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Abstract: Direction finding and target tracking make demanding requirements on the measurement
of incoming angles of electromagnetic waves. A monopulse antenna, based on the singular symmetric
spoof surface plasmon polariton (SSPP) structure, is proposed for high-accuracy angle sensing.
The singular SSPP structure is composed of periodic corrugated grooves for the confinement of the
electromagnetic fields. Due to the microstrip–coplanar waveguide transition, the fields along both
sides of the SSPP add constructively to form the endfire beam at the sum port and destructively
to form the null radiation in the endfire direction at the difference port. An optimization based on
the team progress algorithm is adopted to facilitate this antenna design. A prototype is designed
and fabricated to validate the design principle, and measured results agree with the simulation.
The proposed antenna shows a wide bandwidth ranging from 5.0 GHz to 7.5 GHz for both the sum
and difference ports with the return loss greater than 10 dB, realizing a relative bandwidth of 40%.
The isolation for the sum and difference ports is higher than 21 dB, and the null depth is larger than
20 dB over the entire operating range, which is favorable for the high accuracy angle sensing and
measurement. This monopulse antenna has broad prospect in angle measuring systems such as
direction finding and radar tracking scenes.

Keywords: monopulse antenna; spoof surface plasmon polariton; angle measurement; endfire
antenna; sum and difference beams

1. Introduction

Along with the frequency, amplitude, phase, and the polarization, the propagating direction is a
basic factor of the electromagnetic wave. For the communication applications, the electromagnetic
wave is radiated and sent to the specified directions to realize the information interchange. This leads
to the different types of radiation patterns of the antennas, namely omni-directional pattern, directional
pattern, and so forth. Moreover, it provides rich information when applying in the radar systems.
The antennas may obtain the distance of the detected object [1,2], the direction to the objects [3], and
velocity of the objects [4,5] by analyzing parameters of the echo signals [6], where information is
attached with the change of propagation properties of the radio waves [7].

Consequently, for providing the target angle information, one task for the radar systems is
to measure the propagating direction of the electromagnetic waves. Direction finding antennas
and systems and tracking radars have been designed for radio navigation and satellite positioning,
based on conical-scanning antennas and the sequential lobing method [8]. The lag error, due to the
necessary time period of the detecting cycle, may cause error in the measured tracking angle, and
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simultaneous detection is required for high detecting precision [9]. Monopulse antenna is another
scheme, providing simultaneous lobe comparison and the technique in direction measuring of radiation
from reflected signals.

Monopulse antennas configurations have been widely designed with array and multi-aperture
schemes [10–17], which provide high gain of sum beam and deep radiating null in the detecting
direction. Meanwhile, a feeding network with high complexity is required with the increase of element
number [18–20]. Antennas with a single aperture [21,22] and simple feeding network, which has the
potential for array application scenarios and reducing the complexity of designing the feeding network,
requires further investigation.

Optimization of the reflection coefficient is of great significance for the proposed antenna because
quantities of variables have the influence on the reflection coefficient, including the dimensions
of the feeding structure and the SSPP radiating structure. Many optimization methods have been
widely adopted in antenna and microwave component designing scenarios, including electromagnetic
band-gap [23], spatial phase shifters [24], frequency selective surface, and array synthesis [25–27].
Among the algorithms, the team progress algorithm (TPA) is suitable for the optimization of the
proposed antenna, which is an intelligent optimization algorithm that simulates a team upgrading
process with member learning, exploring, and renewal, and it has the abilities of global, local, and
directional search [28].

In this work, a monopulse antenna is designed with the singular symmetric spoof surface plasmon
polariton (SSPP) structure. The singular SSPP structure is composed of periodic corrugated grooves,
which confines the electromagnetic field near the metal and dielectric interface. At the microstrip line
and the coplanar waveguide, the field along both sides of the SSPP add constructively to form the
endfire beam at the sum port and destructively to form the null radiation in the endfire direction at
the difference port. A prototype is designed and optimized to validate the proposed design principle,
and the measured results agree with the simulation. In the frequency range from 5.0 GHz to 7.5 GHz,
the proposed antenna shows a return loss greater than 10 dB for both the sum and difference ports,
realizing a relative bandwidth of 40%. The isolation for the sum and difference ports is higher than
21 dB, and the null depth is larger than 20 dB over the entire operating range. Consequently, the
monopulse antenna is favorable for the high accuracy angle sensing and measurement, and it shows
broad prospect in direction finding and radar tracking scenes.

The remainder of the paper is organized as follows. Section 2 presents the antenna structure and
the design principle of the proposed antenna, including the sum and difference feeding network, the
optimization procedure, the radiation performance, and the mode isolation of the SSPP. The simulated
and measured results are presented and discussed in Section 3. A brief conclusion is presented in
Section 4.

2. Analysis and Design

The structure of the proposed monopulse antenna and the design principle would be described in
this section. The operating mechanism of the sum and difference feeding network is also be included
in this section.

2.1. Antenna Configuration

The configuration of the proposed monopulse antenna is depicted in Figure 1. For showing
the detailed structure, the front side view, back side view, top view, and the side view are provided.
The monopulse antenna is composed of an SSPP transmission line fed by a coplanar waveguide port
and a microstrip line port. The SSPP, with corrugated grooves along both sides, supports the slow
wave mode and confines the energy near its metal and dielectric interface. A gradually narrowing
termination is adopted at the end of the SSPP structure for matching with the free space and releasing
the confined energy to the space. A metal plate is installed in the middle of the SSPP structure, and
thus, the interrelation between the SSPP modes along both sides would be diminished.
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Figure 1. Antenna configuration. (a) Top side view; (b) back side view; (c) top view; (d) side view. 

2.2. Field Confinement of the Spoof Surface Plasmon Polariton 

The SSPP mode is an electromagnetic field distribution along the interface of metal and dielectric 
mediums. The phase velocity for the SSPP mode is slower than that for the light propagating in the 
vacuum. Due to the structure along the interface, the field is confined closely near to it and transmits 
along the SSPP. The corrugated grooves, with different periods, depths, and gap widths, could be 
utilized for enhancing the field confinement. Meanwhile, due to this field confinement, the effective 
permittivity of this SSPP transmission line is altered and varies with the operating frequency. For the 
high frequency, due to the increased energy proportion in the substrate, the effective permittivity 
adds nonlinearly with the frequency. This also leads to the decrease of the propagation velocity, 
which can be inferred from the dispersion curves shown in Figure 2. The dispersion curves are 
obtained in the CST Microwave studio by using the eigenmode solver. For the periodic grooves with 
greater depth, the dispersion effect becomes obvious, and the cutoff frequency decreases quickly. The 
change of the cutoff frequency, resulting from the corrugated grooves, limits the operating frequency 
range for the proposed monopulse antenna. 

Figure 1. Antenna configuration. (a) Top side view; (b) back side view; (c) top view; (d) side view.

A coplanar waveguide port and a microstrip line port are utilized for feeding the proposed
monopulse antenna. At the microstrip line port, the electromagnetic fields propagating along the SSPP
structure add constructively and form an endfire radiation pattern. On the contrary, at the coplanar
waveguide port, the electromagnetic fields would add destructively and lead to a difference beam with
a null in the endfire direction. Therefore, a monopulse antenna with simultaneous sum and difference
beams would be realized, corresponding to the microstrip line port and the coplanar waveguide
port, respectively.

2.2. Field Confinement of the Spoof Surface Plasmon Polariton

The SSPP mode is an electromagnetic field distribution along the interface of metal and dielectric
mediums. The phase velocity for the SSPP mode is slower than that for the light propagating in the
vacuum. Due to the structure along the interface, the field is confined closely near to it and transmits
along the SSPP. The corrugated grooves, with different periods, depths, and gap widths, could be
utilized for enhancing the field confinement. Meanwhile, due to this field confinement, the effective
permittivity of this SSPP transmission line is altered and varies with the operating frequency. For the
high frequency, due to the increased energy proportion in the substrate, the effective permittivity adds
nonlinearly with the frequency. This also leads to the decrease of the propagation velocity, which can
be inferred from the dispersion curves shown in Figure 2. The dispersion curves are obtained in the
CST Microwave studio by using the eigenmode solver. For the periodic grooves with greater depth,
the dispersion effect becomes obvious, and the cutoff frequency decreases quickly. The change of the
cutoff frequency, resulting from the corrugated grooves, limits the operating frequency range for the
proposed monopulse antenna.
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Figure 2. The dispersion curves of units with different dimensions. 
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the slotlines and feeds the two-element array. Meanwhile, the CPW port is isolated from odd mode 
signals due to the connecting bridge over the ground planes of different potential. Similarly, when 
the input is at the CPW port, even mode field distribution is established in the CPW, and the 
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2.3. Sum and Differential Feeding Network

Since the field confinement of the SSPP split the center conductor into two separated SSPP
transmission lines, the antenna is considered as a two-element array and fed by two slotlines of the
feeding network, which is known as the sum and difference (or monopulse) network. The sum or
difference radiating pattern of the proposed monopulse antenna is established in the far-field region
when the field on the two sides of the symmetric SSPP structure is in the same or symmetric distribution.
The sum and difference feeding network is composed of a coplanar waveguide (CPW) on the top layer
and a microstrip line on the bottom layer. The microstrip line is coupled with the CPW. When the
input port is the microstrip line, the coupled slotlines of the CPW with odd mode field distribution
are provided. The same field distribution produces a couple of in-phase signals in the slotlines and
feeds the two-element array. Meanwhile, the CPW port is isolated from odd mode signals due to the
connecting bridge over the ground planes of different potential. Similarly, when the input is at the
CPW port, even mode field distribution is established in the CPW, and the microstrip line is isolated
from the even mode signals. In the even mode, symmetric field distribution forms the equivalent
out-of-phase signals and feeds the symmetric SSPP structure, and destructive addition of the field is
formed at the terminal of the center conductor.

2.4. Design and Optimization Using Team Progress Algorithm

The team progress algorithm (TPA) [28,29] is utilized for the design and optimization of the
proposed antenna. The optimization procedure based on the TPA is shown in Figure 3. For optimization,
the software depicted in Figure 4 is implemented, and the full-wave simulation is realized by
incorporating with the CST microwave studio (MWS). The optimization settings, such as the parameters,
the objective functions, and the classifications of the performance, are preset in the main program.
The parameters are predicted based on the team progress algorithm and are updated to the CST MWS.
The scattering parameters are calculated by the time domain solver of CST MWS. After calculating in
the CST MWS, the results are returned to the main program. Then, the evaluation and comparison
of the performance, the classification of the samples, and the decision making are performed in the
main program.
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For the proposed antenna, the field distribution and the radiated sum and difference beams are
basically determined by the SSPP and the feeding modes, which have been described in Sections 2.2
and 2.3 and can be designed theoretically. The port matching performance is optimized by the TPA,
and the convergence result for the sum port is shown in Figure 4. In this optimization, the maximum
iteration number is set as 140, including 40 team members served in the elitist group and the plain
group. According to the result in Figure 4, the optimization procedure converges quickly after the
initialization of the elitist group and the plain group. TPA is a global optimization algorithm, and it
could search the optimum in the entire space. With the increase of the iteration, the percentage of
“good” performance increases constantly. Meanwhile, the TPA keeps searching in the entire space,
trying to avoid the local optimum. This leads to the scattered samples in the iteration optimization
procedure, as shown in Figure 4. A maximum reflection coefficient of −10.68 dB in the frequency range
from 5.0 GHz to 7.5 GHz is obtained at the 133rd calculation.
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2.5. Monopulse Radiation Performance

According to the analysis above, the sum and difference beam is achieved by different feeding
modes. The signal fed by the sum beam port 1 is transmitted to the corrugated section by the
feeding network with the equal magnitude and in-phase fields. The magnitude of the transverse field
distribution for the sum beam is presented in Figure 5a. The field distribution and radiation patterns
are obtained with the time domain solver of CST MWS. The gradient grooves and flaring are favorable
for transforming the slotline mode to the SSPP mode. When the signals of two sides of SSPP reach the
antenna terminal through the SSPP and then gradually radiate to the free space, the sum beam pattern
is obtained due to the in-phase superstition of far-field electric fields; meanwhile, the signal fed by the
difference port 2 is divided at the two sides of SSPP with the equal magnitude and out-of-phase electric
fields. Figure 5b shows the magnitude of transverse field distribution of the difference beam. It can be
seen that the signals on the two sides are out-of-phase both for the transmission and radiation states.
As a result, the difference beam pattern is obtained in the far field. Meanwhile, the central metal plate
can efficiently isolate the interference of electric fields with different phase velocity in the transmission
region and ensure that the energy on the both sides are transmitted to the end of the SSPP without an
additional phase shift.
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Figure 5. Magnitude of transverse field distribution of the sum beam and difference beam at 6.45 GHz
on the top layer of the antenna. (a) Sum beam; (b) difference beam.

The corrugated groove length has a major effect on the endfire directivity of the antenna since the
SSPP section cannot absolutely confine the electromagnetic energy on the interface of the metal and
dielectric substrate. The endfire directivity of the sum beam for different lengths of corrugated groove
section varying with frequency is plotted in Figure 6. A shorter length corresponds to a relatively
lower directivity, while a longer length means a higher directivity but with a narrower band of constant
directivity. The length of 100 mm is a compromise between high directivity and a wide band.
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2.6. Directivity in the Endfire Direction

The variation of directivity reflects the significance of dimension design for the antenna.
The directivity of the antenna is influenced by the phase distribution on the aperture of the antenna.
The phase distribution depends mainly on the phase difference between the power propagating on the
SSPP structure and the power leaked into free space by the slot–SSPP transition structure. The field is
confined in a closer range to the conductor of the SSPP, and at the terminal section, electromagnetic
field is released. Meanwhile, the field leaked by the slot–SSPP transition structure is at a distance from
the conductor, as is shown in Figure 5. As is depicted in Figure 2, the phase constant of the SSPP
increases rapidly with the growth of frequency, while the phase constant of waves propagating in the
free space is a constant. According to [30], nonuniform phase distribution will result in a directivity
drop due to the field addition that is formed in the far-field region:

D(dB) = 20lg[Acos(∆k(f) · n · l) + 1] − 10lg
[
Prad/C2

]
(1)

where ∆k(f) is the difference of phase constant, n is the unit cell number of the SSPP structure, l is the
length of the SSPP unit cell, Prad is the radiated power, and C is a frequency-independent constant.
This equation demonstrates the relation between directivity D and phase difference ∆k(f)·n·l. With the
length change of the SSPP, the phase difference increases, resulting in nonuniform phase distribution on
the aperture. Consequently, destructive addition is formed and the directivity of the sum beam drops
at the frequency where the phase difference between the radiated fields is 180 degrees. The directivity
variation corresponding to frequency is depicted in Figure 6.

Dimensions of the corrugated edge of the center conductor also requires attention in design. As is
shown in Figure 2, dispersion curves of unit cells with different dimensions are various, and, according
to (1), the phase constant k increases with the growth of depth of the corrugations. The directivity
variation versus groove depth d is plotted in Figure 7, demonstrating that the frequency of directivity
drop reduces with the growth of frequency, while in the operating band, the directivity is enhanced
up to 1 dB when d increases. Therefore, the directivity reaches a minimum when the total phase
difference is at 180◦. As is depicted in Figure 8, the electric field near the SSPP and in free space forms a
phase difference of 180◦ at the aperture of at 10 GHz, where the directivity of the antenna with a 4 mm
groove depth reaches its minimum. To avoid the directivity drop due to the dispersion and enhance
the directivity of sum beams provided by the field confinement in operating frequency, the dimensions
are expected to be particularly designed.
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3. Fabrication and Results

3.1. Fabrication

The proposed antenna is fabricated with Rogers RO4003C, whose relative permittivity is 3.55 at 10
GHz and thickness is 0.813 mm. Two copper metal plates are adopted and soldered in the middle of the
singular SSPP structure to enhance the isolation of the SSPP modes on both sides. The dimensions of
the antenna configuration are shown in Table 1, and the fabricated antenna is demonstrated in Figure 9.

Table 1. Dimensions of the proposed antenna (mm).

Ww Wtg Wsl Lc Ls Lp hw Ltg Wcc

108 25.5 0.1 16 134 4 30 30 1

Ws Wcs MR Lr LSSPP hsub MSn MSw Wp

70 19 3.6 100 17.5 0.813 0.656 1.87 2.57
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3.2. Scattering Parameters

The scattering parameters for the proposed monopulse antenna is measured with an Agilent vector
network analyzer (VNA) N5230A. The simulated and measured results show acceptable agreement, as
is depicted in Figure 10. The measured reflection coefficient is below −10 dB in the frequency range
from 5.0 GHz to 7.5 GHz for both the sum and difference ports, showing good matching operating
states. This realized bandwidth corresponds to a relative bandwidth of 40%, and it makes the proposed
antenna applicable for wide band angle measurement systems. Meanwhile, the isolation for the sum
and difference ports is higher than 21 dB in the entire operating frequency range. Consequently, the
interference between the sum beam and the difference beam is minimized. The handmade copper
plate and manual installation accounts for the performance discrepancy between the simulated and
measured results. An isolation wall based on both sides of the copper covered printed circuit board
and fixing holes could alleviate this discrepancy.
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3.3. Radiation Performance

Radiation performance, including gain and radiation patterns of the proposed monopulse antenna,
is measured in the anechoic chamber, and the measurement installation of this antenna is shown in
Figure 11. One port is terminated with a matching load when the beam corresponding to another port
is measured.

Electronics 2020, 9, x FOR PEER REVIEW 9 of 17 

 

3.2. Scattering Parameters 

The scattering parameters for the proposed monopulse antenna is measured with an Agilent 
vector network analyzer (VNA) N5230A. The simulated and measured results show acceptable 
agreement, as is depicted in Figure 10. The measured reflection coefficient is below −10 dB in the 
frequency range from 5.0 GHz to 7.5 GHz for both the sum and difference ports, showing good 
matching operating states. This realized bandwidth corresponds to a relative bandwidth of 40%, and 
it makes the proposed antenna applicable for wide band angle measurement systems. Meanwhile, 
the isolation for the sum and difference ports is higher than 21 dB in the entire operating frequency 
range. Consequently, the interference between the sum beam and the difference beam is minimized. 
The handmade copper plate and manual installation accounts for the performance discrepancy 
between the simulated and measured results. An isolation wall based on both sides of the copper 
covered printed circuit board and fixing holes could alleviate this discrepancy. 

5.0 5.5 6.0 6.5 7.0 7.5

 MeaS11
 MeaS12

 MeaS22

0

−10

−20

−40

−30  MeaS21

M
ag

ni
tu

de
 o

f S
ca

tte
ri

ng
 P

ar
am

et
er

s 
(d

B)

Frequency (GHz)

 SimS11

 SimS22

 SimS21

 SimS12

 
Figure 10. Simulated and measured magnitude of scattering parameters. 

3.3. Radiation Performance 

Radiation performance, including gain and radiation patterns of the proposed monopulse 
antenna, is measured in the anechoic chamber, and the measurement installation of this antenna is 
shown in Figure 11. One port is terminated with a matching load when the beam corresponding to 
another port is measured.  

 

Figure 11. The measurement setup in the anechoic chamber.

Gain of the antenna in the endfire direction is measured, and the results of the measured gain are
demonstrated in Figure 12 along with the simulated ones. The measured results show the same trend
of gain variation with the growth of frequency, which is also in good agreement with the simulated
results. For the gain corresponding to the sum beam port, it shows a flat curve of about 10 dBi with a
fluctuation less than 1 dB. In contrast to the sum beam, the gain for the difference beam port is lower
than −11 dB in the frequency range from 5.25 GHz to 7.25 GHz. Consequently, a sum–difference ratio
of 20 dB is obtained for the proposed monopulse antenna in the entire wide bandwidth.
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Radiation patterns of the proposed antenna are measured in the anechoic chamber. Measured and
simulated patterns, including both the sum and difference beams, are depicted in Figure 13, according
to which the measurement agrees well with the simulation.
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Figure 13. Cont.
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Figure 13. Simulated and measured normalized radiation patterns of co-polarization and cross-
polarization. (a) E-plane pattern for the difference beam at 5.4 GHz, (b) E-plane pattern for the sum 
beam at 5.4 GHz, (c) H-plane pattern for the difference beam at 5.4 GHz, (d) H-plane pattern for the 
sum beam at 5.4 GHz, (e) E-plane pattern for the difference beam at 6.45 GHz, (f) E-plane pattern for 
the sum beam at 6.45 GHz, (g) H-plane pattern for the difference beam at 6.45 GHz, (h) H-plane 
pattern for the sum beam at 6.45 GHz, (i) E-plane pattern for the difference beam at 6.7 GHz, (j) E-
plane pattern for the sum beam at 6.7 GHz, (k) H-plane pattern for the difference beam at 6.7 GHz, (l) 
H-plane pattern for the sum beam at 6.7 GHz. 

Figure 13. Simulated and measured normalized radiation patterns of co-polarization and
cross-polarization. (a) E-plane pattern for the difference beam at 5.4 GHz, (b) E-plane pattern
for the sum beam at 5.4 GHz, (c) H-plane pattern for the difference beam at 5.4 GHz, (d) H-plane pattern
for the sum beam at 5.4 GHz, (e) E-plane pattern for the difference beam at 6.45 GHz, (f) E-plane pattern
for the sum beam at 6.45 GHz, (g) H-plane pattern for the difference beam at 6.45 GHz, (h) H-plane
pattern for the sum beam at 6.45 GHz, (i) E-plane pattern for the difference beam at 6.7 GHz, (j) E-plane
pattern for the sum beam at 6.7 GHz, (k) H-plane pattern for the difference beam at 6.7 GHz, (l) H-plane
pattern for the sum beam at 6.7 GHz.
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The radiation patterns at the 5.4 GHz, 6.45 GHz, and the 6.7 GHz are measured and compared with
the simulated ones. The beams associated to the sum port show a maximum radiation in the endfire
direction, having a front–back ratio of about 15 dB. The measured sum beam demonstrates a side lobe
level of about −10 dB, and this may be further suppressed with the array factor in array designs. For
the beams corresponding to the difference port, it can be inferred that the null is constantly in the
endfire direction, and a stable null angle is important for the direction measurement and specification.
The measured null depth at these three frequency points is all below −20 dB, which coincides with the
measured sum and difference gain shown in Figure 13. Thus, the stable null direction and the large
null depth facilitate the measurement of the incoming wave angle with high accuracy.

The difference beam of the proposed monopulse is characterized using the phase and magnitude
difference over the operating band. The measurement setup is shown in Figure 14. Two antennas
are installed with a distance of 1.0 m in the transmitting–receiving mode. The vector network
analyzer is utilized for measuring the transmission coefficient between the two antennas. For the
transmitting antenna, the sum port is excited, while the difference port is terminated with a match load.
The difference port of the receiving antenna is connected to the VNA, and the sum port is matched to a
50-ohm load. For reducing the interference for the secondary reflection, absorbers are placed between
the transmission path of the two antennas.
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It is worth noting that the received signal at the sum port and the difference port originates from
one and the same reflected signal. For the reflected signals from the targets appeared symmetrically on
both sides of the boresight directions, they incident on the monopulse antenna in +θ and −θ directions,
as shown in Figure 15. The corresponding difference signals can be expressed as follows

D+θ(t) = sin(wt + ϕ) − sin(wt + ϕ + n) = 2 sin(n/2)cos(wt + ϕ + π + n/2) (2)

D−θ(t) = sin(wt + ψ + m) − sin(wt + ψ) = 2 sin(m/2)cos(wt + ψ + m/2). (3)
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A comparison, between the proposed monopulse antenna and the reference antennas, is shown 
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For the target with the same distance and the same scattering performance, the propagating phase
delay in +θ and −θ directions is the same, and we have

ϕ = ψ. (4)

Due to the symmetrical configuration of the monopulse antenna, the phase difference between
the two antenna elements is the same, and we have

n = m. (5)

Consequently, according to (2)–(5), the difference signals in +θ and −θ directions for the same
targets satisfy the relation shown as follows

D+θ(t) = −D−θ(t). (6)

For the sinusoidal signal, (6) implies that the two difference signals have the same magnitude and
the reversed phases. This is the principle for the measurement shown in Figure 15.

The transmitting–receiving mode measured results are shown in Figure 16. The transmission
coefficient for the endfire direction along with these for the ±3◦ directions are measured, and their
phase and magnitude are provided. According to Figure 16a,b, the phase difference between the −3◦

and the endfire directions is positive, while it is negative between the +3◦ and the endfire directions.
The opposite sign provides the tracking direction for the angle measurement systems. The magnitude
difference, between the ±3◦ directions and the endfire direction, is above 5 dB in most frequency points.
Therefore, the phase and magnitude difference show clearly the performance of the difference beam
and its ability for angle measurement. The measured results validate the analysis and the result shown
by (6). The difference beam has high angle accuracy, and just for this reason, the measurement of
difference beam performance put demanding requirements for the antenna installation. Therefore, the
results for the transmitting–receiving mode measurement are a qualitative validation for the difference
beam performance. Along with the results measured in the anechoic chamber, the angle measurement
performance of this monopulse antenna could be characterized comprehensively.
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A comparison, between the proposed monopulse antenna and the reference antennas, is shown
in Table 2. As can be seen, the antenna of this work has the widest bandwidth the same as [13] with
a single SSPP structure. This antenna is favorable for the flush mounted scene due to the endfire
radiation patterns.

Table 2. Performance of the proposed monopulse antennas and other antennas.

Antennas Bandwidth
(GHz)

Relative
Bandwidth (%) Antenna Type Boresight Direction

13 8–12 40 4 × 6 Yagi array
with lens Broadside

15 9.16–9.64 5 10240-element
reflectarray ±25◦ around broadside

17 8–8.5 6 5-element horn feed
reflector Axis of reflector

19 23.5–24.5 4 Radial line slot arrays Broadside

21 2.12–2.5 16 Single patch Normal direction of
the patch

This work 5.0–7.5 40 Single SSPP antenna Endfire

4. Conclusions

In this work, a monopulse antenna based on the singular SSPP structure is designed, and the
principle of realizing the sum and difference beams is analyzed and validated. Superposition of
the radiated electromagnetic fields of the in-phase and out-of-phase cases, provided by the singular
SSPP, leads to the simultaneous sum and difference endfire beams. A prototype of the antenna is
designed, fabricated, and measured in the frequency band from 5.0 GHz to 7.5 GHz, showing a relative
bandwidth of 40%. The isolation for the sum and difference ports is greater than 21 dB, and the null
depth is larger than 20 dB over the entire operating range, facilitating the high accuracy angle sensing
and measurement. This monopulse antenna can be used for angle measuring systems such as direction
finding and radar tracking scenes.

The bandwidth and the installation process could be further improved. The proposed monopulse
antenna realizes a relative bandwidth of 40%, and the angular sensing and tracking functions could be
enhanced with a larger bandwidth. On the other hand, the installation of this antenna is somewhat
complex and inaccuracy, leading to the performance deterioration. An isolation wall based on the
printed circuit board and fixing holes could be a solution for this problem.
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