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Abstract: Robots instead of humans work in unstructured environments, expanding the scope of
human work. The interactions between humans and robots are indirect through operating terminals.
The mental workloads of human increase with the lack of direct perception to the real scenes. Thus,
mental workload assessment is important, which could effectively avoid serious accidents caused
by mental overloading. In this paper, the operating object is a dual-arm robot. The classification of
operator’s mental workload is studied by using the heart rate variability (HRV) signal. First, two
kinds of electrocardiogram (ECG) signals are collected from six subjects who performed tasks or
maintained a relaxed state. Then, HRV data is obtained from ECG signals and 20 kinds of HRV
features are extracted. Last, six different classifications are used for mental workload classification.
Using each subject’s HRV signal to train the model, the subject’s mental workload is classified.
Average classification accuracy of 98.77% is obtained using the K-Nearest Neighbor (KNN) method.
By using the HRV signal of five subjects for training and that of one subject for testing with the Gentle
Boost (GB) method, the highest average classification accuracy (80.56%) is obtained. This study has
implications for the analysis of HRV signals characteristic of mental workload in different subjects,
which could improve operators’ well-being and safety in the human-robot interaction process.

Keywords: human-robot interaction; mental workload; heart rate variability; machine learning

1. Introduction

In unstructured environments, robots replace humans to perform some complex tasks, which
expends the scope of human work [1,2]. The dual-arm robot, a kind of typical robot, has been widely
studied [3,4]. Dual-arm robots can simulate the movement of two arms of human, making an important
step towards humanoid operation. Studies based on dual-arm robots have always moved towards
the operation of humanization. In this paper, a dual-arm robot is studied as the operating object,
which is controlled by a wearable exoskeleton controller in master-slave mode. The dual-arm robot’s
performance is not only limited by the performance of the system, but also related to the current state of
the operator closely. Sometimes, a large mental workload can still lead to improper or wrong operation
even when the system is stable and the operator has a good sense of presence. Therefore, it is crucial to
monitor the mental workload of the operator. On this basis, the human-robot task assignment could be
dynamically adjusted based on the mental workload. This kind of research improves human-robot
system performance and safety and refine the subjective experience of operators. Therefore, it is of
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great theoretical significance and practical value to study the mental workload measurement of the
operators of dual-arm robots.

In recent years, mental workload has gradually become a hot research topic. The concept was first
proposed in the 1940s [5]; its purpose was to optimize the human-machine system. There are various
definitions of mental workload; however, the primary content of the definitions is the relationship
between ‘requirement of resources for tasks’ and ‘ability of the operator to provide those resources’ [6].
In reality, the traditional methods of evaluating mental workload are mainly subjective. However, the
main defect of the subjective scale method is the lack of objectivity and continuity of measurement.
Undeniably, the evaluation of mental workload by physiological signals, such as electroencephalogram
(EEG) [7,8], respiration rate (RR) [9], blood pressure (BP) [10], skin temperature (ST) [11], galvanic skin
response (GSR) [12], blink frequency (BF) [13], and heart rate variability (HRV) [14], has achieved some
progress. Although more effective information can be obtained by using multi-sensors fusion to analyze
mental workload, it causes great inconvenience to operators because they have to use a large number
of electrodes, sensor units, and so on. HRYV is the physiological phenomenon of fluctuation in the
time interval between heartbeats. It is the most convenient and common physiological measurement
method for mental workload. Thus, in this paper, HRV is studied as a measure of mental workload in
human and dual-arm robot interaction.

The traditional mental workload measuring method using HRV is considered to be on the
basis of time domain and frequency domain features. About the time domain features, the better
performing ones are the standard deviation of the R-R interval (SDNN), the root mean square of
the successive R-R interval difference (RMSSD), the proportion of the beats with a successive R-R
interval difference exceeding 50 ms (PNNb50), and the sum of all R-R intervals divided by the maximum
density distribution (HRVTi) [15,16]. Moreover, in the frequency domain analysis method, the HRV
signal is always decomposed into multi-frequency components. In fact, the power spectral of each
frequency component and the sum of power spectral of all frequency bands are regarded as features
for mental workload measurement. In detail, these features include power spectrum of very low
frequency band (VLF: 0.003-0.040 Hz), low frequency band (LF: 0.04-0.15 Hz), high frequency band
(HF: 0.15-0.4 Hz), and total power spectrum (TP: < 0.4 Hz) [17,18]. However, the time domain
indices cannot show the time-varying characteristics of HRV. Thus, it is limited for the response to
the autonomic nervous system. Meanwhile, the frequency domain indices can only provide global
frequency information, lacking in coupling information between local and different frequencies. A
human body can be abstracted into a complex nonlinear system. Nevertheless, the time domain
and frequency domain features of HRV signals are unable to express the nonlinear characteristics of
HRYV signals completely [19,20]. At present, relevant studies have used nonlinear analysis methods
to analyze HRV signals for mental workload. Castaldo et al. [21] extracted the nonlinear features of
HRYV signals to achieve psychological load measurement analysis while playing games. Specifically, it
includes Poincare plot, de-trending fluctuation analysis, recurrence plot, sample entropy, approximate
entropy, and Shannon entropy, among others. Tiwari et al. [22] proposed an improved multi-scale
permutation entropy analysis method to measure and analyze HRV signals. Finally, they accomplish
the classification of mental workload in the process of MATB. Delliaux et al. [23] analyzed a variety of
nonlinear features of HRV signals through statistical analysis.

However, there is no research on HRV as a measure of mental workload in human and dual-arm
robot interaction. In this paper, HRV is studied as a measure of mental workload in human and
dual-arm robot interaction. The main contributions of this work are summarized as follows: First, this
paper extracts time domain features, frequency domain features, and nonlinear features of HRV signals,
exploring the hidden layer of neural activity information deeply. Then, the mapping relationship
between the HRV signal and mental workload is analyzed. In addition, models trained with the same
subject data and across different subjects are researched, respectively.

The rest of the paper is structured as follows: In Section 2, the process of ECG data acquisition is
described and the HRV signal extraction algorithm is presented. Additionally, the features extraction
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method is presented. Section 3 shows the experimental results, which reflect the statistical analysis of
features and mental workload measures. The discussion of results are present in Section 4. In Section 5,
the conclusion of this paper is presented.

2. Data and Methods

Firstly, the process of mental workload recognition in this paper is presented and shown in
Figure 1. Then, the subjects that participated in the data acquisition are introduced, respectively.
Subsequently, the data acquisition process is introduced and the features are extracted. Finally, the
mental workload identification results based on the extraction features are presented.

ECG signal collection Mental workload classify Mental workload classify
(mission state &relaxed state) (Cross-subject) (Same-subject)
i t
] Data of testing set Data of testing set
QRS detection (From the leave one) (From the same subject)
, R P .
RR correction Ir Create 10-Fold Cross Validation |
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HRYV signal | (SVM,KNN,GB,LDA,NB,DT) :
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. . Nonlinear | ~— — — — __ — — - =
domain domain T _T
l i l Data of training set Data of training set
Statistical analysis (t-test) (Leave one subject) (Select one subject)

I I

Figure 1. The processes of the mental workload classification based on HRV.

2.1. Participants

Subjects were, on average, 25.16 years old, and the study employed a total of six male participants,
as shown in Table 1. They were selected from the Shenyang Institute of Automation, Chinese Academy
of Sciences. They have normal or corrected vision, right-handedness, good health, and no heart,
cerebrovascular, or nervous system problems. All participants were informed of the experiment, and
participants were asked to wear loose and comfortable clothing.

Table 1. A description of the subjects.

Gender  Stature (cm) Weight (kg) Age (year) BMI

Subjectl Male 180 67.5 24 20.8
Subject2 Male 175 78.5 24 25.6
Subject3 Male 173 58 31 19.4
Subject4 Male 180 55 23 17.0
Subject5 Male 175 75 24 24.5
Subject6 Male 178 72.5 25 229

2.2. Data Acquisition and Processing

The dual-arm robot utilized in this paper is shown in the Figure 2a. The robot has six independent
driving wheels. Therefore, it can adapt to various complex topographic structures. Moreover, the robot
is equipped with double arms, both with seven degrees of freedom, to imitate the number and structure
of a human. The end of the arm is an open-close clamp, which can be used for precision operation.
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At the same time, the robot is equipped with a binocular camera, which can be used to enhance the
operator’s sense of presence. In order to facilitate operation, the manipulator of the dual-arm robot
adopts a wearable controller, which is shown in Figure 2b. Obviously, the wearable controller has the
same structure as arms of the dual-arm robot. Between the wearable controller and the dual-arm robot,
the master-slave control mode is used, as shown in Figure 2c.

(c) Master-slave control mode.

Figure 2. Dual-arm robot and wearable controller.

The ECG signal acquisition sensor and software in this paper are shown in Figure 3a,b. The sensor
is a portable chest strap that can be attached to the operator’s chest. Additionally, The sensor is based
on the BMD101 chip, which is the most widely used ECG signal acquisition sensor at present and
can avoid interfering with the operator’s normal operation. Then, the ECG data is transmitted via
Bluetooth to a computer for collecting and displaying the ECG signals.
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(a) ECG acquisition sensor
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(b) ECG acquisition and display software

Figure 3. The operator’s ECG signal acquisition system.

The flow chart of data acquisition is shown in Figure 4. Firstly, subjects read and sign the informed
consent. Then, they are trained in operating the robot professionally. Only after passing the set
assessment indicators can they participate in the experiment. Before the beginning of experiment, the
ECG acquisition device needs to be placed on the subject’s chest. Then the Karolinska Sleepiness Scale
(KSS) is filled to determine the operator’s sleepiness state. The KSS needs to be filled once the operator
has completed their mission. After giving the operator a minute to concentrate, the experiment starts.
ECG signals of each operator in two mental workload states are collected. The tasks performed under
each level of mental workload are defined as follows: (1) The task of mental workload level 1: The
operator does not perform any task and maintains a relaxed state. (2) The task of mental workload
level 2: The operator operates the arms of robot to follow a specified trajectory. ECG signals of the
operator are collected at each task for 10 min. At the end of the task, the data records are checked and
the ECG acquisition equipment on the subject is removed. The experiment ends. A 3 min sliding
window is used to process the data, which slides for 10 s each time. The sliding window segments the
10-min data of each state of each subject. Furthermore, the three-minute segments obtained are used
for the identification and classification of the two mental workload states.

I
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l oo |
| | Pay Mission state | N Relaxed State
I Frequently asked | | attention (10min) KSS (10min)
| questions Lo ¥
I o I
Pay Mission state Relaxed State
o lep! - -
: Enough training | attention (10min) KSS (10min) —I [
I
| \/ I
| Settingupsensors | | Ppay Mission state KSS —» Relaxed State
| v | | attention (10min) (10min) |
| | - _
KSS |
I

Data Collection

Preparatory work

Figure 4. Flow chart of sample data collection.

The HRV is shown in Figure 5, which is obtained by ECG signal collected by sensor. In reality, the
HRYV signal is defined as the fluctuation in continuous RR intervals. Hence, for the sake of getting the
HRYV sequence from the ECG signal, a QRS wave group detection method is utilized to detect the Q
wave, R wave, and S wave [24]. Nevertheless, the abnormal point maybe present in the HRV signal
that is output by the QRS wave group detection method. In order to remove the exception value, a
median filtering method is utilized [25].
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Figure 5. The ECG signal and HRV signal. (a) The obtained ECG signal. (b) The extracted HRV signal.
2.3. Feature Extraction

In this sub-section, extracting features from the HRV data obtained is presented. During the
operation of the dual-arm robot operation tasks, the change of mental workload of operator is
related to the volatility of sympathetic and parasympathetic nerve closely. In fact, the time domain
features of the HRV signal reflect the overall volatility of the autonomic nervous system reaction.
Additionally, frequency domain features of high frequency are related to the intensity of the modulation
of parasympathetic nerve. Nevertheless, the low frequency band is influenced more by sympathetic
nervous regulation. In addition, nonlinear features are expressed the chaotic and dynamic characteristics
of HRV signal.

2.3.1. Linear Features

1. Time domain features

The main features used in time domain is shown in Table 2. They are SDNN, RMSSD, RMSSD,
PNN50, and HRVTi. In addition, the mean and median of the HRV signal are also extracted as features.

Table 2. Statistical features in the time domain.

Index Unit Definition and Description

The standard deviation of all successive R-R intervals.

N N
SDNN ms SDNN = \/ iy (RRsl- -y RRSi)
i=1 i=1
The root mean square of the successive R-R interval difference.
RMSSD ms

N-1
RMSSD = \/ﬁ -21 (RRsi;1 — RRs;)?
i=

The proportion of the beats with a successive R-R interval
PNN50 % difference tha[t( E})éc:eec}2 go)n%%]
num si11—RRs;)>
PNN50 = I\+]1—1
The sum of all R-R intervals divided by the maximum density
distribution.

HRVTi —




Electronics 2020, 9, 2174 7 of 17

2. Frequency domain features

The all frequency features used in this paper are based on the power spectra density. In this
paper, a Lomb-Scamble periodic graph is used to calculate the power spectral density, which has a
higher estimation accuracy than the FFT-based method [26]. The detailed description and definition
are shown in Table 3.

Table 3. Statistical features in the frequency domain.

Index Unit Definition and Description Frequency
Total Power (aTotal) ms? The sum of the power spectra for all frequency ranges. <04 Hz

aVLF ms? The sum of the power spectra for all frequency ranges.  0.003-0.04 Hz

aLF ms? The sum of the power spectra for all frequency ranges. 0.04-0.15Hz

aHF ms? The sum of the power spectra for all frequency ranges. 0.15-04 Hz
LF/HF % The ratio of LF [msz] and HF [msz] /
pVLF % The ratio of aVLF [msz] and TP [msz] /

pLF % The ratio of aLF [msz] and TP [[mszl] /

pHF % The ratio of LF msz] and HF |ms? /

nLF % The ratio of aLF |ms?| and (aLF + aHF) |ms? /

nHF % The ratio of aHF ‘[msz and (aLF + aHF) &ms% /

2.3.2. Nonlinear Features

1.  Sample Entropy (SaEn):

SaEn is a method that can be used for the measurement of physiological signal complexity. SaEn
is a probability of two HRV signals matching at a length of m + 1 if they match at m. In addition, a
tolerance parameter r will determine the match result. In this paper, the value of m is set to 2, and the
value of r is defined as 0.2 X std. The std in this paper represents the standard deviation of the input
HRYV data [27].

2. Detrended Fluctuation Analysis (DFA):

DFA can be used for the statistical self-affinity of physiological signal, which is used for removing
the trend of a series of events. Especially, it can reflect the information about the long-term correlation
in the HRV signal. Furthermore, it has been widely used in HRV signal analysis [28]. The fluctuations
of the HRV signal can express as a function of time intervals: F(n) = pn""® where p is a constant and
Alpha is a scale factor. F represents the fluctuations of HRV and # is time intervals. The HRV signal
fluctuations will be altered by changing the parameter n. Two parameters of Alphal and Alpha?2 are
defined as the slop of F(n), which is a function of logn in different time range.

3. Results

Using the time domain, frequency domain and nonlinear analysis method above, the HRV signals
are analyzed when the subjects are in performing the task and relaxing state, respectively. Firstly,
a t-test is used and the statistical significance of the extracted time domain, frequency domain, and
nonlinear features are analyzed. Then, the features with statistical differences are selected for the
classification of mental workload. Furthermore, for the sake of excluding the effects of classifier
performance differences, six classifier algorithms are selected to identify and classify the mental
workload, which are Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), K-Nearest
Neighbor (KNN), Decision Tree (DT), Gentle Boost (GB), and Naive Bayes (NB). The default parameters
are selected as the parameters of the six classification algorithms in this paper. In addition, the HRV
signals under different mental workload are divided into testing set and training set based on 10-fold



Electronics 2020, 9, 2174 8of 17

cross-validation. Furthermore, the performance of mental workload levels are classified and evaluated
by three indicators, which are defined as follows:

TP+ TN

Accuracy : Acc = TP+ P+ TN+ N % 100%;
e TP o).
Sensitivity : Sen = TP rEN X 100%;
o TN o
Specificity : Spe = FPLTN % 100%.

where TP is defined as those samples in which the predicted and actual values are both positive. FP is
defined as those samples that are classified as positive samples, but they are actually negative samples.
FN is defined as those samples that are predicted to be negative samples, but their actual values are
positive. Additionally, TN is defined as the actual values of samples that are positive but that are
predicted to be negative. In this paper, the performing task state samples are defined as positive
samples and the relaxing state samples are defined as negative samples.

3.1. Statistical Analysis of Features

3.1.1. Statistical Difference Analysis of Features from the Same Subject

Using the t-test, the statistical differences of time domain, frequency domain, and nonlinear
features are analyzed in the same subject at different states (performing task state and relaxing state).
Defining the sample set of subjectl’s performing task state as S1-M, sample set of subjectl’s relaxing
state as S1-R. Meanwhile, the sample set of subject2’s, subject3’s, subject4’s, subject5’s, and subject6’s
different lengths of time is defined by this rule.

Table 4 shows the statistical differences among 6 subjects. Moreover, each subject has two different
mental workload states (performing task state and relaxing state). In detail, Table 4 shows the statistical
differences of time domain, frequency domain and nonlinear features. It can be seen that there are total
87 features that are most significant differences (p < 0.001) between two different mental workload
states from Table 4.

Among them, subjectl has 20 features with most significant differences (p < 0.001), which consist
of six time domain features, 10 frequency domain features, and four nonlinear features.

Subject2 has 13 features with most significant differences (p < 0.001), which consist of six time
domain features, five frequency domain features, and two nonlinear features.

Subject3 has 15 features with most significant differences (p < 0.001), which consist of six time
domain features, seven frequency domain features, and two nonlinear features.

Subject4 has 16 features with most significant differences (p < 0.001), which consist of five time
domain features, seven frequency domain features, and four nonlinear features.

Subiject5 has nine features with most significant differences (p < 0.001), which consist of five time
domain features, and four frequency domain features.

Subject6 has 14 features with most significant differences (p < 0.001), which consist of five time
domain features, five frequency domain features, and four nonlinear features.
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Table 4. Statistical analysis results of HRV time domain, frequency domain, and nonlinear features.

S1-M and S2-M and S3-M and S4-M and S5-M and S6-M and

S1-R S2-R S3-R S4-R S5-R S6-R

HRVTi ( *** 0 *** 0 *** ( *#* 0 *** 0 ***

Mean ( *#* 0 *** 0 *** Q *#* 0 *** 0 ***

Time SDNN [ 0 *** 0 *** ( *#* 0 *** 0 ***
Domain Median Q *** 0 *** 0 *** Q % 0 *** 0 ***
PNN50 Q *#* 0 *** 0 *** 0.28 0 *** 0 ***

RMSSD Q *** 0 *** 0 *** 0 *** 0.15 0.16

aHF 0 *** 0 *** 0 *** 0 *** 0.06 0.61

aLF Q *** 0 *** 0.02* Q *** 0.06 0.02*

aTotal Q *** 0 *** 0 *** Q *** 0.013 * 0.19

aVLF Q *#* 0 *** 0.002 ** Q *#* Q *** 0 ***

Frequency LF/HF Q *** 0.41 0 *** 0.015* 0.004 ** 0.05
Domain nHF Q *** 0.08 0 *** 0.24 0.56 0.07
nLF 0 % 0.08 0 *** 0.24 0.56 0 ***

pHF () *** i Q %+ () ¢ ( *** Q ***

pLF () *** 0.02 * ( *** () *** ( *** ( ***

pVLF 0 % 0.008 ** 0.13 0 *** 0 *** 0 ***

SaEn () *x* i ( *** () *** 0.16 Q ***

Nonlinear Alpha 0 % 0.12 0.41 0 *** 0.003 ** 0 ***
Alphal () *** i ( *** () *x* 0.27 s

Alpha2 0 % 0.88 0.45 0 *** 0.009 ** 0 ***

*, %, *** represent p < 0.05, p < 0.01, p < 0.001, respectively.

3.1.2. Statistical difference analysis of features cross the different subject

Using the t-test, the statistical differences of time domain, frequency domain, and nonlinear
features are analyzed cross the different subject at different states (perform task state and relaxed state).
The sample set of subject1’s, subject2’s, subject3’s, subject4’s, subject5’s, and subject6’s performing task
state is defined as the CM group and the sample set of subjectl’s—subject6’s in the relaxing state is
defined as CR group.

Table 5 shows the statistical differences between two different mental workload state sample sets.
Table 5 shows time domain and nonlinear features and Table 5 shows frequency domain features. It
can be seen from Table 5 that there are 18 most significant difference (p < 0.001) features in the two
groups of CM and CR.

Table 5. Statistical analysis results of HRV time domain, frequency domain, and nonlinear features.

CM and CR
HRVTi Q ***
Mean 0 ***
. . SDNN 0 ***
Time Domain Median 0 **
PNNS50 0 ***
RMSSD 0 ***
aHF 0 ***
aLF 0 ***
aTotal 0 ***
aVLF 0 ***
Frequency Domain LE/HF 0.054
nHF 0 ***
nLF 0 ***
pHF 0 Rl
pLE 0.60
pVLF 0 ***
SaEn 0 ***
X%
Nonlinear ﬁgﬁf 1 8 st
Alpha2 0 ***

*, *x % represent p < 0.05, p < 0.01, p < 0.001, respectively.
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3.2. Mental Workload Classification Based on the Same Subject

The classification and identification of mental workload are carried out on six subjects, respectively.
Additionally, the features with statistical differences are selected for the classification of mental
workload. The sample datasets for each experiment are divided into training set and testing set. In
order to verify the classification performance of features, a total of six classification algorithms are
used in this paper so each subject has trained six models. In this paper, there are six experimental
subjects and 6 X 6 = 36 models are trained. The average value of 10-fold cross-validation is used as
the final experimental result. In order to ensure the reliability of the experimental results, the 10-fold
cross-validation is repeated 100 times.

Figure 6 and Table 6 are the classification results for each subject using different classifiers, as can
be seen from Figure 6a and Table 6. SVM, KNN, and GB show better classification results for subjectl.
In addition, the KNN classification algorithm shows the highest Spe, Sen, and Acc: 99.26%, 98.86%,
and 98.91%, respectively. It can be seen from Figure 6b and Table 6 that SVM, KNN GB, NB, and DT
show better classification results for subject2. In addition, the KNN classification algorithm shows the
highest Spe, Sen, and Acc: 99.99%, 98.94%, and 99.95%, respectively. It can be seen from Figure 6¢
and Table 6, for the subject3. LDA shows the worst classification effect and the KNN classification
algorithm shows the highest Spe, Sen, and Acc: 99.15%, 99.07%, and 98.84%, respectively. As Figure 6d
and Table 6 demonstrate, SVM, KNN, GB, and DT show better classification results for subject4. The
SVM classification algorithm shows the highest Spe (98.43%) and KNN classification algorithm shows
the highest Sen and Acc: 97.61% and 96.45%, respectively. As can be seen from Figure 6e and Table 6,
for the subject5, all five classification algorithms, except LDA, show good performance of classification.
The SVM classification algorithm shows the best Spe, Sen, and Acc: 99.97%, 99.99%, and 99.97%,
respectively. It can be seen from Figure 6f and Table 6 that the KNN classification algorithm shows the
highest Spe, Sen, and Acc: 98.61%, 99.34%, and 98.64%, respectively.

The Recognition Results of Subject1 The Recognition Results of Subject2
100 lspe 100 S
Il sen Elisen
Acc Acc
F 80 = 80
o [}
g 8
€ 60 T 60
o [
5 5
o
o 40 a0
20 20
SYM KNN GB LDA NB DT SYM KNN GB LDA  NB DT
(a) (b)
The Recognition Results of Subject3 The Recognition Results of Subjectd
100 F _Gpe 100 WSspe
lSen Elsen
Acc Acc
= sof T 80
T T
g g
S 60 c 60
o <]
@ 2
40 40
20

SVM KNN GB LDA NB DT SVM KNN GB LDA NB DT
(c) (d)
The Recognition Results of Subject5 The Recognition Results of Subject6
100 I I s pe ! 100 Mlspe
Ilisen S en
Acc Acc
= 80 E 80
g &
€ 60 < 60
5 5
o
® 4 s
20 20
SVM KNN GB LDA NB DT SVM KNN GB LDA NB DT

(e) (f)

Figure 6. The classification results of each subject under different classifiers.
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Table 6. The classification results of each subject under different classifiers.

Subject S1 S2 S3 S4 S5 S6 Mean std

Spe 98.84  99.01 97.20 98.43 99.97  99.34 98.80 2.03

SVM Sen 97.81 99.86 96.72 92.95 99.99 95.96 97.22 0.39
Acc 97.76 99.36 96.17  94.93 99.97  97.03 97.54 3.03

Spe 99.26 99.99 99.15 96.22 99.91 98.61 98.86 1.80

KNN Sen 98.86 99.94 99.07  97.61 99.78 99.34 99.10 0.11
Acc 98.91 99.95 98.84 96.45 99.81 98.64 98.77 1.49

Spe 98.20 99.25 90.61 94.71 99.75 97.90 96.74 2.03

GB Sen 93.37  99.49 95.83 9477  99.85 95.670  96.50 0.39
Acc 94.95 99.10 92.09 93.65 99.70 95.90 95.90 3.03
Spe 47.67  45.58 4546  49.78 54.3 5447 4954 24.83
LDA Sen 57.22 60.07  46.83 61.02 54.21 50.30 54.94 22.95
Acc 52.53 53.31 46.69 54.94 53.92 52.23 5227 2270

Spe 98.07  98.90 87.12 83.84 99.88 96.80 94.10 18.81
NB Sen 18.43 96.08 98.31 54.93 97.65 96.28 76.95 22.58
Acc 5844  96.84 91.45 69.16 98.49 95.58 84.99 22.03
Spe 89.05 99.21 86.73 94.13 99.91 97.75 94.46 24.83
DT Sen 32.55 99.45 9427  95.14 99.89 95.72 86.17 2295
Acc 62.04  99.03 89.10 93.64 99.84  95.78 89.91 22.70

Finally, the Spe, Sen, and Acc of the six subjects under different classification are presented in box
plots (Figure 7). Box plots not only show the average values, but the distribution of the computed
values can also be given. Additionally, the abnormal values are given by red points. As can be seen
from the figure, while using the KNN classifier, all 6 subjects exhibit highest Spe, Sen, and Acc, with the
least overall discreteness. However, in Spe and Acc, outliers appear. While using the SVM classifier,
the six subjects perform higher Spe, Sen, and Acc, and the data are less discrete. Comparing with
KNN and SVM classifiers, the GB classifier shows a large degree of discreteness but the classification
results are stable. The performance of classification of the DT classifier is slightly worse than GB. The
classification results of LDA and NB classifiers are the least satisfactory, with Spe, Sen, and Acc of LDA
being lower, while the Spe, Sen, and Acc of NB classifier are the most discrete.
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Figure 7. The box plots of Spe, Sen, Acc for six subjects.
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3.3. Mental Workload Classification Cross Subject

In this sub-section, the performance differences of cross-subject mental workload classification are
analyzed. The features with statistical differences are selected for the classification of mental workload.
Samples of five subjects are used as a training set and samples of the leave-out subject who is not
involved in the training are used as the testing set. Since there are six subjects, the validation process is
performed six times.

Figure 8 and Table 7 are cross-subject classification results using different classifiers. As can be
seen from Figure 8 and Table 7, for subjectl, the KNN classification algorithm shows the highest Sen
(100%), and the GB method shows the highest Spe (100%) and Acc (91.18%). For subject2, SVM and GB
methods show the highest Spe (100%). At the same time, the GB method also shows the highest Spe
(100%) and Acc (100%). For subject3, the LDA classification algorithm shows the best classification
performance. The Spe, Sen, and Acc are 78.43%, 100.00%, and 89.22%, respectively. For subject4, SVM
shows the highest Sen (98.43%). The KNN method shows the highest Acc (95.1%). Te NB method
shows the highest Spe (100%). For subject5, SVM shows the highest Acc (81.76%). GB and DT show
the highest Spe (100%) and the NB method shows the highest Spe (100%). For subject6, both SVM and
KNN methods show the highest Spe (84.31%). SVM shows the best Acc (91.18%) and the NB method
shows the highest Sen (100%).
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Figure 8. The cross-subject classification results under different classifiers.
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Table 7. The classification results of cross-subject under different classifiers.

Subject S1 S2 S3 S4 S5 S6 Mean std

Spe 66.67 100 6471 8627  88.63 8431 8177  13.60

SVM Sen 5412 9235 3412 98.04 7490 98.04 7526  26.34
Acc 6039 9618 4941 9216 8176 9118 7851  19.21

Spe 62.75 7843 9.80 98.04 8039 8431 6895  31.11

KNN Sen 100 70.59 3137 9216 8235 9216 7811  25.03
Acc 81.37 7451 2059 9510 8137 8824 7353  26.86

Spe 100 100 31.37 7843 100 62.75 7876  27.77

GB Sen 82.35 100 86.27 8039 5882 8627 8235 1341
Acc 91.18 100 58.82 7941 7941 7451 8056  14.16

Spe 21.57 1005 7843 7255 2353 8039  46.08  35.09

LDA Sen 68.63  62.75 100 2941 2157 8824 6177 3125
Acc 4510 3640 8922 5098 2255 8431 5392  27.38

Spe 88.24 100 3.92 100 7.84 13.73 5229  48.26

NB Sen 52.94 100 80.39  50.98 100 100 80.72  23.54
Acc 70.59 100 4216 7549 5392 5686  66.50 2031

Spe 1.96 2353  31.37 6.08 100 7255 3925  38.99

DT Sen 70.59 7843  66.67 7059 6275 3922 6471 13.53
Acc 36.27 5098  49.02 8333 8137 5588 5948  18.87

13 of 17

Finally, the results of cross-subject classification under different classifiers are presented in box
plots (Figure 9). As can be seen from the figure, there are higher maximums of Spe, Sen, and Acc
regardless of the classifier used. However, the figure also shows a more discrete distribution result and
the red points represent abnormal values. The difference between the maximum and minimum values
is large. In addition, for each subject, there is a classifier that achieves better classification results.
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4. Discussion

To the best of our knowledge, this is the first work to measure the operator’s mental workload in
human and dual-arm robot interaction process based on wearable exoskeleton controller. At present,
many of the studies on mental workload are aimed at the n-back paradigm, simulated driving scenarios,
and so on. In the process of interaction between human and dual-arm robot of this paper, the operator
adopts the wearable controller. Additionally, the two arms of the dual-arm robot imitate the arms
of human. This control mode of master-slave aims to reduce the operator’s burden in the process
of human and dual-arm robot interaction as much as possible. In addition, this control mode also
excludes the operator’s limb coordination ability differences, which significantly focuses the operator
on the task. The study of mental workload in the process of human and dual-arm robot interaction has
not been found. In addition, there is no corresponding public datasets. Thus, in this paper, the ECG
signal data is collected. According to the ECG signals, the HRV for analysis is extracted.

Studies have shown that a stress response occurs [29] when the mental workload of the human
increases. First, the sympathetic nervous system will be activated. Then the entire nervous system
will respond to the increase of mental workload and improve human alertness. Furthermore, blood
is transferred from the internal organs and skin to the skeletal muscles. Then the heart rate and
heart contraction increase rapidly. These changes allow the body to accumulate large amounts of
energy in a short period of time to prepare for external threats. Furthermore, the HRV signal contains
information about the regulation of the cardiovascular system by body fluid factors, which can reflect
fluctuations of the autonomic nervous system. Therefore, it is feasible to use the HRV signal for mental
workload analysis.

More specifically, the existing studies show that the aTotal feature reflects the whole activity of
the autonomic nervous system. LF-relative features are thought to be associated with sympathetic
activity. HF-relative features are thought to have correlation between the parasympathetic activity. The
physiological significance of the VLF-relative features have been identified with long-period rhythms.
The relationship between LF components and HF components (LF/HF) is an important indicator of the
sympathetic and parasympathetic balance in the body [30,31]. The SDNN index and HRVTi feature
are believed to primarily measure autonomic influence on HRV [32]. Both RMSSD and PNNG5O0 reflect
parasympathetic (vagal) activity. Nonlinear features represent the fluctuation characteristics of the
autonomic nervous system [33].

In this paper, the time domain features, frequency domain features, and nonlinear features
between two mental workload states of the same subject or across different subjects, most features
show statistical differences. Only individual features do not show statistical differences, which may
be due to personalized differences between subjects. This does not affect the classification of the
two mental workload states. Firstly, this paper analyzes the different mental workload states of the
same subject. The results show that, for subjectl-subject6, the highest Acc are 98.91% (KNN), 99.95%
(KNN), 98.84% (KNN), 96.45% (KNN), 99.97% (SVM), and 98.64% (KNN), respectively. The KNN
classifier has the highest average recognition accuracy (98.77%) when using the same classifier to
identify six subjects separately. The SVM and GB classifiers also show good classification, with the Acc
being 97.54% and 95.90%, respectively. None of the remaining three classifiers (LDA, NB, DT) have a
classification accuracy rate of more than 90%. Therefore, the KNN algorithm is more suitable for the
human and dual-arm robot interaction, using the sample data training model of the same subject and
classifying the mental workload of the subject. Then, the different mental workload states cross-subject
are classified. The results show that, for subjectl-subject6, the highest Acc are 91.18% (GB), 100%
(GB), 89.22% (LDA), 95.10% (KNN), 81.76% (SVM), and 91.18% (SVM). Thus, the average classification
accuracy of the six subjects classifying using different classifiers is 91.41%. In the case of using the
same classifier for the six subjects, the average accuracy of cross-subject identification is 80.56% (GB).
Additionally, SVM and KNN also show good classification results, with classification accuracy of
78.51% and 73.53%, respectively. When identifying across subjects, each subject has a classifier that
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makes it better classified. Therefore, in the future, multiple classifiers should be considered for use and
use the voting method to select the best classifier’s classification results.

The analysis of mental workload is related to specific tasks and the study of mental workload in
the process of master-to-slave interaction between a wearable controller and a dual-arm robot have not
been reported. Therefore, this paper chooses to compare the studies related to mental workload or
stress in other scenarios. In [34], a pilot study is conducted on whether machine learning can predict
stress decrease after relaxation on the basis of a wearable sensor. The status before and after relaxation
is classified using the ECG and GSR signals for 79.2% classification accuracy. In [35], detection of
drivers’ anxiety based on physiological signals is studied. The results show that classification on the
basis of EEG alone shows the best accuracy, it is 77.01%. In [36], the cross-subject mental workload
classification is studied on the basis of kernel spectral regression and transfer learning techniques. An
average Acc of 72.66% is obtained for six subjects, the Acc of six subjects are 73.15%, 77.32%, 78.63%,
65.40%, 71.08%, and 70.36%, respectively. In [37], using wearable sensors, the mental workload of
human and robot collaboration is analyzed. However, it is only the statistical analysis of HRV signals
in different mental workload states. In addition, there is no study of classification and identification.
In this paper, the data of two different mental workload states are collected and 20 kinds of HRV
features are extracted. Then, the statistical significance of HRV signal features are analyzed in different
states. The features with statistical differences (p < 0.05) are selected for the identification and analysis
of mental workload. Models trained with the same subject data and models trained across different
subjects all obtained higher Acc compared with [34-37].

In addition, in this paper, the heart beat data collection device is a custom one. Its functionality
can be modified based on demand. Furthermore, it is cheap. However, with the rapid development
of consumer electronics devices, most of the existing smart watches have heart beat monitoring
capabilities. This will be more conducive to long-term detection. Thus, in the future, smart watches
will be considered as the heart beat data collection device for research.

5. Conclusions

A human remote-controlled robot performs complex or dangerous tasks in unstructured
environments, which expends the scope of human work. In the process of completing the tasks, the
mental workload of the operator will change based on the different tasks of the robot. However,
too much mental workload will not only affect the robot’s working efficiency and safety, but also
impact human physical and mental health. In order to assess the mental workload during human
interaction with a dual-arm robot, in this paper, HRV is the measure that is studied. Firstly, the ECG
signals of two kinds of mental workload states (performing task state and relaxing state) are collected.
The ECG signals are collected from six subjects based on a custom device. Based on the ECG signal,
the HRYV signal is obtained. Then, 20 kinds of HRV features (time domain, frequency domain, and
nonlinear features) are extracted. Finally, six different classifications are used to mental workload
classification. The results are that, firstly, using each subject’s HRV signal training model, the subject’s
mental workload is classified. The average classification accuracy of 98.77% is obtained using the
KNN method. Then, using the HRV signal of five subjects for training, and the remaining one subject
for testing, the GB method can obtain the highest average classification accuracy, with the average
classification accuracy of six subjects being 80.56%. This study has demonstrated that the HRV can be
used to measure the mental workload during human interaction with a dual-arm robot.
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