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Abstract: Recently, the leakage power consumption of Internet of Things (IoT) devices has become a
main issue to be tackled, due to the fact that the scaling of process technology increases the leakage
current in the IoT devices having limited battery capacity, resulting in the reduction of battery lifetime.
The most effective method to extend the battery lifetime is to shut-off the device during standby
mode. For this reason, spin-transfer-torque magnetic-tunnel-junction (STT-MTJ) based nonvolatile
flip-flop (NVFF) is being considered as a strong candidate to store the computing data. Since there
is a risk that the MTJ resistance may change during the read operation (i.e., the read disturbance
problem), NVFF should consider the read disturbance problem to satisfy reliable data restoration.
To date, several NVFFs have been proposed. Even though they satisfy the target restore yield of 4σ,
most of them do not take the read disturbance into account. Furthermore, several recently proposed
NVFFs which focus on the offset-cancellation technique to improve the restore yield have obvious
limitation with decreasing the supply voltage (VDD), because the offset-cancellation technique uses
switch operation in the critical path that can exacerbate the restore yield in the near/sub-threshold
region. In this regard, this paper analyzes state-of-the-art STT-MTJ based NVFFs with respect to
the voltage region and provides insight that a simple circuit having no offset-cancellation technique
could achieve a better restore yield in the near/sub-threshold voltage region. Monte–Carlo HSPICE
simulation results, using industry-compatible 28 nm model parameters, show that in case of VDD

of 0.6 V, complex NVFF circuits having offset tolerance characteristic have a better restore yield,
whereas in case of VDD of 0.4 V with sizing up strategy, a simple NVFF circuit having no offset
tolerance characteristic has a better restore yield.

Keywords: magnetic tunnel junction (MTJ); near/sub-threshold voltage region; nonvolatile flip-flop
(NVFF); read disturbance; restore yield

1. Introduction

Recently, while technology node shrinks down, the leakage power consumption has been increased,
as shown in Figure 1 [1]. The leakage power consumption of digital device such as Internet of Things
(IoT) has become the main issue due to the limited battery lifetime [2]. In order to overcome this issue,
the low leakage power design technique has been receiving a lot of attention. To improve the battery
lifetime of IoT devices and minimize the leakage power consumption, various circuit techniques have
been proposed such as power gating, stacked transistors, and the multiple threshold complementary
metal oxide semiconductor (CMOS) techniques [3,4]. Among these techniques, the most straightforward
method is to operate at low voltages (i.e., near/sub-threshold voltage region) during active mode and
turn off the device during standby mode, since the IoT devices are usually operated in the standby
mode. If supply voltage (VDD) is zero during standby mode, no current flows through the circuit,
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resulting in zero standby power consumption. However, all computing data for the operation will
disappear due to the flip-flop’s volatile nature. To realize the zero VDD scheme during standby mode,
the IoT devices must contain the nonvolatile flip-flop (NVFF) using the nonvolatile elements.
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Among various nonvolatile elements, the spin-transfer-torque magnetic tunnel junction (STT-MTJ)
is regarded as a strong candidate because of its various advantages, such as high endurance, scalability,
and easy integration with CMOS technology [5,6]. The STT-MTJ can save the computing data by using
the two different resistance values such as low resistance (RL) and high resistance (RH). To save the
computing data into the STT-MTJ, the current flowing through the STT-MTJ should be larger than the
critical switching current (IC) and longer than IC pulse width. Furthermore, when the saved data is
sensed (restored), the current flowing through the STT-MTJ should be smaller than the IC and shorter
than IC pulse width. If the sensing current is larger than the IC and/or longer than IC pulse width
during sensing (restoring) operation, there is a risk that the MTJ resistance value may change, known as
the read disturbance problem [7–9]. Thus, a proper sensing current strength and pulse width needs to
be considered for the STT-MTJ-based NVFF designs.

Generally, NVFF has four operation modes, such as normal, standby, write, and sensing
modes. In case of the normal mode, the NVFF behaves as a conventional volatile FF (e.g., transmission-
gate-based master-slave FF). In case of the write mode, the computing data of the FF is saved into the
MTJs prior to blocking the supply power. In case of the standby mode, supply power is fully turned
off to actualize the zero standby leakage power, and the MTJ has the stored data of FF core. In case of
the sensing mode, it is possible to restore the stored data of STT-MTJ into the FF core.

To date, several separated latch and sensing circuit (SLS) structure based NVFFs have been
proposed [10–13] to independently optimize the circuit and flip-flop core. Even though they satisfy the
target restore yield of 4σ (it was set to 4σ to guarantee a 96.88% (=Φ(4σ)1000) yield when 1000 NVFFs are
assumed, where Φ() is the cumulative distribution function of the standard normal distribution [11–13])
in super-threshold voltage region, it is hard for them to satisfy target restore yield of 4σ in the
near/sub-threshold voltage region no matter how much the size and time increase. Furthermore,
although the NVFF operating in the near-threshold voltage region [11] was proposed, it is difficult
to satisfy the target restore yield of 4σ if the target read disturbance margin of 6σ (it was set to
guarantee 99% yield when 10,000 access per a single cell is assumed by considering the stochastic
nature of MTJ [13]) is considered. Thus, most of the state-of-the-art STT-MTJ-based NVFFs cannot
satisfy the target restore yield and target read disturbance margin simultaneously at all corners in the
near/sub-threshold voltage region.

In this paper, among the various recently proposed state-of-the-art NVFFs employing
different emerging nonvolatile elements, such as field-induced magnetization reversal MTJ [14,15],
STT-MTJ [10–13,16–23], complementary polarizer MTJ [24], spin-orbital-torque MTJ [25,26],
memristor [27–30], ferroelectric capacitor (FeCAP) [31–34], and ferroelectric field-effect transistor
(FeFET) [35,36], four state-of-the-art STT-MTJ-based NVFFs with the SLS structure were simulated and
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described why the NVFFs do not satisfy the target restore yield according to VDD. The analysis of the
silicon-proven NVFFs with the merged latch and sensing circuit (MLS) structure can be found in the
reference texts (see [13]). The rest of this paper is as follows. Section 2 describes the operation and
analysis of the four state-of-the-art STT-MTJ-based NVFFs. Section 3 describes simulation results and
comparison. Section 4 presents the conclusions.

2. State-of-the-Art STT-MTJ-Based NVFFs

In this section, the operation of four state-of-the-art STT-MTJ-based NVFFs [10–13] is described.
Figure 2 shows the sensing circuit diagrams of the state-of-the-art NVFFs proposed by Na et al. [10],
Song et al. [11], Na et al. [12], and Choi et al. [13].
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Figure 2. Sensing circuit diagrams of state-of-the-art NVFFs. (a) Na et al. [10]. (b) Song et al. [11].
(c) Na et al. [12]. (d) Choi et al. [13].

In the sensing mode of Na’s NVFF [10] (Figure 2a), SE signal becomes 1. Then, PW1 and NW2 are
turned on and the sensing inverter (PSEN2, PSEN1 and NSEN) starts to operate. Current flows from PW1 to
NW2. When the resistance of MTJA (RMTJA) is low resistance (RL) and the resistance of MTJB (RMTJB) is
high resistance (RH), the X node voltage (VX) becomes high voltage (VH = VDD × RH/(RL + RH)). In the
similar manner, when RMTJA is RH and RMTJB is RL, VX becomes low voltage (VL = VDD × RL/(RL + RH)).
If trip voltage of the sensing inverter is ideal (VTRIP = VDD/2 = (VL + VH)/2), the output voltage (VY) of
the sensing inverter is amplified to VDD or GND by the inverter gain (AINV) (VY = VX × AINV). Then,
the VY is delivered to FF core. Thus, the stored data in MTJ is restored.

In the sensing mode of Song’s NVFF [11] (Figure 2b), the SE (SE = P1 + P2 + P3 + P4, meaning
logical ORing of P1, P2, P3, and P4) signal becomes 1. The threshold voltage (VTH) of NL and NR is
stored in capacitors CSA_L and CSA_R, respectively. Then, the output node voltages (VOUT and VOUTB)
are precharged to GND. If RMTJA is RL and RMTJB is RH, the VOUTB becomes higher voltage and VOUT

becomes lower voltage because the current flowing through MTJA is higher than the current flowing
through MTJB. Since the gate voltage of NR is higher than NL, the NR quickly discharges VOUT because
of the cross-coupled NMOS structure. As a result, VOUTB becomes VDD and VOUT becomes almost
GND, respectively. Then, the VOUT is delivered to FF core. Thus, the stored data in MTJ is restored.

The sensing mode operation of Na’s NVFF [12] (Figure 2c) is the same as the operation of Song’s
NVFF except for the inclusion of NL2 and NR2 and reverse-connected MTJ structure. The purpose
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of the NL2 and NR2 is to isolate between the VOUT and VOUTB during the offset-cancelling phase,
leading to the improvement in the offset tolerance characteristic. The reverse-connected MTJ structure
improves the read disturbance margin by reducing the read current (Iread) causing the read disturbance.

The sensing mode operation of Choi’s NVFF [13] (Figure 2d) is similar to the operation of Na’s
NVFF [10] but auto-zeroing and dynamic reference voltage (DRV) techniques are added to improve
the read yield. The auto-zeroing technique cancels the offset voltage (VTRIP variation) caused by the
process variation in the sensing inverter. The DRV technique improves the restore yield further by
doubling the X node voltage difference from min(VTRIP − VL, VH − VTRIP) to VH − VL.

3. Simulation Results and Comparison

3.1. Simulation Conditions

In this paper, only the SLS structure based NVFFs [10–13] are simulated and compared for the
purpose of optimizing the sensing circuit (restore yield, read disturbance margin) and flip-flop core
(clock to Q delay) independently. The simulation and comparison of the silicon-proven merged latch
and sensing circuit (MLS) structure based NVFFs can be found in the reference texts (see [13]).

To fairly compare the four state-of-the-art NVFFs [10–13], similar or identical transistor sizes are
used to equalize the effect of process variation of devices that affect the sensing operation of stored data.
All transistors use the minimum length of 30 nm. All capacitor values are 4 fF. For the write driver,
PMOS (PW1 and PW2) width is 3 µm and NMOS (NW1 and NW2) width is 1 µm. For the transmission
gate access transistors which act as switches, NMOS and PMOS width is 0.5 µm. In case of Na’s
NVFF [10] and Choi’s NVFF [13], PMOS (PSEN2, PSEN1) width is 1 µm and NMOS (NSEN1) width is
0.5 µm for the sensing inverter. In case of Song’s NVFF [11] and Na’s NVFF [12], PMOS header width is
2 µm and NMOS footer width is 1 µm. Width of NL, NL2, NR, and NR2 is 0.5 µm. RL of 3 kΩ and RH

of 6 kΩ are selected by a tunnel magnetoresistance (TMR) ratio of 100% [37], where the TMR is defined
as (RH − RL)/RL × 100. To consider the MTJ resistance (RL and RH) variation, a standard deviation of
4% is assumed for MTJ [38]. The IC of the MTJ relies on the QCT benchmark 20 nm perpendicular MTJ
model [10,39], as shown in Figure 3.
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Figure 3. Critical switching current (IC) of MTJ according to pulse width [10].

The target restore yield is set to 4σ, which satisfies the yield of 96.88% (=Φ(4σ)1000) assuming
1000 FFs. The target read disturbance margin is set to 6σ, which satisfies the yield of 99% assuming 1000
access per a single cell when considering the stochastic nature of MTJ. For satisfying more than 6σ read
disturbance margin, the sensing current and its pulse width flowing through MTJ must be below the
solid line of µ(IC) − 6σ(IC) in Figure 3. The sensing time is optimized according to the read disturbance
margin of state-of-the-art NVFFs. The NVFF restore yield is obtained by performing HSPICE Monte
Carlo simulations using industry-compatible 28 nm model parameters. The VDD of 0.6 V and 0.4 V are
used for super-threshold and near/sub-threshold voltage operations, respectively. The transistor type
is low VTH type for better performance at near/sub-threshold voltage region. The target restore yield of
4σ is estimated at all corners of the NMOS and PMOS.
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3.2. Simulation Results and Comparison

Figure 4 shows the restore yield of three state-of-the-arts NVFFs [11–13] having the offset-tolerant
characteristic relative to the capacitance (CSA or CEQ) value at SS corner (NMOS = Slow, PMOS = Slow),
which is the worst corner in the NVFF design. The capacitance value is important to capture and hold
the VTH of NL, NR [11,12] and VTRIP [13] for offset cancellation. Furthermore, the larger capacitance
value can achieve a higher restore yield since it is possible for capacitor to transfer the more voltage
variation values effectively known as capacitive coupling. Thus, the sufficient capacitance value
is selected to achieve the target restore yield of 4σ. Even though Song’s NVFF [11] accepts the
offset tolerant scheme, Song’s NVFF [11] shows lower restore yield than other offset tolerant NVFFs.
The reason is that Song’s NVFF shows low offset cancellation effectiveness because the two output
nodes Y and YB are connected through MTJA and MTJB during the offset cancellation phase. It makes
Song’s NVFF achieve low restore yield.
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Figure 4. Restore yield of three state-of-the-arts NVFFs [11–13] having the offset-tolerant characteristic
relative to the capacitance (CSA or CEQ) value at SS corner (NMOS = Slow, PMOS = Slow). For this
simulation, VDD of 0.6 V is used.

Figure 5 shows the restore yield of four state-of-the-art NVFFs [10–13] relative to the MTJ variation
at SS corner. The restore yield of state-of-the-art NVFFs reduces according to the increase in the MTJ
variation because it is possible to reduce the resistance difference between MTJA and MTJB. In other
words, if the sufficient resistance difference margin is not satisfied, the sensing will be failed since the
sensing margin decreases. This figure also clearly shows that if the MTJ variation is more than 8%,
all NVFFs cannot satisfy the target restore yield of 4σ, meaning that the MTJ variation is a critical factor
degrading the restore yield.
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Figure 5. Restore yield of four state-of-the-art NVFFs [10–13] relative to the MTJ variation at SS corner.
For this simulation, VDD of 0.6 V is used.

Figure 6 shows the restore yield of state-of-the-art NVFFs relative to the MTJ stress time during
the sensing mode at SS corner, where the MTJ stress time is the current pulse width flowing through
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the MTJ during the sensing (restore) mode. It is worth noting here that not only reducing Iread but
also reducing the MTJ stress time is important to prevent the read disturbance. Generally, the restore
yield of the state-of-the-art NVFFs increase when MTJ stress time increases. The NVFFs with effective
offset cancellation techniques [12,13] show much higher restore yield than the NVFFs without offset
cancellation [10] and with ineffective offset cancellation [11].
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Figure 6. Restore yield of state-of-the-art NVFFs relative to the MTJ stress time during the sensing
mode at SS corner. For this simulation, VDD of 0.6 V is used.

Figure 7 shows the restore yield relative to VDD during the sensing mode at SS corner. Generally,
the restore yield reduces with decreasing VDD as expected. Note that at VDD = 0.5 V, Na’s NVFF
without offset cancellation technique [10] achieves the highest restore yield than other three NVFFs
having the offset cancellation characteristic. Because the offset-cancellation technique uses switch
operation in the critical path, the increase in the variation of the transmission gates with decreasing
VDD increases the offset voltage of the three NVFFs [11–13], resulting in the restore yield degradation
in the near/sub-threshold voltage region further compared to the non-offset tolerant NVFF [10].
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Figure 7. Restore yield of state-of-the-art NVFFs relative to VDD during the sensing mode at SS corner.
For this simulation, the MTJ stress time was fixed to 0.9 ns.

Figure 8 shows the restore yield of state-of-the-art NVFFs relative to the VDD when the MTJ stress
time is increased from 0.9 ns (Figure 7) to 1.5 ns at SS corner. To prevent the restore yield degradation
caused by the lack of the sensing time as VDD decreases, a sufficient MTJ stress time of 1.5 ns is applied.
Generally, the restore yield of all state-of-the-art NVFFs decreases as VDD decreases. Like the result
of Figure 7, Na’s NVFF [10] shows the highest restore yield than other offset tolerant NVFFs [11–13]
when VDD is equal to 0.5 V.
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Figure 8. Restore yield of state-of-the-art NVFFs relative to the VDD when the MTJ stress time is
increased from 0.9 ns (Figure 7) to 1.5 ns.

Figure 9 shows the restore yield of state-of-the-art NVFFs relative to the width size of all devices
when MTJ stress time = 1.5 ns, VDD = 0.5 V, and SS corner. The default size (×1) for all devices can be
found in Section 3.1. Generally, the restore yield increases as the size increases because of the decrease
in the process variation. Interestingly, from ×1 to ×4 width sizes, Na’s NVFF [10] has the highest restore
yield. Unlike the three NVFFs [11–13] having the offset-tolerant characteristic, Na’s NVFF [10] does not
have any complex circuit operation. Similar to the notion that the simplest is the best, these simulation
results provide insight that a simple circuit can provide the best performance in the near/sub-threshold
voltage region.
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Figure 9. Restore yield of state-of-the-art NVFFs relative to the width size of all devices when MTJ
stress time = 1.5 ns, VDD = 0.5 V, and SS corner.

Figure 10 shows the restore yield of state-of-the-art NVFFs relative to the VDD when MTJ stress
time is 1.5 ns and width size of all devices is equal to the default size times 4 (×4) during the sensing
mode at SS corner. It clearly shows that the simple circuit (NVFF [10]) provides a much better restore
yield compared to the complex circuits (other NVFFs [11–13]) in the near/sub-threshold voltage region.

Tables 1 and 2 summarize the comparison between the four state-of-the-art NVFFs [10–13] in cases
of VDD of 0.6 V and 0.4 V, respectively. In case of Table 1, because VDD is relatively high (slightly higher
than near-threshold voltage region), the NVFFs [12,13] having the offset tolerance characteristic show
better restore yield achieving the target restore yield of 4σ under the design and reliability constraint,
especially the read disturbance margin of 6σ. In case of Table 2, on the other hand, because VDD is in
the near/sub-threshold region, the offset tolerant NVFFs [12,13] do not provide better restore yield,
while the simplest NVFF having no offset tolerance characteristic shows the highest restore yield of
3.5σ. These simulation results provide insight that a simple circuit having no additional offsets which
come from switch operations can provide a better restore yield in the near/sub-threshold voltage region.
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Figure 10. Restore yield of state-of-the-art NVFFs relative to the VDD when MTJ stress time is 1.5 ns and
width size of all devices is equal to the default size times 4 (×4) during the sensing mode at SS corner.

Table 1. Performance summary and comparison between the four state-of-the-art NVFFs [10–13] in
case of VDD of 0.6 V.

T. Na,
ISCAS 14′

[10]

B. Song,
TCAS-1 19′

[11]

T. Na,
IEEE ACCESS 20′

[12]

G. H. Choi,
IEEE ACCESS 20′

[13]

VDD [V] 0.6 0.6 0.6 0.6
Default size ×1 ×1 ×1 ×1

MTJ stress time [ns] 0.9 0.9 0.9 0.9
Restore yield [σ] 2.0 2.1 4.4 4.2

Circuit Complexity Simple
(no offset tolerance)

Complex
(less offset tolerance)

Complex
(offset tolerance)

Complex
(offset tolerance)

Table 2. Performance summary and comparison between the four state-of-the-art NVFFs [10–13] in
case of VDD of 0.4 V.

T. Na,
ISCAS 14′

[10]

B. Song,
TCAS-1 19′

[11]

T. Na,
IEEE ACCESS 20′

[12]

G. H. Choi,
IEEE ACCESS 20′

[13]

VDD [V] 0.4 0.4 0.4 0.4
Default size ×4 ×4 ×4 ×4

MTJ stress time [ns] 1.5 1.5 1.5 1.5
Restore yield [σ] 3.5 0 0 0

Circuit Complexity Simple
(no offset tolerance)

Complex
(less offset tolerance)

Complex
(offset tolerance)

Complex
(offset tolerance)

4. Conclusions

While the technology node scales down, the battery lifetime of the IoT device is suffering from
leakage current problems. To solve this problem, the STT-MTJ based NVFF to store data and turn
off supply voltage is important when the IoT device is in the standby mode. In this paper, the four
state-of-the-art STT-MTJ-based NVFFs with the SLS structure for the purpose of optimizing the
sensing circuit without the degradation of the slave latch operation were selected and simulated with
considering the restore yield, and observed that (1) in the above-threshold voltage region (e.g., 0.6 V)
under design and reliability constraint, it cannot guarantee reliable restore yield if offset tolerant scheme
is not applied or its effectiveness is too low, and (2) in the near/sub-threshold voltage region (e.g., 0.4 V)
with sizing up strategy, a simple circuit having no offset tolerance characteristic provides a better
restore yield. In other words, to achieve the ultralow power operation by using the near/sub-threshold
voltage region, a simple circuit can be much better, similar to the notion that the simplest is the best.
This analysis is expected to help to improve the circuit design methods of NVFF sensing further for
ultralow power IoT applications.
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