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Abstract: The paper presents an analysis of the influence of microcracks in textronic conductive layers
on their conductive properties. The tested structures were created in the physical vacuum deposition
process. The paper presents the results of computer simulations of the current flow field in thin
conductive stripes with defects distributed along a line perpendicular to the stripe axis and randomly
placed on its entire surface. It was found, inter alia, that a larger number of shorter collinear defects
may have many times lower resistance than a small number of longer defects of the same total length
(e.g., with 40 collinear cracks with a total length of 90% of the strip width, the sheet resistance is only
about 3% greater compared to a track without cracks). It was found that the percolation threshold
of the tested models with square proportions and randomly selected defects is close to the value of
0.5. This is consistent with the theoretical calculations for analogous discrete models with infinite
sizes. It was also found that the sheet resistance of the conductive strip with randomly distributed
defects clearly depends on its length when the defect concentration exceeds 20%. The simulations
were carried out on the basis of the integral equation method, with the solution presented in the form
of double layer potentials.

Keywords: thin films; wearable electronics; textronics; cracks; modeling of electroconductivity
phenomena; electroconductivity; PVD

1. Introduction

Smart textiles and wearable electronics are some of the areas of interest for scientists in the 21st
century. In both cases, it is important to create electroconductive elements in the form of thin layers
on a flexible substrate or in the entire volume of textiles. For this purpose, various processes for
connecting textiles with electrically conductive elements are used. These include embroidery [1],
digital printing [2], magnetron sputtering [3,4], chemical vapor deposition (CVD) [5], and electroless
deposition [6].

Physical vacuum deposition (PVD) is also one of the methods for producing such structures [7–9].
PVD technology makes it possible to replace metallization with chemical processes. It is environmentally
friendly and can be used on nonpolar polymeric substrates such as polypropylene and polyethylene.
In such a process, a controlled transfer of metal atoms with a low resistivity value from the heated
source to the substrate located at a short distance is observed. The metal atoms, as a result of providing
them with an appropriate amount of thermal energy, boil and then evaporate. An electroconductive
layer is formed and grows atom by atom, ultimately forming a thin pure metal coating that adheres
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strongly to the substrate. Thermal evaporation differs from sputtering, another method of physical
deposition of thin layers; during sputtering, atoms are ejected from the source surface under the
influence of gaseous ions [3,4]. Most often, the source is at room temperature. Both technologies were
initiated in the second half of the 19th century. In 1852, Grove [10] observed the deposition of metal
sputtered from the cathode of the glow discharge plasma. On the other hand, in 1857, Faraday [10],
experimenting with exploding fuse-like metal wires in an inert atmosphere, evaporated thin films.
The development of material technologies and the possibility of producing appropriate Joule heat
sources (first from platinum, then from tungsten), as well as progress in the construction of technical
solutions in the field of vacuum devices, accelerated the development of PVD technology.

PVD technology is known primarily in mechanical engineering for the production of durable
coatings with high adhesion to the substrate and resistant to corrosion [11]. Using this method of
producing thin layers on other substrates, it is also possible to modify the fatigue behavior of metallic
surface [11]. Thanks to these properties, their application have been extended to the biomedical
field [11]. In this field, it is important to create electroconductive structures on flexible textile
substrates [8,9]. Flexibility plays a key role in elements used in wearable electronics. In the process
of use, multiple bending occurs, and thus the appearance of numerous microcracks formed in the
produced electroconductive layer, leading also to changes in the ampacity of the layers and the
appearance of local hotspots due to the local increase of the current density [12,13]. The conductivity of
thin layers depends strongly on their morphology and structure. The assessment of the surface of such
a structure is possible, for example, by means of tomography [14–17]. Sheet resistance is one of the
parameters that describe the properties of material taking into account the electroconductivity. It results,
among other factors, from the morphology of thin films. It can be modified with oxidation [18] or
photochemical oxidation [19]. The low sheet resistance could benefit conductor applications, such as
those in [20–22].

The problem of current flow and the properties of thin conductive layers is an issue studied by
various research groups [23,24]. In the literature, it is possible to find research papers on the transport
properties of such materials, with most of the results presented in line with the predictions based on
the percolation theory [24–27]. It is known that there is a significant change in the physical properties
during the percolative transition from the islet structure to the continuous film and vice versa, due to
spatial and dimensional constraints in the thin film [28–31]. The electrical conductivity of the thin layer
also shows a clear transition from two-dimensional to three-dimensional behavior with increasing
layer thickness [24]. In the literature, correlations can be also found between the properties of electric
conductivity and the porosity of the structure of a thin layer, created by applying vacuum methods [24].
The influence of defects on the current density in the structure produced in the PVD process was also
analyzed by the authors of this paper in previous articles [12,13]. In the previous studies, the authors
researched the effect on the current flow field and total current in a conductive stripe with one or
two defects of a size comparable to the stripe width. Such defects may arise from bending or tensile
stresses during the use of the fabric underlying the stripe. Microscopic examination of the conductive
layers created in PVD technology shows that there are also other types of defects that occur during
the technological process itself, which may also increase during use. These are usually small cracks
randomly distributed over the entire surface of the metallic layer (Figure 1). The aim of this research
is to study their influence on the conductive properties of the stripe through numerical simulations,
which allows us to understand the phenomenon of electrical conductivity in electroconductive thin
films produced in the PVD process. The simulations were carried out on the basis of the integral
equation method. Due to the specific nature of the boundary conditions on the defect lines (potential
discontinuity), double layer potentials were used in the presented case. The compatibility of the
theoretical model and the computational method with a physical experiment in the case of single linear
defects was already presented in the previous publications [12,13].



Electronics 2020, 9, 2164 3 of 12

Electronics 2020, 9, x FOR PEER REVIEW 3 of 13 

 

2. Description of the Model and Formulation of the Problem 

The defects in textronic layers are usually in the shape of scratches (cracks), the widths of which 

are much smaller than their lengths (see Figure 1). This suggests the possibility of modeling them as 

infinitely thin, i.e., with lines that constitute a barrier to the flow of current. Such an idealization may, 

however, raise some doubts due to the peculiarities that appear at the extreme points of the defect 

line. As it results from the precise analytical solution described in [12,13] for a single defect with the 

shape of a rectilinear segment, the current density at its ends assumes infinite values (despite the 

continuity of the potential). It was shown in [32] that this effect can introduce a significant error in 

the calculation of the total current flowing in the conducting stripe (Figure 2) only when the length 

of the defect is close to the width of the stripe and when at least one of its ends is at a distance 

comparable to the width of the defect. In this paper, the impact of defects with lengths much smaller 

than the stripe sizes is analyzed, and it was concluded that modeling them as infinitely thin does not 

significantly affect the simulation results. 

The subject of the problem is therefore the search for the distribution of the vector field current 

density J and the total current intensity in a thin conductive layer, rectangular in shape (named here 

as “stripe”), containing defects in the shape of rectilinear sections. The model geometry is illustrated 

in Figure 2. 

 

Figure 1. Microscopic image of silver layer created in a physical vacuum deposition (PVD) process on 

the textile composite (shown at 1500×). 

 

Figure 2. The analyzed model of the conducting stripe with defects. 

Figure 1. Microscopic image of silver layer created in a physical vacuum deposition (PVD) process on
the textile composite (shown at 1500×).

2. Description of the Model and Formulation of the Problem

The defects in textronic layers are usually in the shape of scratches (cracks), the widths of which
are much smaller than their lengths (see Figure 1). This suggests the possibility of modeling them as
infinitely thin, i.e., with lines that constitute a barrier to the flow of current. Such an idealization may,
however, raise some doubts due to the peculiarities that appear at the extreme points of the defect line.
As it results from the precise analytical solution described in [12,13] for a single defect with the shape
of a rectilinear segment, the current density at its ends assumes infinite values (despite the continuity
of the potential). It was shown in [32] that this effect can introduce a significant error in the calculation
of the total current flowing in the conducting stripe (Figure 2) only when the length of the defect is
close to the width of the stripe and when at least one of its ends is at a distance comparable to the
width of the defect. In this paper, the impact of defects with lengths much smaller than the stripe sizes
is analyzed, and it was concluded that modeling them as infinitely thin does not significantly affect the
simulation results.
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The subject of the problem is therefore the search for the distribution of the vector field current
density J and the total current intensity in a thin conductive layer, rectangular in shape (named here as
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“stripe”), containing defects in the shape of rectilinear sections. The model geometry is illustrated in
Figure 2.

Moreover, the following assumptions were made:

1. The area of the conductive stripe is a uniform, isotropic, and linear (with constant electrical
conductivity) rectangular conductor.

2. The defects and the surroundings of the track are areas of zero electrical conductivity (ideal dielectric).
3. A constant voltage u is applied between the ends of the stripe (lines L1 and L2 in Figure 2).
4. The field functions do not depend on the coordinate z perpendicular to the surface of the stripe.
5. The stationary operating condition of the system is analyzed (field functions do not depend

on time).
6. There are no unbalanced electric charges in the system.

Under the assumptions made, the electric field E is expressed through the electric potential ϕ:

E = −gradϕ (1)

which satisfies the Laplace’s equation [33]
∆ϕ = 0 (2)

The sought function of the current density field J can be related to the electric field strength E by
the relationship (local Ohm’s law):

J = γE (3)

where γ is the conductivity of the layer.
According to Assumptions 4 and 5, we haveϕ =ϕ (x, y). The boundary conditions for the potential

ϕ on the side edges of L1 and L2 are given by the dependencies

ϕ(0, y) = u,ϕ(l, y) = 0 (4)

From Assumptions 2 and 6, it follows that the normal components of the vector J on the edges
L3 and L4, as well as on the defect lines, equal to zero, which according to (1) and (3) means that the
potential meets the conditions of the Neumann type:

∂φ

∂n

∣∣∣∣∣∣
y=0

=
∂φ

∂n

∣∣∣∣∣∣
y=w

=
∂φ

∂n

∣∣∣∣∣∣
Γk

= 0, k = 1, . . . , N (5)

where Γk denotes defect lines (see Figure 2).
Therefore, the problem comes down to the search for a solution to the Laplace Equation in (2) with

mixed boundary conditions, i.e., in (4) and (5). In order to solve it, the method of integral equations
was used.

The searched potential function is presented in the form

ϕ(x, y) = u
(
1−

x
l

)
+

4∑
m=1

∫
Lm

σm(x′, y′)
cosα

R
dLm+

N∑
k=1

∫
Γk

σk(x′, y′)
cosα

R
dΓk (6)

where σm and σk are density potential functions of double layer on Lm and Γk lines, respectively; R is
the distance between any point of the analyzed area and the current integration point; and α is the
angle between the line connecting these points and normal to the shoreline.

The first part of Equation (6) on the right meets all the conditions of the problem except the
boundary condition on the Γk defect lines, and thus it corresponds to the original field.

The second part corresponding to the field induced by the stripe edges and the third part—the field
induced by the defects—are represented by the double layer potentials. A detailed description of the



Electronics 2020, 9, 2164 5 of 12

numerical determination of the density function of these potentials and the algorithm of the entire
field calculation procedure are provided in the previous article [13].

The applied method belongs to the category of boundary methods, which allows for obtaining
faster and more accurate algorithms than in the case of commonly used area methods (e.g., the finite
element method-FEM). Solution (6) satisfies Equation (2) exactly. The numerical error concerns only the
fulfilment of the boundary conditions. This makes it possible to calculate the gradient in (1) without
additional error as well as a relatively easy evaluation of the accuracy of the solution.

The numerical application was implemented in a Microsoft Visual Studio 2010 environment in
Fortran 77 language. This enables the calculation of the flow field distribution and the current intensity
in a stripe containing any number of defects of any given shape.

3. Results

3.1. Collinear Defects

The purpose of these simulations was to investigate how the current in the conductive layer
depends on the number of defects on one line, assuming that the total length of these defects is the
same in each case. Defect lines were assumed to be perpendicular to the stripe axis and that their
lengths are the same. The gaps between defects are also the same. The distribution of the potential and
the flow field was analyzed depending on the percentage of the total length of defects ds in relation to
the width of the stripe w.

Figure 3 shows examples of the calculation of the potential distribution and the current density
flow field for one, two, three, and ten collinear defects with a total length ds = 60% of the whole
strip width. The plots created for the potential show a sharp change in their value on the defect line.
This effect is confirmed by the analytical calculations presented in [12,13]. When the number of defects
increases, these changes decrease to zero, and the dependence of the potential on the x coordinate
becomes linear, as for a strip without defects.

The calculated current values in each of these cases indicate that the greater number of short
defects has less impact on the current limitation in the stripe than the smaller number of long defects
of the same cumulative length. The reasons for this effect can be seen in the fact that near the end
points of the defects, the current density reaches the highest values, so that a greater number of such
points allows for a greater current value. The results of calculations of the current intensity for the
different numbers of cracks Ns and their different total lengths ds are presented in the charts in Figure 4.
Particular attention is drawn to the fact that regardless of how large the total length of the cracks is,
if their number increases, the current intensity tends to the same value imax, i.e., the value which would
appear in a stripe without defects.

It should also be noted that high values of current density in the vicinity of the end points of defects
may be the cause of local overheating of the material and, as a result, their increase. Moreover, inside the
defects near these points, high values of electric field intensity can be expected, which may cause
damaging electric microdischarges.

3.2. Stochastic Defects in a Square Area

The purpose of the simulations was to investigate how randomly distributed defects affect the
conductive properties of the stripe. In the adopted model, defects are automatically and stochastically
placed (using a pseudorandom number generator) from among the sections of a regular sieve covering
the stripe area (Figure 5). The problem formulated in this way is an example of the “bond percolation”
problem on a square lattice [34]. Classic solutions to this type of problems are based on discrete models.
In this study, the field method [35,36] was used to obtain the values of the current, taking into account
the exact image of the flow field.
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Figure 5. The examples of the obtained flow field distributions: (a) model 10 × 10, p = 26%, (b) model
10 × 10, p = 50%, (c) model 20 × 20, p = 26%, (d) model 20 × 20, p = 40%.

The first stage of the research consisted of calculating the distribution of the flow field and the
current intensity in a square area.

The variable parameters were the mesh size and the number of defects, which are represented by
the ratio:

p =
N

Nn −Nb
(7)
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where N is the number of cracks, Nn is the number of all mesh sections, and Nb is the number of mesh
sections at the edges of the stripe.

In order to determine how the stochastic nature of the model may affect the value of the current
intensity, a series of simulations were carried out for models with the same parameters but with
differently distributed defects. The results of these tests are presented in the charts in Figure 6. As it
should be expected, the relative standard deviations for the mean current values are larger when the
model is smaller (i.e., containing fewer mesh elements), and the greater the ratio p of the number of
defects to all mesh sections is. From these charts it can also be concluded that the percolation threshold
of the studied models is close to the value of p = 0.5, which corresponds to the theoretical value for an
analogous discrete model with infinite sizes determined by H. Kesten [37].
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Figure 6. Results of current calculations for models with mesh dimensions 10 × 10 (a) and 20 × 20 (b)
and different defect concentrations: p = 10%, 25%, 40%, 45%. Points marked with the same color for a
given mesh correspond to different draws of defects with the same model parameters.

On the basis of the simulations described, the dependencies of the current intensity as a function
of p were plotted in Figure 7.

3.3. Stochastic Defects in a Rectangular Area

The lengths of the actual conducting stripes are usually at least several times greater than their
widths. With the made assumptions, the dependence of the resistance of the conductive stripe without
defects is proportional to its length, but the presence of defects makes the stripe area not homogeneous
and this relationship cannot be easily derived from the results for the square area (it is enough to
note that near the percolation threshold extending the conductive stripe significantly increases the
probability of blocking the current flow completely).
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Figure 8 shows the results of the stripe resistivity tests depending on its l/w ratio for different mesh
sizes and the number of defects. From them, it can be concluded that the stripe resistivity significantly
depends on the stripe length for p≥ 0.3. At p≥ 0.4 concentrations and l/w > 4 stripe ratios, defects usually
form a structure that prevents the flow of current. The proximity to the percolation threshold in this
case makes the strip resistance strongly dependent on the specific defect randomization, which explains
the large values of the spread bars in Figure 8.Electronics 2020, 9, x FOR PEER REVIEW 10 of 13 
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A statistical analysis of the results presented in Figure 8 shows a clear dependence of the sheet
resistance on the stripe length for p ≥ 0.2. Table 1 shows the results of a linear regression study of the
simulations described in the paper.
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Table 1. Linear regression results of relative sheet resistance as a function of l/w stripe ratio(
Rs

Rsmin
≈ a l

w + b
)
.

p [%] Value Error

10
a 9.82 × 10−5 3.6 × 10−5

b 1.141 0.002

20
a 6.28 × 10−4 2.6 × 10−4

b 1.44 0.16

30
a 0.0042 0.0012

b 2.12 0.07

40
a 0.155 0.019

b 1.80 0.53

4. Conclusions

The paper presented the results of a simulation of the current flow field in thin conductive stripes
with defects distributed along a line perpendicular to the stripe axis and distributed randomly over its
entire surface. Based on the calculations, the following conclusions were drawn:

1. The increase in stripe resistance caused by collinear defects (see Figure 3) depends not only on
their total length but also on their number. A larger number of shorter defects may present many
times less resistance than a small number of longer defects of the same total length (see the plot in
Figure 4).

2. For a set summary length of infinitely thin collinear defects, the increment of resistance (∆R)
caused by them decreases to zero as their number increases.

3. Simulations of the current flow in layers containing many distributed linear defects generated
randomly on a square grid (Figure 5) confirm the theoretical value of the percolation threshold
for the analogous problem of the discrete model with infinite dimensions at the level of p = 0.5.

4. Due to the stochastic nature of the analyzed models, the calculated values of the current intensity
may differ significantly, despite the same parameters of these models (Figures 6 and 7). The smaller
the model is (fewer mesh elements), the greater the scatter of these values (relative standard
deviation) is. Regardless of the size of the model, it is relatively small in the range of 0 ≤ p ≤ 0.2.
After exceeding this value, it begins to increase quite rapidly, reaching the highest values near the
percolation threshold.

5. Averaged current values are similar for models of different sizes in the range of 0 ≤ p ≤ 0.35
(Figure 7). In this range, it can be concluded that the calculations of the conductive layer resistance
for relatively small calculation models (e.g., 10 × 10) are, after averaging, adequate for models of
any size.

6. The sheet resistance of a stripe with defects may increase with its length. This effect becomes
visible at p = 0.2, and it becomes clearer when approaching the percolation threshold (Figure 8).
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