, M.A.; Eckberg, D.L.; Taylor, J.A. Fractal properties of human heart period variability:
Physiological and methodological implications. J. Physiol. 2009, 587, 3929–3941. [CrossRef]

42. Engin, M. Spectral and wavelet based assessment of congestive heart failure patients. Comput. Biol. Med.
2007, 37, 820–828. [CrossRef]

43. Redlarski, G.; Gradolewski, D.; Palkowski, A. A System for Heart Sounds Classification. PLoS ONE 2014,
9, e112673. [CrossRef] [PubMed]

44. Gradolewski, D.; Tojza, P.; Redlarski, G. Adaptacyjny algorytm filtracji sygnału fonokardiograficznego
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