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Abstract: Because 2D materials have adjust band gap, high mobility ratio, bipolar, anisotropy and
flexibility characters, they have become the new direction for FET’s channel materials. According to
the characteristics of the layers of 2D materials, the current transport characteristics can be improved
by using the edge-contacted electrode. Moreover, the research on the current transfer mechanism
between channel layers is the basis of the practical application of 2D transistors. In the research,
the 2D material-MoS2 is used as the channel material, the back-gate transistors with different layers
are prepared by dry etching and edge-contacted electrode structure. We also discuss the current
transport mechanism of channel and established the channel resistance parallel transport model.
The parallel model and TLM are used to analyze the contact resistance of the edge-contacted structure,
and the total resistance, total contact resistance, and single-layer contact resistance of different layers
are calculated. The parallel model is verified by dc test data. The number of channel layers is
closely related to contact resistance, total resistance, and mobility. In addition, the of single MoS2 is
about 7.27 kΩ·um. This contact resistance parallel model can also be applied to other 2D materials
edge-contacted FET.

Keywords: 2D material; edge-contacted; contact resistance parallel model; back-gate FET; MoS2

1. Introduction

Since graphene was discovered, more and more 2D (two-dimensional) materials have been found,
such as TMDs (Transition Metal Dichalcogenides), BP (Black Phosphorus), etc. [1–4]. Like graphene,
few layered 2D materials can be obtained by mechanical exfoliation [5]. At present, there are mainly
four types of 2D layered materials. The first type is the graphene-like family, including graphene,
boron nitride, etc. The second type is the 2D transition metal dichalcogenides family, including the
semiconductor dichalcogenides and the metal dichalcogenides. The third type is the 2D oxide family,
which mainly consists of some layered oxides. Finally, there are some layered materials of other
structures, like as black phosphorus [6]. These 2D materials have different properties, such as graphene,
which is a Dirac semi-metal, and transition metal dichalcogenides, which is an excellent semiconductor,
while boron nitride is an excellent insulator. These transition metal dichalcogenides not only have
the mechanical, electrical, and optical advantages of graphene, but also have the natural optical band
gap that graphene does not have. Therefore, they have been the research hotspots in the field of
materials science in the past few years. With the rapid development of the semiconductor industry,
the high integration of electronic components is further increased. Because of the approximation to the
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limit of Moore’s law, the application of traditional semiconductor has become increasingly restricted.
At the same time, the varied physical properties of 2D materials displayed superior performance,
and 2D materials are expected to instead of some traditional semiconductor materials (Figure 1). In the
post-Moore circuit era, 2D materials will create a new path for the development of photoelectric
applications [7–9].
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Figure 1. Application based on 2D materials.

Because of the layer properties of 2D materials [10], their transport characteristics are significantly
different from the conventional semiconductor transistors. When 2D materials are used for transistor
channel material, the current transport in the transistor channel is no longer mainly concentrated on
the surface of the channel. The charge is transported along every layer in the channel [11,12].
According to characteristics of 2D materials, many new techniques have been developed for
transistor fabrication, such as edge-contacted [12–15] (Figure 2b) or one-dimensional contacted [16,17],
sandwich/combined-contacted structure [18] (Figure 2c), and so on.
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Figure 2. (a) traditional top-contacted; (b) edge/one dimensional-contacted; (c) sandwich/

combined-contacted.

As shown in Table 1, the mobility of edge-conducted and sandwich-contacted structure is more
than that of the top-contacted structure. Because no additional etching is required, the structure that is
sandwich-contacted is simpler than that which is edge-conducted in the process. However, due to
the overall encapsulation in sandwich-contacted structure, some of the electrodes are in contact with
the top layer of the channel material. It can easily lead to tunneling resistance effect, increase the
transport impedance, and reduce the mobility of FET (Field Effect Transistor). Thus, in the three
structures, the order of difficult process is: edge-conducted > sandwich-contacted > top-contacted,
and the order of performance is: edge-conducted > combined-contacted > top-contacted. Due to
2D materials’ special properties, the edge-conducted structure has becoming new direction of FET’s
channel investigation.
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Table 1. Mobility comparison of different electrode structure.

Paper Channel Thickness Mobility (cm2/Vs) Electrode Structure

[19] 8 L 54 edge
[20] multilayer 71.8 combined
[21] 1 L 35 top
[22] 30 nm 104 edge

This work 31 L 107 edge

Before the emergence of 2D materials, the research on transistor channel was limited to simple
circuit model analysis, and the channel material was regarded as a whole semiconductor. With the
further study of 2D material physical properties and transport characteristics, the current transport
mechanisms obviously different from that of ordinary materials due to their layer characteristics [11].
The traditional channel circuit model was not able to accurately analyze the working mechanism of the
2D materials transistor. The correct description of channel current transport mechanism is the basis of
the application of 2D semiconductor materials, so a new channel circuit model must be established
for 2D material FET. In recent years, the channel current of 2D semiconductor transistors has been
analyzed and studied [23–26]. A lot of work has been done from the aspects of charge flow between
layers [12] and channel resistance mode [27]. It lays the foundation for the application of 2D materials.

In this paper, a 2D semiconductor back gate FET with edge-contacted was prepared by dry
etching. The channel material was used by MoS2 of different layers (11 L, 14 L, 23 L, 31 L).
From the aspect of layered transport, the current transport mechanism of channel was discussed.
We established the channel resistance parallel transport model, and the current transport mechanism of
2D channel material was studied. In a certain layer range, the more layers, the lower the total channel
resistance. For transistors with different channel layers, the channel resistance parallel model and TLM
(transfer-length method) were used to calculate the per-layer channel contact resistance, and results of
various channel layers MoS2 FET tended to be consistent (about 7.27 kΩ·um).

2. Fabrication

MoS2, which was used as the channel material, is a member of the TMDC family and has emerged
as the prototypical 2D semiconductor. It has great potential for improvement, particularly from the
perspective of device transport.

Figure 3 shows the fabrication process flow and the cross-sectional schematic of our device
structure. MoS2 samples were exfoliated from a bulk MoS2 crystal using the conventional mechanical
exfoliation method. The samples were transferred on a clean SiO2 (285 nm) highly doped Si substrate
(Figure 3a), and the thickness as identified by AFM (atomic force microscopy) (Figure 4a). We used 7
nm, 9 nm, 15 nm, 20 nm varied thickness of MoS2 for 2D material FETs channel. During the fabrication
process, the MoS2 samples were covered HfO2 (30 nm) by ALD (atomic layer deposition) equipment, in
order to avoid any possible degradation upon longer exposure to air. We used resist AR-P6200/PMMA
as the etch mask. The top layer was coated with AR-P 6200 of layer thickness ≈220 nm and the sample
was pre-baked at 150 ◦C for 3 min. The mask was defined on the top lay by EBL (electron-beam
lithography). The etching was performed in ICP380 with a gas Ar. Suitable etching times for the
desired grating depths were found out during the process. In the etching process, through adjusting
ICP power, RF power, air flow and pressure, we were able to make the side wall of the electrode
more inclined and were able to make MoS2 more fully contact the electrode, to ensure good contact.
Figure 4b shows that after the sputter process, the electrodes are in close contact with the lateral wall of
the channel. Finally, electrodes consisted of 10 nm Ti/100 nm Au were fabricated on edge of channel by
sputter and lift-off techniques (Figure 4c).



Electronics 2020, 9, 2110 4 of 10
Electronics 2020, 9, x 4 of 10 

 

 

Figure 3. Fabrication process of edge-contacted 2D material back-gate FET (a) Transfer MoS2 to 
substrate; (b) ALD HfO2 for passivation; (c) Etching for contact; (d) Sputter Ti/Au. 

 
 

  
  

Figure 4. (a) AFM image of MoS2 thickness; (b) SEM image of channel cross sectional surface after the 
Sputter; (c)optical images of edge-contacted MoS2 back-gate FET. 

3. Results and Discussion 

The relationship of current of drain (Id) with voltage of gate (Vg), drain (Vd) is the key for research 
on FET’s DC characteristic to build a resistance model. Electrical measurements were performed in 
an air environment at room temperature using an Keithley 4200 semiconductor parameter analyzer. 
In the measurements, Vg ranged from −80 V to 80 V and Vd from 0 V to 4 V. For different channel 
thickness MoS2, each layer MoS2 had a thickness of ∼0.65 nm, the corresponding layer numbers are 
about 11 L (11 layers), 14 L (14 layers), 23 L (23 layers), 31 L (31 layers). 

Mobility ratio is one of the key indexes to estimate FET’s transfer performance; it decides the 
operating frequency and speed of the semiconductor device. We obtained edge contacted MoS2 FET’s 
hole mobility ratio in room temperature, from transconductance curve in Figure 5c using the classic 
formula of mobility ratio: 

(c) 

Figure 3. Fabrication process of edge-contacted 2D material back-gate FET (a) Transfer MoS2 to
substrate; (b) ALD HfO2 for passivation; (c) Etching for contact; (d) Sputter Ti/Au.

Electronics 2020, 9, x 4 of 10 

 

 

Figure 3. Fabrication process of edge-contacted 2D material back-gate FET (a) Transfer MoS2 to 
substrate; (b) ALD HfO2 for passivation; (c) Etching for contact; (d) Sputter Ti/Au. 

 
 

  
  

Figure 4. (a) AFM image of MoS2 thickness; (b) SEM image of channel cross sectional surface after the 
Sputter; (c)optical images of edge-contacted MoS2 back-gate FET. 

3. Results and Discussion 

The relationship of current of drain (Id) with voltage of gate (Vg), drain (Vd) is the key for research 
on FET’s DC characteristic to build a resistance model. Electrical measurements were performed in 
an air environment at room temperature using an Keithley 4200 semiconductor parameter analyzer. 
In the measurements, Vg ranged from −80 V to 80 V and Vd from 0 V to 4 V. For different channel 
thickness MoS2, each layer MoS2 had a thickness of ∼0.65 nm, the corresponding layer numbers are 
about 11 L (11 layers), 14 L (14 layers), 23 L (23 layers), 31 L (31 layers). 

Mobility ratio is one of the key indexes to estimate FET’s transfer performance; it decides the 
operating frequency and speed of the semiconductor device. We obtained edge contacted MoS2 FET’s 
hole mobility ratio in room temperature, from transconductance curve in Figure 5c using the classic 
formula of mobility ratio: 

(c) 

Figure 4. (a) AFM image of MoS2 thickness; (b) SEM image of channel cross sectional surface after the
Sputter; (c)optical images of edge-contacted MoS2 back-gate FET.

3. Results and Discussion

The relationship of current of drain (Id) with voltage of gate (Vg), drain (Vd) is the key for research
on FET’s DC characteristic to build a resistance model. Electrical measurements were performed in
an air environment at room temperature using an Keithley 4200 semiconductor parameter analyzer.
In the measurements, Vg ranged from −80 V to 80 V and Vd from 0 V to 4 V. For different channel
thickness MoS2, each layer MoS2 had a thickness of ∼0.65 nm, the corresponding layer numbers are
about 11 L (11 layers), 14 L (14 layers), 23 L (23 layers), 31 L (31 layers).

Mobility ratio is one of the key indexes to estimate FET’s transfer performance; it decides the
operating frequency and speed of the semiconductor device. We obtained edge contacted MoS2 FET’s
hole mobility ratio in room temperature, from transconductance curve in Figure 5c using the classic
formula of mobility ratio:

µ = gm·
L
W
·

1
Cox·Vd

(1)
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where gm is transconductance, L is channel length of MoS2 FET, W is channel width of MoS2 FET,
Cox = εox/dox(εox is dielectric constant of insulation materials, dox is thickness of insulation materials).
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According to the above formula calculation of mobility ratio, we get the hole mobility of various
channel layers MoS2 FET. Figure 6a further compares different channel layers, hole mobility of around
31 layers MoS2 FET get maximum. When channel thickness comprises of more than 11 layers,
hole mobility showed an upward trend. The hole mobility of few-layer MoS2 FET shows a strong
thickness dependence in Figure 5b.
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Unlike top-contacted structure (Figure 7a), edge-contacted MoS2 FET (Figure 7c) fabrication uses
dry etch and electron-beam evaporation. In the procession, it avoids MoS2 polluted by chemical liquid
and O2 to the most extent. Because electrodes of edge-contacted structure contact every lay of MoS2

directly, drain current is not influenced by interlayer resistance, like Figure 7c. From the experimentation,
compared to the published literature, the maximum hole mobility ratio of edge-contacted MoS2 FET is
much larger than top-contacted FET’s. The edge-contacted electrode process is adopted. According to
the layer structure characteristics of 2D material and the current transport mode in channel, we use
parallel structure to describe the current transport mechanism in the channel, and build the associated
resistance parallel model, as in Figure 7d.
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In the channel resistance model, contact resistance (Rcon) plays an important role in FET
performance. Understanding metal with MoS2 contact is of great scientific and technological importance.
In top-contacted structure, because of tunneling resistance, resistance equation becomes nonlinear.
In Figure 7b, total channel resistance is:

Rtotal = 2Rcon +
1∑i

n=1
2

Gintn
+ 1

Gchn

(2)

In order to simplify the calculation, the concept of electrical conductance is led into the calculation.
Gchn (n = 1, . . . , i, i is the number of layers) is semiconductor transport conductance of each channel
layer, Gintn (n = 1, . . . , i) is tunneling conductance between different channel layers. Rcon is the resistance
due to the contact mental, Rtotal is the total transport resistance. Thus, the TLM will no longer be suit
for calculate total channel resistance and contact resistance in the top-contacted structure.
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In the edge-contacted structure, the electrode is contact with each layer of MoS2 directly, bypass the
tunneling resistance. Charge transmit between each layer uniformly. The channel resistance model of
charge transport in MoS2 FET (Figure 7d), can be derived from the mechanism of charge transfer in 2D
material channels. The total transport resistance of each layer is Rtotali = 2Rconi + Rchi. Becauseof the
use of the edge-contacted structure, the charge transmitted parallel in the layers. The MoS2 FET’s total
transport resistance is the sum of the transport resistances in parallel for each layer. To simplify the
calculation, we assume that Rconi, Rchi of each layer is the same resistance Rconper, Rchper. Then, MoS2

back gate FET’s total channel transport resistance is:

Rtotali = 2Rconper + Rchper (3)

Rtotal = ||Rtotali =
(
2Rconper + Rchper

)
/n (4)

Through the transistor DC test, Vd and Id are obtained under different Vg. Rtotal can be get from
Vd/Id. From Figure 8a, it can be seen that Rtotal decreases and tends to be stable as Vg increased.
In Figure 8a,b, the more the channel layers, the smaller the total resistance will be. The result fully
accords with the parallel structure characteristics of resistance in the channel.
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From the formula of total channel resistance, the resistance model is still a linear equation, we also
can use TLM method to calculate the contact resistance of edge contacted MoS2 FET. The contact
resistance per layer (Rconper) was extracted by:

Rconper = (nRtotal −Rchper)/2 (5)

As seen from Equation (5), in the edge-contacted electrode structure, different from the classical
TLM method, Rconper is not only related to channel length, but also related to the number of layers
of MoS2 in the channel. Finally, Rcon is the total parallel contact resistance of each layer MoS2 to
the electrode.

From Figure 9a Rconper of each layer can be calculated by TLM, then the total Rcon of the side wall
can be calculated as follows:

Rcon = Rconper/n (6)
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For edge-contacted MoS2 back gate transistors with different layers, the Rconper of each layer can be
calculated according to the TLM method and the Equations (4) and (5). As can be seen from Figure 9b,
use the same process (etched, sputter, Ti/Au), each layer of Rconper is consistent, and contact resistance
is about 7.27 kΩ·um. According to Equation (6), we get Rcon of different layers. From Table 2, the more
layers of MoS2 in the channel, the smaller Rcon will be, therefore, the lower total transport resistance.

Table 2. Rcon of different layers from Equation (6).

Layers Rcon (kΩ·um)

11 0.632
14 0.511
23 0.350
31 0.225

From Table 3, the contact resistance of the edge-contacted structure is better than the combined-
contacted and top-contacted. Although the top-contacted structure can reduce the contact resistance
through additional process (Ultra-High Vacuum Metal Deposition), it increased the complexity of the
process. Thus, it shows that the edge-contacted structure has obvious advantages.

Table 3. Rcon comparison of different electrode structure.

Paper Channel Thickness Rcon (kΩ·um) Electrode Structure

[28] 6–13 nm 0.9 combined
[29] 8 L 2.5 top
[30] 4.5 nm 0.74 top

This work 11 L 0.63 edge

4. Conclusions

In summary, we report a contact resistance model of edge-contacted MoS2 back-gate FET. According
to the characteristics of 2D materials, the edge-contacted structure transistors with different layers
(11 L, 14 L, 23 L, 31 L) were prepared by dry etching. Direct contact between metal electrodes to each
layer of 2D material in the channel improved the current transport of transistors. Dc characteristics
of transistors with different layers are analyzed by using Keithley 4200 in an air environment at
room temperature. According to the measured Id-Vg and Id-Vd of the transistors with different layers,
the mobility was calculated. The current characteristics of transistors with different thickness were
studied and their mechanism was analyzed by the models. On the basis of the analysis, combined
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with contact resistance parallel model, TLM method was adopted, and the contact resistance of MoS2

per-layer of different layers thickness FET were calculated and compared.
From the above analysis, it can be seen that the test results are in line with the model expectations.

In addition, according to the characteristics of 2D materials, this model can also be used in other 2D
materials, such as TMDs, BP, etc.
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