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Abstract: The fast evolution in computational and sensor technologies brings previously niche solutions
to a wider userbase. As such, 3D reconstruction technologies are reaching new use-cases in scientific
and everyday areas where they were not present before. Cost-effective and easy-to-use solutions include
camera-based 3D scanning techniques, such as photogrammetry. This paper provides an overview of the
available solutions and discusses in detail the depth-image based Real-time Appearance-based Mapping
(RTAB-Map) technique as well as a smartphone-based solution that utilises ARCore, the Augmented
Reality (AR) framework of Google. To qualitatively compare the two 3D reconstruction technologies,
a simple length measurement-based method was applied with a purpose-designed reference object.
The captured data were then analysed by a processing algorithm. In addition to the experimental
results, specific case studies are briefly discussed, evaluating the applicability based on the capabilities
of the technologies. As such, the paper presents the use-case of interior surveying in an automated
laboratory as well as an example for using the discussed techniques for landmark surveying. The major
findings are that point clouds created with these technologies provide a direction- and shape-accurate
model, but those contain mesh continuity errors, and the estimated scale factor has a large standard
deviation.

Keywords: 3D scanning; 3D metrology; 3D reconstruction; ARCore; RTAB-Map

1. Introduction

Before the focus can be set on two specific widely available technologies, the big picture of
three-dimensional (3D) reconstruction approaches has to be presented. As such, 3D reconstruction
is one of the most complex forms of optical sensing, in that it is derived through multiple steps from
simpler sensing techniques [1]. Fundamentally, optical sensors are a diverse group of measuring
devices, the operation of which is based on retrieving information with the help of the visible spectrum
of the electromagnetic waves (referred to as light). This is sometimes extended with the infrared
and the ultraviolet spectra. In Figure 1, a framework is provided to place imaging technologies in a
hierarchical structure. Each step of deriving a method from a simpler one is denoted by the type of
augmentation. Single units can either be combined into vectors or arrays, or they can be given additional
degrees-of-freedom by movement.
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To get 3D spatial information, two paths are discussed. The stem of the branch on the right is the
so-called time-of-flight (ToF) sensor or ranger, which provides 1D information based on measuring the
time between emitting and receiving a light signal. To take this type of measurement to two dimensions,
the single sensor can be mounted on a rotating platform, and—similarly to a radar—a planar space
can be surveyed in a sweeping fashion. This method is called light detection and ranging (LiDAR).
3D coverage, on the other hand, can be achieved by giving the single sensor another degree of
freedom (DoF), resulting in a so-called 3D LiDAR. A single ToF unit can also be augmented into a
3D imaging device by combining many of them into a 2D matrix [2]. In this case, the whole scene
has to be illuminated with the specially-modulated light signal, which, after being reflected from the
objects in the scene, is focused on the sensor matrix by a lens. As an end-result, a depth-image is
created, which means that each pixel of the resulting image has a depth value derived from the range
measurement of the corresponding ToF unit.

In the hierarchy represented in Figure 1, as the most basic form of optical sensing, a single
photosensor, such as a phototransistor, is considered. A single photosensor can be categorised as a
spatially null-dimensional (0D) source of information, in that it measures in a single point. However,
when multiple photosensors are arranged in a linear array, the resulting derived sensor qualifies
as spatially one-dimensional (1D), since it can provide information along one single direction.
Analogously, if a 2D matrix is created, the provided information becomes spatially two-dimensional
(2D). If an image is projected onto a 2D photosensor matrix, the sensor can be considered as a digital
camera. In the simplest form, the projection can take place with the help of a hole, but in most cases
lenses are used.

Cameras can be used as a basis of diverse 3D imaging methods. A single camera can be enhanced
with a special light source that provides a consistent illumination. From how the shades form on the
object under different angles, its 3D form can be calculated. A single camera can also be used for 3D
imaging with the focus technique, where multiple images are taken from the object of interest with
various focusing distances [3]. For each pixel, the focusing distance, when it appears to be the sharpest,
is considered as its distance to the sensor.

When two cameras are placed next to each other at a known distance, and the corresponding
images’ differences are used to calculate depth data, we are talking about a stereoscopic camera.
Since this approach is feature-based, it requires the object of interest to have a distinguishable texture or
feature such as a known dimension [4]. A stereoscopic camera is not capable of detecting homogeneous
surfaces on its own. To enhance such a device, a point-matrix projector can be used, which illuminates
the scene with a point matrix that provides enough features. This usually takes place in the infrared
spectrum, so that the projected pattern remains invisible to the human eye. Taking this approach
one step further, a known random point pattern can be used, as in the first version of the Kinect
sensor (Kinect for Xbox 360). This way, the detected image can be compared to the known pattern,
and distances can be calculated from the displacements. The stereoscopic approach can be extended
into a rig where multiple cameras are placed on a frame, facing towards the centre. This setup provides
images of an object from multiple known positions and angles, which can be fed into an algorithm
that—similarly to stereoscopy—calculates the 3D representation. If even the position and orientation
(together called pose) of the cameras are not known, a 3D point cloud can still be calculated with the
help of the so-called photogrammetry approach [5,6]. This technique also utilises an algorithm that
finds corresponding features in the images and calculates the cameras’ pose. Using unconstrained
image sets for 3D reconstruction has a use-case in landmark-surveying, where photos posted on social
media can be fed into a photogrammetry algorithm [7]. This approach democratises the collection of
valuable data and reduces the need for manual data acquisition, which would normally take place
with aerial photography or using special scanner systems, for example as presented in [8]. Advanced
3D reconstruction techniques from posed RGB images include approaches where convolutional neural
networks (CNN) are used to extract features from the images before backprojecting and accumulating
them into 3D points and letting another CNN to refine the 3D features [9]. Besides the difficulties
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with reconstructing homogeneous surfaces by certain camera-based techniques, they generally fail
to reconstruct non-Lambertian surfaces, i.e., transparent and reflective ones too. To overcome this,
Sajjan et al. developed ClearGasp [10], a machine learning algorithm capable of reconstructing
transparent objects from RGB-D images.

Thanks to the constant improvement of electronics hardware and of the associated software, many
technologies are becoming available to a widening user base. Traditionally, expensive equipment was
needed for obtaining 3D information of objects in the context of various scientific fields, including
but not limited to archaeology [8], architecture [11], geoinformatics [12], engineering [13] and design.
Thanks to the improvement of camera-based 3D techniques, 3D imaging is no longer solely in the hands
of a few specialists. The focus of this paper is set on techniques that provide cost-effective 3D imaging
solutions. These enable users from new application areas as well as non-professionals to use 3D data
for their benefits. Firstly, an active stereoscopy-based mapping technique, the so-called Real-time
appearance-based mapping method, and then a technique derived from smartphone augmented reality
technology are reviewed. Following this, several use-case scenarios are presented, discussing the
usability of each technique. Finally, a qualitative comparison between the two methods is provided.
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Figure 1. A summary of optical sensors.

2. Overview of the Investigated Technologies

2.1. ARCore

AR means that a scene captured by a camera is enhanced by overlaying dynamic 3D models on
the image. Augmented reality applications are used across a wide variety of fields. With its help,
visualisations can be created for educational purposes, where students can explore 3D models and
animations in an immersive manner [14,15]. Hanafi et al. provide a comparison between various AR
software development kits (SDK) in the context of an educational application in the chemical field [16].
Commercial application fields include applications for placing the models of products in the user’s
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environment. According to experimental studies, this can reduce the consumers’ cognitive load during
the planning and product selection phase [17]. Entertainment applications include immersive games
that provide the user with an experience where characters and other interactive objects are present in
the user’s environment. However, according to the study of Wölfel et al. [18], technical factors still limit
the overall increase in user experience in comparison to non-AR gaming.

Besides specialised AR hardware, such as Microsoft’s HoloLens [19] or Google’s Glass [20],
augmented reality has been available on smartphones since their introduction in the early 2000s [21].
Since then, the smartphone industry has become dominated by Apple and Google, as far as operating
systems go. Both companies provide their own AR SDKs with the purpose of giving developers
a framework to implement AR applications on their platforms. In this paper, Google’s AR SDK,
the so-called ARCore [22], is discussed in detail, focusing on 3D reconstruction with smartphones
featuring no AR-specific hardware.

From the technical perspective, AR requires three key capabilities: Motion tracking, Environmental
understanding, and Light estimation [22]. Motion tracking means that the device’s 6 DoF pose is to be
detected relative to its environment. In the simplest case, a smartphone AR application utilises the camera
stream for feature-based pose estimation, which is enhanced by the orientation and acceleration data
provided by the embedded inertial measurement unit (IMU). In advanced, AR-specific smartphones,
special depth sensors can be present, such as stereo cameras as in Google’s now discontinued Tango
project or ToF sensors in certain Android phones. Light estimation enables the lighting of the virtual
objects to be adapted to the environment’s conditions in order to provide a more realistic experience.
Besides the pose of the device, a 3D reconstruction of the environment is also desirable for being able to
place augmented objects on various surfaces as well as to let a real-word object occlude a virtual object.
In this paper, the utilisation of the 3D reconstruction provided by ARCore is reviewed.

As mentioned above, Google discontinued its Tango project, which was succeeded by ARCore,
a universal AR SDK and framework, which does not require any special hardware, such as the depth
sensors in Tango-enabled devices. The discontinuation of Tango also meant that the corresponding
3D reconstruction application, Google Constructor, was revoked. Since then, there is no publicly
available official 3D reconstruction solution from Google. To overcome this, Vonásek [23] implemented
Tango technology with utilising ARCore and brought it to commercial Android phones. Vonásek
previously worked on a similar application for Tango, which served as a basis for the ARCore-based
app. The application uses ARCore to get the device pose and feature points, from which it deduces
depth data. According to the developer, although the Tango3DR library is deprecated, it is still the most
advanced solution for meshing, thus it was not replaced yet. As Google’s AR technology advances,
and developers are given access to more and more features, the 3D Scanner for ARCore is constantly
evolving. In this paper, the usability of the version that was available for non-ToF phones at the time
of conducting the case studies is discussed.

3D Scanner for ARCore enables the user to obtain a 3D reconstruction of an environment by
walking around with the phone, pointing the camera at the objects of the scene. The app constructs a
simple mesh in real-time, which is overlaid on the camera stream for instant feedback. The user can
select from various presets, including one for indoor, one for outdoor, and one for face reconstruction.
The resolutions also vary respectively, ranging from 2 to 8 cm. When the user is finished with scanning,
post-processing takes place, starting with the optional Poisson reconstruction, where holes in the mesh
are closed to form watertight geometries. Following this, the models are merged, after which the
geometry is simplified. Finally, a texture is produced from the photos and the mesh is converted to the
OBJ file format. The app also features a simple 3D viewer, which also enables viewing the generated
meshes in virtual reality.

2.2. RTAB-Map

The main function of RTAB-Map is RGB-D or LiDAR-based SLAM (Simultaneous Localisation
and Mapping), but since it generates a 3D representation of the environment, it can also be used for
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3D reconstruction. It is a three-dimensional, graph-based approach that detects occurrences when an
image comes from a previously seen location. When a loop closure is detected, a constraint is added to
the graph and the error is minimised [24,25]. To capture RGB-D data, an Intel R© (Intel Corporation,
Santa Clara, CA, USA, 2019) RealSenseTM Depth Camera D435 was used. The camera works similarly
to a Microsoft Kinect: it has a point matrix projector, two infrared cameras, and an RGB camera.
The calculation of the depth information is performed onboard the camera, and through a wrapper [26]
it provides ROS with RGB-D data. ROS stands for Robot Operating System, which is a widely used
open-source robot software framework. It provides tools and libraries for obtaining, building, writing,
and running code across multiple computers. The RTAB-Map package implements odometry and
mapping and provides a visualisation tool with which the resulting point clouds can be exported in
their raw or processed form into meshes. Running RTAB-Map for SLAM in ROS environment can
export the captured point cloud to PCD format.

The RealSenseTM (Intel Corporation, Santa Clara, CA, USA, 2019) D435, which belongs to the
category of active stereoscopy, is equipped with a built in IMU. Combined with RTAB-MAP for SLAM,
it is possible to achieve mapping and localisation. The built-in IMU can only provide reliable pose
data for a short time due to a runtime-related drift error in the sensors. Therefore, moving the device
too fast or too suddenly can interrupt the recording process and result in a faulty point cloud.

3. Experimental Comparison

3.1. Methodology

Surveys and comparisons of various 3D perception technologies usually follow similar methodologies.
As such, Fürsattel et al. [2] provide a comparison of recent ToF cameras in regard to systematic errors
by establishing a benchmarking framework. The analysis considers factors such as the warm-up
time, temporal noise, amplitude-related distance error, wiggling, and the effect of various settings.
Giancola et al. [1] surveyed various 3D cameras along similar aspects, including temperature stability,
pixel-wise range measurement, the level of uncertainty and systematic error related to pixel position,
the effects of incidence angle on the target, as well as the material of the target. The survey includes ToF,
structured light, and active stereoscopy, highlighting the strengths and weaknesses of each technique.
The subject of these works, however, are all fixed-frame imaging techniques. These deliver depth
images in a known coordinate system, in which the ranges can explicitly be determined. In contrast,
both in the case of RTAB-Map and ARCore, the resulting point cloud or mesh is generated based on
images (RGB or RGB-D) from multiple angles, i.e., from different coordinate frames. This means that
the dimensions cannot be explicitly defined, but the measurement object has to be segmented, and its
pose has to be defined. To reduce this problem, the presented approach took advantage of the fact that
the coordinate frames are still placed approximately where the measurement was started, i.e., in front
of the measurement object.

Both the RTAB-Map and the ARCore technologies use the IMU signal of the given device and,
by fusing the obtained orientation data with the content of the captured images, they can build a model
of the scanned object with an approximately appropriate scale factor. This scale factor specifies the size
relationship between the created model and the actual object. To provide a qualitative comparison
between the two 3D reconstruction technologies, a simple methodology was applied to measure the
one-dimensional length of a reference object. To maximise the detectability of the test object, a random
colour noise pattern was used along with a chequerboard scale, as shown in Figure 2a. The test object
was suspended in a way that from the perspective of where the scanning took place no object would be
visible within the range of the imaging devices. This enabled both of the feature-based algorithms to
reconstruct the test object with a minimum amount of points detected from the environment. The test
object was scanned with each technique twenty times, then fed the resulting point clouds into a
custom-implemented processing script to measure the length of the test object. In the script, which
was implemented in MATLAB, the pointCloud object of the Computer Vision Toolbox was utilised.
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Figure 2. The reference object—random colour noise pattern along with a chequerboard scale.

For the discussion of the algorithm, a coordinate system is assumed, the origin of which is at the
initial camera pose, the x-axis is horizontal and points to the right, the y-axis is vertical and points
upwards, whereas the z-axis is horizontal and points towards the camera from the object, as shown in
Figure 3. As the first step, the script removes outliers along the z-axis, which means that most objects
that were picked up from the background get ignored. Following this, the projection of the point
cloud to the xy plane is used to find the orientation of the test object. A random sample consensus
(RANSAC) algorithm finds the most dominant line in the point cloud, which is assumed to correspond
to the length of the test object, as Figure 4a shows. Then, the angle of this line is used to rotate
and move the point cloud so that the x-axis aligns with the length of the test object. As shown in
Figure 4b, a histogram is then created to determine the distribution of the detected points along the
x-axis. A threshold is defined by calculating the average of the non-zero bins. The points are iterated
through from both ends along the x-axis to find the end of the test object by comparing the bin values
to the threshold. The measured length is calculated by subtracting the x value of the lower limit from
the x value of the upper limit. Besides keeping the focus on RTAB-Map and ARCore, point clouds
created with the single-frame measurement mode of the RealSense camera are also processed and
evaluated. The MATLAB script, which was written for processing and evaluating the point clouds
and meshes according to the above-described methodology, can be found at the open repository:
http://github.com/wlfdm/3d-scanning.

http://github.com/wlfdm/3d-scanning
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Figure 3. A mesh of the test object scanned with ARCore with the coordinate system.
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Figure 4. Processing the point clouds.

3.2. Results and Discussion

Table 1 summarises the results of the reference measurements, whereas Figure 5 provides a visual
representation of the measured values.

Statistical analysis of the data sets was performed by means of calculating the following values.
The mean or average xavg can be assumed to be the best measured value, based on the set

of measurements:
xavg =

x1 + x2 + ... + xN
N

(1)

The range or spread R of the data set is the difference between the maximum and the minimum
value of the data set:

R = xmax − xmin (2)
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Standard deviation of the mean σavg is the range around xavg within the actual value of x will lie:

σavg =

√
(∑(xi−xavg)

n√
N

(3)

Measured value xm is the final reported value of x, which contains both the mean value and the
standard deviation of the mean:

xm = xavg ± σavg (4)

It is important to note that there are multiple sources of systematic errors in both scanning
technologies. As such, a tendency for underestimation of lengths can be observed due to the loop
closure feature potentially shifting the parts of the scan overlapping each other. Apart from that,
a shorter measured length can also be caused by incomplete meshes, where the end section of the
reference object was not detected. On the other hand, a longer measured length can occur when
parts of the environment are being captured, such as the string that was used for suspending the
reference object. Generating the point cloud in single depth capture mode eliminates the first two
types of errors that could cause a shorter measured length. Accordingly, as can be seen in Figure 5
and in Table 1, the single depth capture delivered solely overshooting results. The generated meshes
and point clouds along with the table containing the results can be found at the open repository:
http://github.com/wlfdm/3d-scanning.
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Figure 5. Plot of the measured values.

http://github.com/wlfdm/3d-scanning
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Table 1. Results of the reference measurements.

Technology RS ARCoreRTAB-map Single

Measurements

1.2627 1.0388 1.2498
1.0368 1.2303 1.2564
1.1372 1.2011 1.0279
1.1211 1.0074 1.2347
1.1071 1.1047 0.9744
1.2646 1.0073 1.2306
1.0741 0.9951 0.9946
0.8959 0.9956 0.9902
1.0978 0.9835 1.105
0.9666 0.9971 1.0077
1.1771 0.895 0.9958
1.1915 1.0487 0.9971
0.9356 1.0205 0.9945
0.991 1.1086 0.895
1.0481 1.1065 1.0205
1.0585 0.9213 1.0388
0.9965 1.2564 1.0487
1.1926 1.0279 1.1086
0.9781 1.2353 1.1065
1.0952 0.9749 0.9213

Mean 1.081 1.058 1.060
Range 0.369 0.361 0.361
Std of the mean 0.023 0.023 0.024
Measured value 1.081 1.058 1.060
+/− 0.023 0.023 0.024

4. Case Studies

4.1. Surveying in Laboratory Automation

The above-mentioned technologies were tested in the context of an ongoing research project,
the subject of which revolves around studying the usability of various new technologies in laboratory
automation [27,28]. Laboratory automation as a field of research addresses technologies, the aim of
which is to automate the processes in various research and development laboratories in life sciences,
ranging from the academia through healthcare to pharmaceutical companies. Such technologies
include separated devices that are capable of performing a certain task autonomously, such as liquid
handler robots, storage units, readers, and various analytic devices. However, in laboratory automation,
the ultimate goal is to integrate the partly automated subprocesses into a comprehensive overlaying
workflow by providing interfaces and a control system. Approaches that are considered ubiquitous
in other industries, such as the application of robots for transport purposes, are just beginning to be
widespread in life science laboratories [29]. Similarly, the application of new technologies that were
previously only applied in special contexts, such as virtual and augmented reality or 3D reconstruction,
are also beginning to find their way in automated laboratories. As such, in this chapter, a use-case
for 3D reconstruction is presented, where the laboratory presented in Figure had to be surveyed
for planning, visualisation, and simulation purposes. For this, both the ARCore-based and the
RTAB-Map-based approaches were tested. The usability of the resulting meshes highly depends on
the applied technology, since factors such as size- and shape accuracy as well as the consistency of the
meshes play a big role.

Firstly, the ARCore-based 3D Scanning application was tested. It is important to mention that,
for this, the version 04/2019 of the application was used, and since then several improvements
were implemented by the developer—among others—on the meshing and on the position accuracy.
Figures 6b and 7a present the resulting textured mesh, which has many missing areas, especially at
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homogeneous or reflecting surfaces. On the contrary, feature-rich surfaces, such as the tabloids on the
wall, are well preserved, and the absolute accuracy of the dimensions of the resulting models is also
relatively high. Measuring distances of specific points on the mesh and comparing it to values from
ground plans and actual measurements showed that the relative error lies under 1%. These properties
altogether make the scanned mesh insufficient for direct use in simulation but sufficient to provide a
guide for the manual modelling.

(a) Picture of the laboratory (b) Detail of the ARCore mesh

Figure 6. The laboratory in real life and as scanned.

(a) Mesh created with ARCore (b) Mesh created with RTAB-MAP

Figure 7. Mesh of the laboratory.

Another 3D scanning technology was tested with an Intel RealSense depth camera [30] and the
Real-Time Appearance-Based Mapping (RTAB-Map) [31], an RGB-D SLAM implementation for ROS.
As can be seen in Figure 7, the mesh proved to be more continuous than the one created with ARCore,
despite the fact that the scanning time was significantly shorter. This can be due to the fact that the
RealSense camera also has a point matrix projector, which provides enough texture for otherwise
homogeneous surfaces. On the other hand, it can also be observed that more falsely detected points
appear, i.e., points that are not part of any objects but “float” in the air. The reason for such errors can
be reflections or other optical artefacts.

For the RTAB-Map technology, another potential use-case was identified in the context of the
above-mentioned laboratory automation project. The main focus of this project is namely to research
the usability of a mobile robot for sample transportation and other tasks in the laboratory and to
develop novel technologies and applications in this context. As such, a mobile robot needs a means of
localising and navigating itself in its environment. In the case of ground-bound robots, this localisation
has to take place in three DoF (two translations along the floor and a rotation around the vertical
axis). For this purpose, usually the so-called simultaneous localisation and mapping technique is used.
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In most of the cases, the algorithm uses a 2D point cloud delivered from a laser scanner and creates a
map of the premises, where the robot operates. These data are enhanced with the angular position
data of the wheels delivered from the wheel encoders and optionally with orientation and acceleration
data delivered from an on-board IMU. However, if a robot is not ground-bound, such as a drone,
localisation in six DoF is required (three translations and three rotations). As an outlook, this scenario
was considered and the localisation capabilities of the RTAB-Map algorithm were tested.

For this purpose, the same Intel RealSense camera was used for the scanning. Figure 8 shows the
output of the RTAB-Map Visualizer while navigating in a previously created map of the laboratory.
On the bottom left, the feature points detected on the camera image are marked, while on the right
the path of the mapping session and the current pose of the camera can be seen. On the top left,
the projected two-dimensional map and the position of the camera are presented in the ROS Visualizer
(RViz). It is important to note that this map must be processed by hand by removing the falsely
detected obstacle points before using the map with an actual robot or an autonomous vehicle.

Figure 8. Output of the RTAB-Map Visualizer during navigation. Colour codes: Cyan and Blue =
trajectory, Green = Inliers, Yellow = Not matched features from previous frame(s), Red = Outliers.

4.2. Landmark Surveying

In another case study, the discussed techniques were tested for landmark surveying. In this
application, a cave was measured using both technologies. This application was suitable for the scale
display of the cave passages, and, based on measurements made in the vicinity of the cave entrance,
the model could be placed in the Google Earth environmental model, which served as a reference for
placing the cave interiors in relation to the external environment. As Figure 9 shows, the mesh created
with the ARCore Scanner has more discontinuities as the one created with RTAB-Map. However,
with ARCore, the whole length of the cave could be scanned without interruption, whereas RTAB-Map
lost the reference after approximately ten meters. It is important to note here that the Intel RealSense
version without an IMU was used, whereas the inertial information apparently gives an advantage to
ARCore in regard to motion tracking. The RTAB-Map mesh being more continuous is due to the fact
that the RealSense camera features a point matrix projector, which provides an artificial texture for
homogeneous surfaces, such as the light grey clay walls of the cave.
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(a) Mesh created with ARCore (b) Mesh created with RTAB-MAP

Figure 9. Meshes of the cave.

5. Conclusions

This paper aimed at investigating cost-effective, easy-to-access 3D reconstruction technologies.
One can see that these technologies alone cannot replace more advanced 3D scanning apparatus,
i.e., Time of Flight (ToF) LiDARs, but they can be utilised in various use-cases where lower quality but
quickly-generated models are applicable.

Based on the experimental work presented in this study, we can conclude that the shape and
direction accuracy of the resulting point clouds are acceptable in most practical situations. However,
the meshes are often non-continuous, partly due to a systematic error caused by the reflection anomalies
of the captured surfaces. Due to these factors, the so obtained results are not suitable for high-quality
visualisation purposes, but they can provide a good basis for planning, surveying, and further manual
processing. The presented case studies justify that, using the RTAB-Map, ARCore, or other similar
techniques, the preparation of 3D scans takes a relatively short time. This makes the approach
well suited for the applications where the simplicity of the devices and the fast incremental model
generation are preferred over the geometric accuracy and model quality. Concerning the quality-related
issues regarding both investigated techniques, it can be concluded that the result of the measurement
procedure is not deterministic and the resulting models suffer from severe mesh continuity problems.
The present study was conducted in the context of a laboratory automation and robotisation project,
which was presented as a representative use-case. In this regard, the discussed technologies provide a
useful way of facility surveying and draft environment model capture for system design purposes.

For further evaluating the performance of each technology, reference measurements may be
conducted with a sensor of higher accuracy, such as a LiDAR.
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Abbreviations

The following abbreviations are used in this manuscript:

Abbreviation Name
0D Null-dimensional
1D One-dimensional
2D Two-dimensional
3D Three-dimensional
AR Augmented reality
CAD Computer aided design
DoF Degree of freedom
IMU Inertial measurement unit
LiDAR Light detection and ranging
OBJ Object file extensions
RANSAC Random sample consensus
RGB Red Green Blue
RGB-D Red Green Blue Depth
ROS Robot operating system
RTAB-Map Real-time appearance-based mapping
Rviz ROS Visualizer
SDK Software development kit
ToF Time-of-flight
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14. Molnár, G.; Szűts, Z.; Biró, K. Use of Augmented Reality in Learning. Acta Polytech. Hung. 2018, 15, 2018–209.
15. Engelhardt-Nowitzki, C.; Aburaia, M.; Otrebski, R.; Rauer, J.; Orsolits, H. Research-based teaching in

Digital Manufacturing and Robotics—The Digital Factory at the UAS Technikum Wien as a Case Example.
Procedia Manuf. 2020, 45, 164–170. [CrossRef]

16. Hanafi, A.; Elaachak, L.; Bouhorma, M. A comparative study of augmented reality SDKs to develop an
educational application in chemical field. In Proceedings of the 2nd International Conference on Networking,
Information Systems & Security, Rabat, Morocco, 27–28 March 2019; Part F148154. [CrossRef]

17. Fan, X.; Chai, Z.; Deng, N.; Dong, X. Adoption of augmented reality in online retailing and consumers’
product attitude: A cognitive perspective. J. Retail. Consum. Serv. 2020, 53, 101986. [CrossRef]

18. Wolfel, M.; Braun, M.; Beuck, S. How does augmented reality improve the play experience in current
augmented reality enhanced smartphone games? In Proceedings of the 2019 International Conference on
Cyberworlds (CW 2019), Kyoto, Japan, 2–4 October 2019; pp. 407–410. [CrossRef]

19. Microsoft HoloLens | Mixed Reality Technology for Business. Available online: https://www.microsoft.
com/en-us/hololens (accessed on 7 September 2020).

20. Google–Glass. Available online: https://www.google.com/glass/start/ (accessed on 7 September 2020).
21. Henrysson, A.; Ollila, M. Augmented reality on smartphones. In Proceedings of the ART 2003—IEEE International

Augmented Reality Toolkit Workshop, Tokyo, Japan, 7 October 2003; pp. 27–28; doi:10.1109/ART.2003.1320421.
[CrossRef]

22. ARCore overview | Google Developers. Available online: https://developers.google.com/ar/discover
(accessed on 7 September 2020).

23. 3D Scanner for ARCore·lvonasek/tango Wiki·GitHub. Available online: https://github.com/lvonasek/
tango/wiki/3D-Scanner-for-ARcore (accessed on 9 August 2020).

24. Labb, M. RTAB-Map as an Open-Source Lidar and Visual SLAM Library for Large-Scale and Long-Term
Online Operation. J. Field Robot. 2019, 36, 416–446. [CrossRef]

25. RTAB-Map. 2019. Available online: http://introlab.github.io/rtabmap/ (accessed on 6 September 2020).
26. Intel(R) RealSense(TM) ROS Wrapper for D400 Series, SR300 Camera and T265 Tracking Module:

IntelRealSense/Realsense-Ros. 2019. Available online: https://github.com/IntelRealSense/realsense-ros
(accessed on 6 August 2020).

27. Wolf, A.; Széll, K. A review on robotics in life science automation. In Proceedings of the AIS 2019 14th
International Symposium on Applied Informatics and Related Areas Organized in the Frame of Hungarian
Science Festival 2019 by Óbuda University, Székesfehérvár, Hungary, 14 November 2019; pp. 106–111.

28. Wolf, A.; Galambos, P.; Széll, K. Device integration concepts in laboratory automation. In Proceedings of
the 2020 IEEE 24th International Conference on Intelligent Engineering Systems (INES), Reykjavík, Iceland,
8–10 July 2020.

29. Fleischer, H.; Thurow, K. Automation Solutions for Analytical Measurements: Concepts and Applications;
Wiley-VCH: Weinheim, Germany, 2017; p. 272.

http://dx.doi.org/10.1109/NTAD.2019.8875580
http://dx.doi.org/10.12700/APH.16.10.2019.10.4
http://dx.doi.org/10.1016/j.promfg.2020.04.089
http://dx.doi.org/10.1145/3320326.3320386
http://dx.doi.org/10.1016/j.jretconser.2019.101986
http://dx.doi.org/10.1109/CW.2019.00079
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.google.com/glass/start/
http://dx.doi.org/10.1109/ART.2003.1320421
https://developers.google.com/ar/discover
https://github.com/lvonasek/tango/wiki/3D-Scanner-for-ARcore
https://github.com/lvonasek/tango/wiki/3D-Scanner-for-ARcore
http://dx.doi.org/10.1002/rob.21831
http://introlab.github.io/rtabmap/
https://github.com/IntelRealSense/realsense-ros


Electronics 2020, 9, 2091 15 of 15

30. Overview of the Intel R© RealSenseTM Depth Camera. 2019. Available online: https://software.intel.com/en-
us/realsense/d400 (accessed on 9 August 2020).

31. rtabmap_ros—ROS Wiki. 2019. Available online: http://wiki.ros.org/rtabmap_ros (accessed on 9 August 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://software.intel.com/en-us/realsense/d400
https://software.intel.com/en-us/realsense/d400
http://wiki.ros.org/rtabmap_ros
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Overview of the Investigated Technologies
	ARCore
	RTAB-Map

	Experimental Comparison
	Methodology
	Results and Discussion

	Case Studies
	Surveying in Laboratory Automation
	Landmark Surveying

	Conclusions
	References

