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Abstract: Existing research recognizes the critical role of quality data in the current big-data and
Internet of Things (IoT) era. Quality data has a direct impact on model results and hence business
decisions. The growth in the number of IoT-connected devices makes it hard to access data quality
using traditional assessments methods. This is exacerbated by the need to share data across different
IoT domains as it increases the heterogeneity of the data. Data-shared IoT defines a new perspective
of IoT applications which benefit from sharing data among different domains of IoT to create new
use-case applications. For example, sharing data between smart transport and smart industry can lead
to other use-case applications such as intelligent logistics management and warehouse management.
The benefits of such applications, however, can only be achieved if the shared data is of acceptable
quality. There are three main practices in data quality (DQ) determination approaches that are
restricting their effective use in data-shared platforms: (1) most DQ techniques validate test data
against a known quantity considered to be a reference; a gold reference. (2) narrow sets of static
metrics are used to describe the quality. Each consumer uses these metrics in similar ways. (3) data
quality is evaluated in isolated stages throughout the processing pipeline. Data-shared IoT presents
unique challenges; (1) each application and use-case in shared IoT has a unique description of data
quality and requires a different set of metrics. This leads to an extensive list of DQ dimensions which
are difficult to implement in real-world applications. (2) most data in IoT scenarios does not have a
gold reference. (3) factors endangering DQ in shared IoT exist throughout the entire big-data model
from data collection to data visualization, and data use. This paper aims to describe data-shared
IoT and shared data pools while highlighting the importance of sharing quality data across various
domains. The article examines how we can use trust as a measure of quality in data-shared IoT.
We conclude that researchers can combine such trust-based techniques with blockchain for secure
end-to-end data quality assessment.

Keywords: Internet of Things (IoT); blockchain; data quality; trust; big-data model

1. Introduction

The Internet of Things (IoT) is a paradigm shift to computing which has accelerated over
the past decade. This has changed the way we live as humans. Today, we use IoT devices to
facilitate our day-to-day activities. Such devices as smartwatches, smart cars, pacemaker in our
bodies, and industrial and spectral sensors. These devices go beyond simple deployments to
large-scale industrial applications. These generate large amounts of data which are collected and
analyzed to inform business decisions. As this IoT ecosystem continues to grow, each domain
(including smart homes, smart cities, smart utilities, smart transport) both generate and consume data.
This practice of sharing data across various domains of the IoT ecosystem is referred to as data-shared
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IoT [1]. This fusion of data is crucial as it leads to the development of new applications. For example,
sharing data between smart transport and smart industry can lead to applications such as intelligent
logistics management, warehouse management and in the case of smart home and smart healthcare,
can lead to personalized medical care. The possibility of sharing erroneous, inaccurate or inconsistent
data is very high in most IoT deployments because they are based on heterogeneous sensor types.
This in turn affects the models built from such data. It is important to evaluate this data as it is collected
to establish its quality.

Poor quality data can lead to poor decisions. It is, therefore, important to assess the quality of
the data from which decisions are made. Quantifying, understanding and making these data quality
issues visible throughout the big-data model (data collection, data pre-processing, data processing
and analytics, and data use) is essential for effective insight. A tangible link between data
quality, data quality types and their effect on the data through the stages in the big-data model
is, however, yet to be defined.

Each application domain (smart healthcare, social media, e-agriculture, e-health, and smart
electricity grids) in IoT affects the heterogeneity of the data generated differently [2]. The factors that
degrade the quality of data in one domain are unique from those in other domains. Each application
too, has a unique description of data quality, and furthermore, each stage of the big-data cycle affects
DQ differently. Shared data takes data from all domains and each stage of processing and makes it
available for another application. Determining quality assurance on this data is no trivial considering
such diversity of requirements on data generation and use. For example, during data generation,
data quality may be affected by sensor fault, or environmental factors, during data transfer and
pre-processing, network outages may impact data quality, and factors such as privacy preservation
processing affect data quality during storage and use. Also, in all IoT deployments, there is typically
no gold standard to assess and compare data quality assessments to.

In this article, we present a new perspective to data quality assessment that is based on trust.
Both data quality and trust are broad, and due to the open nature of IoT, our approach leverages some
components of a systematic and narrative review. We review the intersection between trust and quality
in various areas including internet information sources, multi-agent systems, social networks and
P2P networks. We catalogue data quality metrics and techniques used for describing data quality.
Although both data quality and trust are highly researched areas, this article is the first to give such a
detailed review of the intersections of both in data-shared IoT.

Unlike previous studies that only focus on a single area, our study provides a detailed account of
data quality in IoT, and trust in computing. It demonstrates how trust can be used for data quality
assessment. The article also shows how trust techniques can benefit from existing technologies such as
blockchain for secure end-to-end data quality assessment. This makes our article unique. Our findings
also show why onset data quality assessment is essential and evaluation at every stage of the big-data
model and how this would help make data quality visible throughout the data pipeline.

Trust has been shown to play a central role in both real-world and online social networks [3].
Singh et al. [4] defines trust as a measure of confidence that an entity will behave expectedly despite
the lack of ability to control the environment in which it operates. This is similar to the way data
consumers behave in data-shared IoT [1]. Using trust as a heuristic, we can then assess data quality
in cases where we do not have any reference knowledge about a data source. Also, trust offers us
other opportunities regarding data quality assessment which are inherent in its properties. Trust is
personalizable, dynamic, and propagative. Notably, also, we later show how trust-based techniques
can be combined with existing technologies such as blockchain for a secure data quality assessment.
Blockchain is simply a list of transactions in a public ledger.

The rest of the paper is structured as follows: In Section 2, we describe data-shared IoT and
shared data pools while highlighting the importance of sharing quality data across various domains.
We give each domain and application a unique description of what data quality is and its difficulties.
Secondly, we catalogue data quality metrics and techniques used for describing data quality. We then
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discuss the applicability of such techniques and the challenges these would face in data-shared IoT
scenarios. In Section 3, we describe the notion of trust and data quality. We define trust from different
perspectives and highlight the properties of trust. Then, using a taxonomical representation, we present
the various components of a trust model. For each component, we describe how and where each
(or combination) has been used to measure quality in areas such as multi-agent, social networks,
and web services. In Section 4, we then discuss the opportunities trust models could bring to data
quality assessment in data-shared IoT. We also discuss the opportunities of integrating blockchain
with trust-based data quality assessment tools for a secure end-to-end solution. Finally, Section 5,
open challenges and possible future research directions are discussed.

2. Data Quality in Shared IoT Data

2.1. Data-Shared IoT

The IoT ecosystem has grown to incorporate everything in our surrounding, from smart homes,
smart cities, and manufacturing to environmental sensing. Each of these application areas both
generates and consumes data. Both research and industry are currently harnessing the opportunities
to share and consume data across various IoT domains in what is being referred to as data-shared
IoT [5]. Figure 1, defines the common domains of the IoT ecosystem. The highlighted areas in yellow
for example, show how sharing data between smart transport and smart industry can lead to other
applications such as intelligent logistics management, warehouse management and in the case of smart
home and smart healthcare, can lead to personalized medical care. The figure defines six domains.
For each, we highlight some of the features of the data generated in that category. The aim is to
underscore where IoT data is predominantly used so that the reader can understand the features and
factors that affect the quality of data in practical use-case scenarios.

Emergency response

Personalised medicine

Internet of
Things

Smart
Cities &Transport

Smart
Industry

Smart
Farming

Smart
Home

Smart
Utilities

Logistics 

Warehouse management

Smart
Healthcare

Figure 1. Data-shared IoT (Internet of Things) ecosystem.

• Smart Cities and Transport: Also referred to as intelligent transportation. This incorporates
the use of sensors embedded in the vehicles or mobile devices, and devices installed in the
city. Applications of this nature span from simple street lighting control, accident prevention,
parking and traffic management to more sophisticated applications such as autonomous
driving. Applications in this domain must adjust to dynamic environments. Data producers
must communicate with each other and exchange information, and be robust to intermittent
connectivity [6]. Furthermore, these applications produce large amounts of data and are highly
time-sensitive, so any network delays affect the data integrity.

• Smart Utilities: This involves the use of information and communication technology to deliver
public services. The most common example is smart grids. It includes classical power grid,
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renewable energy, monitoring and control of generation to transmission and distribution networks,
and integration into smart homes. Data here is heterogeneous, and most of the applications require
it to be near real time. Since such networks are widely distributed and deployed in difficult
and inaccessible areas, they also suffer intermittent connectivity loss. With the integration of
homes with smart meters and buildings, availability and completeness are a concern. Sometimes,
decisions are made on incomplete data.

• Smart Industry: This can involve using RFID tags for product tracking, the use of sensors to
monitor machinery, and the performance of equipment and sensors to monitor product quality.
Poor maintenance and other resource constraints can lead to inaccurate and missing values.
Sensors are also affected by limited battery life and replacement difficulty as they are deployed in
inaccessible environments. Data must be real-time as responsive actuation is critical for efficiency.

• Smart Farming: Smart farming or precision agriculture is the use of information and
communication technology in farming practices such as machinery, equipment and the use
of sensors [7]. The main challenge to data in this category is that the sensors used can have
variable precision, ambiguities, and poor interoperability [8].

• Smart Healthcare: The use of IoT in the health sector has seen the development of new applications
in this sector. Wearables are used to monitor patients, drug delivery systems, personalized
treatments based on activity, and tele-based healthcare solutions. Data from this category can be
noisy and erroneous as it comes mostly from heterogeneous devices that suffer from battery and
accuracy issues. The privacy of the users is a significant concern.

• Smart Home: This involves integrating sensors and actuators into traditional home appliances
such as washing machines, light bulbs, and doors to give them the ability to communicate over a
network. This helps the homeowner to monitor, manage, and optimize the energy consumption of
their home. Data in this domain must be anonymized to protect the privacy of the user. This adds
a processing overhead [9] which can cause delays and, in turn, compromise the integrity of
the data.

2.2. Data Quality and Data Quality Dimensions (DQDs)

It is essential to determine the quality of data shared between IoT domains to facilitate the best
decisions or actions. The importance is compounded in IoT environments when data is derived from
low-cost sensors, which may be unreliable [10]. From the examples given in Section 2.1, it is clear
that each application has a unique description of data quality. For data to be shared, these unique
descriptions must be standardized and advertised. Data quality can be described and evaluated using
DQDs. DQDs provide an acceptable, standardized, flexible, and measurable set of quality metrics
to measure data quality. Before the DQDs are described in more detail, this section defines data
quality using four properties: intrinsic, contextual, representational, and accessibility. For each of these
properties, appropriate DQDs are given.

2.2.1. Data Quality

Data quality is a widely studied topic in both database management [11–13] and big data [14].
Business decisions can be negatively impacted by poor data quality [15]. Karkouch et al. [16]
reported on several factors which can degrade the quality of data in an IoT context. Some of these
include deployment scale, resource constraints, fail-dirty, security vulnerability, privacy preservation
processing. These manifest differently at different stages of the big-data cycle. For example, fail-dirty,
sensor fault, and deployment scale are more predominant during data generation, as privacy
preservation processing manifests mostly during data use and storage.

Data quality is subjective, making it dependent on the use-case and domain area. It is defined
differently from academic and industrial perspectives [17]. Sidi et al. [18] define data quality as the
appropriateness for use or meeting user needs. Heravizadeh et al. [19], defines quality as the totality
of the characteristics of an entity (data) that bear on its ability to satisfy stated and implied needs.
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The quality of data is highly dependent on the intended use. This is a multidimensional concept
that is difficult to assess as each user defines their quality properties. Wang et al. [20] defines
four categories of data quality properties that we believe any assessment system should be able to
implement collectively rather than in isolation. These include:

• Intrinsic: This category examines quality properties in the data itself. For example, data quality
may be looked at in terms of how a sensed point deviates from an actual point (anomaly detection)
or how a particular data point differs from the rest of the data. Efrat et al. [21] proposed a
technique that leverages multivariate analysis to ensure data quality of dendrometer sensor
networks. Using statistical techniques, defective sensors are identified by comparing a sensor’s
readings to an expected reading from a similar, healthy sensors network. Tsai et al. [22] proposed
a system to detect abnormal sensors that uses machine learning techniques. This is achieved
by training a Bayesian model to predict the values of sensor nodes by comparing them to other
correlated sensors. This can detect abnormal sensors in real time.

• Contextual: This looks at quality properties that must be considered within the context of the task at
hand. For example, it must be relevant, timely, and appropriate in terms of quantity. This property
of data quality has previously been neglected. Faniel et al. [23] emphasize the importance of the
context of the data. Contextual information describes the set of interrelated environmental conditions
where data is produced. For example, where and how sensors were placed onto the specimen
will significantly affect the resulting data quality. To the best of our knowledge, no solutions have
considered contextual information inclusion while assessing data quality.

• Representational: This looks at computer systems that store the information. They must ensure
that the data is easy to manipulate and understand. Fatimah et al. [18] developed a data quality
assessment solution by applying sampling techniques to big-data sets. To reduce computational
resources when assessing data quality of big-data sets, they show the importance of sampling in
such scenarios. Their results indicate that the samples’ mean quality score is representative of the
original data. Much of this category’s work has widely been studied in database management
systems [11–13].

• Accessibility: This looks at data quality challenges that are as a result of the way users access data
system. For example, it could from insecure, unregistered network where new packets can be
introduced into the data thus affecting its quality. This was traditionally a problem in database
management systems and is been widely studied there [13].

Each of these data quality properties defines quality metrics that can be used to assess data quality.
These are collectively known as data quality dimensions [24]. Examples of these include but not to
accuracy, accessibility, timeliness, believably, relevancy. Figure 2 shows a framework that defines data
quality properties and the associated data quality dimensions [20].

Accuracy
Believability
Objectivity
Reputation

Appropriate amount of data
Completeness

Relevancy
Timeliness

Value-added

Concise representation
Ease of manipulation

Interpretability
Representational cosistency 

Accessibility
Access security

Data Quality

Intrinsic
Data Quality

Contextual
Data Quality

Representational
Data Quality

Accessibility 
Data Quality

Data Quality Properties

Measurable DQD

Figure 2. Data quality properties and the corresponding DQDs (Data Quality Dimensions).
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2.2.2. DQD

DQDs provide an acceptable and standardized framework to measure data quality.
Several authors have defined different DQDs, each with an associated metric by which to measure
quality with a given dimension [17]. A DQD is a characteristic or feature of information for classifying
information and data requirements. As such, it offers a way of measuring and managing data quality
as well as information [18]. It is important to note that there is no standard definition of DQD that is
considered to be domain independent [25]. It is argued that some definitions could be task independent,
therefore not restrained by the context of the application, while others are task dependent [26].

DQDs date back to the 1990s and were mostly used by information system experts. In an earlier
article, Wang et al. [20] proposed a hierarchical framework for organizing DQDs. The framework
was intended to capture dimensions of data quality that are important to data consumer. As part of
the study, 118 data quality attributes were collected from data consumers and later consolidated into
twenty dimensions. Redman et al. [27] defined more than 20 dimensions of data quality, including
accuracy, completeness, and consistency. Their approach is system cantered contrary to the above
approach which takes a consumer centric approach. Bailey et al. defined and used 39 of these
dimensions to study user satisfaction. Several other researchers have studied and defined DQDs.

More recently, DQDs have been used in practical applications. Fatimah et al. [18] proposed a
solution that uses a sampling strategy to reduce the size of the data set for fast quality evaluation.
The experiment was based on completeness and consistency as data quality dimensions. This was
conducted on sleep disorder’s data set by applying big data bootstrap sampling techniques.

Keßler et al. [3] demonstrated how one can approximate the quality of geographic information
through the notion of trust as a proxy measure. The results of the trust score were compared to
known DQDs: accuracy, consistency and completeness obtained from a different field experiment.
Their conclude that data quality can be estimated using a trust model based on data provenance.

Although DQDs have been around for a long time, there has been no consensus on how to
apply them in a more generic way. Different applications have considered some of them and left
out the others. Lee et al. [24] summarized most of the DQDs into four main categories according
to the framework defined in Figure 2. DQDs also lack practical applicability in the IoT domain
that is defined by highly heterogeneous data. The Table 1 gives a summary of DQDs with their
corresponding definitions.

Table 1. DQDs and their corresponding definitions (adapted from Leo et al. [28])

DQD Definitions

Accuracy The extent to which data is certified error-free, correct or flawless
Believability The extent to which data is regarded as true and credible
Objectivity The extent to which data is unbiased, unprejudiced, and impartial
Reputation The extent to which data is highly regarded in terms of its source or content

Appropriate amount of data The extent to which the volume of data is appropriate for the task at hand
Completeness The extent to which data is not missing and of sufficient breadth and depth for the task at hand
Relevancy The extent to which data is applicable and helpful for the task at hand
Timeliness The extent to which the data is sufficiently up to date for task at hand
Value-Added The extent to which data is beneficial and provides advantages from its use

Concise Representation The extent to which data is compactly represented
Ease of Manipulation The extent to which data is easy to manipulate and apply to different tasks
Interpretability The extent to which data is in appropriate languages, symbols, and units, and the definitions are clear
Representational consistency The extent to which data is presented in the same format

Accessibility The extent to which data is available, or easily and quickly retrievable
Access Security The extent to which access to data is restricted appropriately to maintain its security

2.3. The Challenges of Data Quality in Shared IoT

Data sharing within IoT presents unique challenges for data quality assessment using traditional
DQDs. DQDs are currently designed and used for which data that exhibit similar properties.
However, the factors that degrade the quality of data in shared IoT are diverse and unique from
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those in other areas. Each application has a unique description of data quality. Each stage of the
big-data cycle and each IoT domain is also affected differently. For example, intermittent connectivity
affects data quality significantly in smart utilities, but not so for smart home where the connections
are stable, or data quality manifestation during data collection is different from that during data
processing. This results in different data properties across each stage of the big-data cycle and each IoT
domain. The challenge this causes to data quality assessment is the need to define different DQDs for
each domain. This hinders scalability and interoperability for data sharing application.

Although several DQDs have been defined as shown in the Figure 2 and in [18,28], only accuracy,
completeness, consistency, and timeliness have been implemented and tested. Blake et al. [29] defined
accuracy, completeness, consistency, and timeliness. The importance of all the DQDs has been properly
articulated in [18,24]. The limited implementation of these DQDs raises questions of the applicability
of the same especially in shared IoT where data is highly heterogeneous and different applications
have a unique description of data quality.

The other challenge is the trade-off between different DQDs. Well as timeliness is of great
importance to smart transportation, smart utilities, it may not be the case for smart agriculture for
example. The question then is, when sharing data across domains with different conflicting DQDs,
which one takes precedence. Although different trade-off models have been defined, for example,
Even et al. [30] defines a trade-off model between completeness and accuracy, Amicis et al. [31]
describes a trade-off model in various combinations between accuracy, timeliness and completeness.
This becomes a complicated process as the number of DQDs increases in large systems.

Most trade-offs have a negative relationship. Figure 3 illustrates some of the trade-off that may
exist and their negative associations (indicated by the bidirectional arrows). For example, the arrow
between accuracy and completeness describe the antagonistic relationship that may exist. Consider a
scenario where an autonomous vehicle must make a timely decision. In such a case, this might be based
on incomplete but accurate and timely data. In this case, the negative trade-off relationship is between
accuracy and timeliness versus completeness. The rest of the arrows also represent such associations.

ConsistencyConcise

Accessibilty

Timeliness

Completeness

Accuracy

Correctness

Figure 3. Trade-off between DQDs.

The other challenge emanates from the description in Section 2.1. It is clear that each application
has a unique description of data quality and that data quality is highly subjective. For data to be shared,
these need to standardized and advertised as part of meta data to the consuming application so as to
define a more generic data quality assessment metric that is also subjective enough for each application.

3. Trust and Data Quality

Trust is a widely studied concept. It has been studied widely in computer science [32,33],
sociology [34,35], and economics [36]. Each of these areas has defined and considered trust from their
own perspective. This section highlights the definitions of trust that relate to this article, which can be
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harnessed for the use in shared IoT data scenarios. We then explore the properties of trust, and for each,
we explain the role it can play in quality assessment. As both trust and data quality have been widely
studied (in database systems [11–13] and big data [14]), this article brings a new perspective that looks
at the intersection between these two. The goal is to explore if the opportunities that come with this
intersection can be used to mitigate the challenge DQDs face as a way of data quality assessment
within shared IoT. The section then presents core components of a general trust model as defined
by Najib et al. [37]. This is then extended by discussing how such components can be applied as a
measure of quality in application areas such as multi-agent systems and web services. We then make a
case for using a defined trust metric for data quality in shared IoT where other metrics are difficult to,
or not feasible for, use.

3.1. Trust Definition

First, we contrast trust from two perspectives: user and system trust. User trust is mainly
derived from sociology, and it refers to the “subjective expectation an entity has about another’s future
behavior” [38]. On the other hand, system trust has its roots in the security domain [32]. It refers
to “the expectation that a device or system will faithfully behave in a particular manner to fulfil its
intended purpose” [39]. Both these definitions are subjective, and this implies that trust is intrinsically
personalized. This is particularly important as data collected in IoT mostly aims to give a personalized
experience via technology-enabled insights. As we build trust models on top of this data, this data
must retain such properties.

Secondly, we define trust from a perspective of online interactions, for example, in online
retail where the overall trust score results from direct and indirect interactions between entities
(agents/users). Here, we contrast two forms of trust: direct and recommended trust. Direct trust is
based on one-to-one interaction between members of a social network. Recommended trust, sometimes
referred to as indirect trust, is based on third-party interactions with other members. This is based on
the propagative property of trust. In this sense, trust is relational [40].

This form of trust is important as it informs what has been called result-driven trust [1].
For example, if we take this property of trust and extend it to a system perspective, we may inform or
update a trust score calculation of a modeling process based on conditional system feedback. This can
also be applied effectively to data quality assessment where no gold standard exists. Figure 4 illustrates
the difference between direct and indirect trust. Take, for example, users A and B. User A trusts data
source A and user B trusts data source B because on the one-to-one interactions. This is direct trust
as indicated by the full arrows. However, also user B trusts user A. Therefore, user B can trust data
source A because of indirect trust, as indicated by dotted arrows.

Data source
A

Data source
B

Data source 
C

U
se

r A

U
se

r B

U
se

r C

Direct trust

Indirect trust

Direct trust

D
ire
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 tr
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t

D
ire
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 tr
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t

D
ire

ct
 tr
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t Indirect trust

Figure 4. Difference between direct and indirect trust.
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3.2. Properties of Trust

Here, we define four properties of trust. For each property, a detailed account of how it has been
used in various domains is given. Later in Section 4.2 we show how these can be harnessed for data
quality assessment within data-shared IoT.

3.2.1. Propagative

This is one of the most widely studied property of trust in computing. Gray et al. [41] used the
propagative property of trust to demonstrate how risk assessment systems and, entity recognition
scheme can be built. They conclude that in an extensive mobile ad hoc network, trust, risk,
and recommendations can be propagated through relatively short paths connecting entities. Several
other scholars have harnessed the same property of trust [42–44]. To put this in the context
of data quality assessment, assuming we have an IoT data source A, with a set of features
P = {x1, x2, x3, . . . , xn} whose trust score is known, if then a new data source B with a set of feature
S is introduced into the network, where S ⊂ P or S ⊆ P, then we propagate a certain level of trust
from A. This should not imply that trust is transitive. Propagation does not imply transitivity, but the
reverse is true [40].

3.2.2. Dynamic

As two agents interact, trust can increase or decrease with new experiences. It may also completely
disappear with time. Newer interactions are more important than older interactions. Previous work has
exploited the dynamic nature of trust to develop a measure of data quality using trust [1]. This work
introduces an experience score which penalizes distrust and rewards trust. This property has also
been widely modeled in computer science. Wishart et al. [45] defines a new protocol SuperstringRep,
which combines service discovery with service scores in P2P networks to create a system-wide score
for services which reflects the quality of service clients offer. The reputation system requires that the
clients provide an indication of their level of satisfaction with the service after having interacted with
it. However, old ratings should not have undue influence on the score of service as they represent
out of date information. To this end, they introduce a forgetting factor that is applied to each rating.
The idea here is to give new experiences more attention as trust quickly increases or decreases with
new experiences compared to old ones.

3.2.3. Subjective

Trust is highly subjective. What one user may consider trustworthy, may not be for another.
Consider a data source A and three data consumers X, Y, and Z. Data consumer X trusts data source
A as a result of direct interactions. Data consumer Y may trust the opinions and reviews of X and
therefore trusts A. However, Z may not trust the opinions and reviews of X and therefore may not
trust A. Figure 5 illustrates the subjective interactions between a data source and three data consumers.
The subjective nature of trust mean that a different trust score can calculated for each user depending
on their preferences [40]. This is important while investigating, for example, how the quality of data
varies depending on the use-case at hand.
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Data source
A

Data consumer 
X

Data consumer
Y

Data consumer
Z

Figure 5. Subjective interactions between a data source and three data consumers.

3.2.4. Context-Dependent

This property has widely been discussed in psychological sciences [46]. A trust score is highly
dependent on the context. For example, consider a case in smart agriculture with two defined problems
at hand: (1) predicting yield and (2) detecting the presence of a disease. A data source X may be trusted
to solve problem 1 but may not be trusted to solve problem 2. So, X is trustworthy in the context of
predicting yield but is not in the context of detecting the presence of a disease.

3.3. Components of Trust Model

Trust is a subject that spans several disciplines. It has been used and defined differently in
different fields. To place this into the perspective of data quality assessment within shared IoT,
one needs first to understand how trust models have been applied in IoT in general. Najib et al. [37]
defines components that must be considered while calculating trust. These include the components
metric, source, algorithm, architecture and propagation. However, these components of a trust model
are not mutually exclusive, and multiple of these can be used in a single system. This review builds on
this taxonomy and further examines each of these components and highlights those that can be used to
model trust to evaluate data quality in shared IoT data. Challenges that some of these components my
face within shared IoT scenarios are explained at the end of each component. Figure 6 summaries the
five components. The highlighted blocks show the components that require additional consideration
for use in shared IoT data sources because of the challenges they present. In Section 3.3, we briefly
highlight where each component has been applied, and later in Section 3.4, we show how each
component has been applied in areas such as web service, multi-agent systems and social networks.

3.3.1. Metric

The trust metric defines how trust is aggregated. In the literature, metrics for trust have been
based on either a QoS (Quality of Service) approach or social interaction approach. QoS-based trust
looks at the trustees’ ability to execute a task entirely. Witkowski et al. [47] proposed a trust model in
which trust of an agent is calculated based on performance in the past. The example is based on an
intelligent telecommunication system for trading bandwidth. The quality and quantity of which is
varied depending on the trust suppliers and consumers have in each other. Nitti et al. [48] used QoS
trust metric in the form of transaction performance and computation capability of the IoT device to
evaluate trust value. The goal was to determine the trustworthiness of nodes and evaluate the benefits
of the trustworthiness management for IoT.

On the other hand, social trust looks at the social interactions between nodes or devices, more akin
to trust between humans. This has been widely studied in P2P networks and social networks.
For example, Schmidt et al. [49] implement a fuzzy trust evaluation and credibility model for
multi-agent systems. Their work is based on the application of multi-agent systems in e-commerce
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markets where the measurement and computation of trust to secure interactions between autonomous
agents is crucial for the success of automated e-commerce markets.

Data systems in IoT present different challenges, for example, most systems are closed,
and therefore, we cannot monitor the social interactions between the data producers and data
consumers. Social-based trust requires us to have the ability to see such interactions. We can,
however, monitor the performance of IoT devices and calculate trust based on such parameters
such as data throughput, data transfer rate and be able to approximate data quality in IoT settings.

3.3.2. Source

Trust can be represented in two main ways: direct and indirect trust, as illustrated in Figure 4.
Direct trust is as a result of interactions between IoT devices. This can be social or as a result of QoS
transactions. Direct trust represents a measurable value in the competence of the device to complete
the requested task, which is based on a history of interactive records between the two devices [37].
Indirect trust, however, is as a result of a trust value obtained from third-party interactions. This is
also referred to as reputation, recommendation, rating, or feedback. The combination of both direct
and indirect trust is defined as hybrid. Nitti et al. [48] used a hybrid trust model to determine the
trustworthiness of nodes and evaluation of the benefits of the trustworthiness management in the IoT.

This trust component also faces the same challenge highlighted above. In a shared data context, it
is difficult to determine indirect trust and hybrid trust in IoT data sources as it is not feasible for data
consumers to give feedback or ratings in most cases. Therefore, the most applicable means to calculate
trust between data sources and data consumers is to use direct trust. However, indirect trust can be
obtained by building a third-party agent to give feedback on behalf of the data consumer. This is
challenging and an object of open research [1].

3.3.3. Algorithm

This component looks at how the parameters are combined into a single trust score.
Several algorithms have been proposed and used, including Bayesian inference, fuzzy logic and
machine learning. Bao et al. [50] designs and evaluates a scalable, adaptive and survivable trust
management protocol in dynamic IoT environments. The underlying idea of the trust protocol is based
on Bayesian reputation system where each node calculates the trust using Bayesian estimation over
historical observations. Schmidt et al. [49] implement a fuzzy trust evaluation and credibility model for
multi-agent systems, and Jayasinghe et al. [51] implements a machine learning-based computational
trust model for IoT services. The details of these are highlighted in Section 3.4. This component of
the trust model is not affected by the challenges mentioned above, and any of the algorithms can be
applied to data quality assessment in IoT settings.

3.3.4. Architecture

Since IoT is extensive, some researchers have used a centralized approach, where trust source
and algorithm are centrally managed [52], and others have used a decentralized approach [53],
where each node or sometimes small cluster is self-managed. This component defines how the
nodes are distributed across the lower layers of the network and the cloud. This complements
trust propagation to pass a trust metric across the entire big-data cycle, not just a single node or
single producer.

3.3.5. Propagation

This component evaluates how a node passes its trust score to another node. This can be
managed at the node level or community level [37]. In the node level propagation model, IoT devices
autonomously propagate a trust score to other IoT devices without the use of a broker. In a community
level model, trust propagation in cluster-based IoT systems is consolidated by a broker. The challenges
highlighted above also constrain community level propagation. Unless all the data sources and data



Electronics 2020, 9, 2083 12 of 22

consumers belong to the same closed system, which is not practical in most data sharing IoT scenarios.
Even though this component illustrates how to propagate trust from one node to the other, it is not
clear how a trust metric can propagate through a data system/ processes say from data pre-processing
to data visualization and back securely. This is still an open research challenge.

3.4. Trust as a Measure of Data Quality in Various Computing Domains

Traditionally, trust and quality have been used interchangeably. The higher the trust in a product
or services, the higher the expected quality and vice versa. In computing, trust has also been used
to infer quality assurance. For example, in internet search, trusted information sources are ranked
highly [54], in web services, the higher the trust score of a system, the higher the quality of service [55],
in multi-agent systems, P2P networks and social media, the higher the trust score of an agent or node,
the better the interaction experience [38,56,57]. Online platforms such as Amazon and Netflix use this
concept of trust/reputation to evaluate the performance of their services. This section presents a view
of how trust has been used to infer quality in various domains of computing. For each technique in
each domain, we relate this to the trust components highlighted in Section 3.3. Figure 6 shows this
relationship. It is important to note that the components of a trust model highlighted Section 3.3 are
not mutually exclusive, and multiple of these can be used in a single system.

3.4.1. Multi-Agent Systems

Multi-agent systems (MAS) are particularly important for creating software that operates in
environments that are distributed and open. One of the earliest application of MAS is reported in [58].
This is an application for a distributed vehicle monitoring system. The goal is for the agents to
cooperate or compete to achieve a desirable result. Examples of such systems today include robots in
production lines, traffic systems, unmanned aerial vehicles (UAVs) and even surveillance systems. In a
large-scale open distributed systems, agents must interact and operate in uncertain and continuously
changing environments. Therefore, trust becomes an integral part of such systems to prevail [57].

Witkowski et al. [47] proposed a notion of objective trust developed based on interactions
between agents. In their proposed model, trust in an agent is calculated based on performance in
the past. The example is based on an intelligent telecommunication system for trading bandwidth.
The quality and quantity of which is varied depending on the trust suppliers and consumers have in
each other. Consumers update their trust values according to the difference between their request
and the received bandwidth. The better quality (size) of the bandwidth, the higher their trust in the
supplier. Therefore, a higher trust in a supplier would result in it being chosen for further purchases
and vice versa. A consumer-trust function takes two parameters α(0 ≤ α ≤ 1), the degree to which
a positive experience enriches a trust relationship and β(0 ≤ β ≤ 1), the degree to which a negative
experience damages the relationship. This is a quality of service-based trust. As bandwidth (service)
improves, so does the resulting trust score.

Schmidt et al. [49] implement a trust evaluation model for multi-agent systems. Their work is
based on the application of MAS in e-commerce markets where trust scores are important to determine
the interaction between autonomous agents for the success of automated e-commerce markets. Credible
observations are used to calculate trust scores used to match potential business partners. In their
work, a trusting agent (the agent evaluating the credibility of the business partner or service provider)
uses the past interaction transactions between the recommending agent and reputation queried agent
(the agent that acts like a service provider or business partner) to calculate a trust value which is then
used to determine the best agent as a business partner. Their trust equation is based on three factors:
Weighted Trustworthiness Value (WTV), Agents Credibility (AC) and Opinion Weight (OW). The trust
metric used in this work is based on the social interactions between the agents.
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3.4.2. Web Services

Web services represent the next generation of web-based technology. They allow new and
improved ways for enterprise applications to communicate and integrate with each other [59]. A service
provider publishes its service function description by which a service consumer can find the service.
However, in a redundant open system, a service consumer faces a dilemma in having to choose from a
list of services offering the same function [60]. The service consumer is then tasked to evaluate how
well a service can perform based on some form of QoS metric. To mitigate these challenges, web service
selection methods were proposed. However, recently trust and reputation models have been used to
solve the same problem and have shown better results, for example, in [61].

Malik et al. [55] presents an approach that uses Hidden Markov Models (HMM) to predict the
reputation of a service provider in cases where rater feedbacks are not readily available. The argument
is that the higher reputation of a service provider, the better the service. The authors view the reputation
of a web service as a reflection of its quality. They adopt an approach similar to QoS-based trust, which
they term as quality of Web service (QoWS). QoWS is a mapping between a set of quality parameters
defined through a common ontology and a set of values or ranges of values. Examples of quality
parameters include security, privacy preservation, a services’ response time, availability, reliability.

Mehdi et al. [53] presents a QoS-aware recommender approach based on probabilistic models to
assist the selection of web services in open, distributed, and service-oriented environments. They relate
the trust in a service to its performance denoted by QoS ratings. Their approach is different from the
one highlighted above as it allows consumers to maintain a single trust model for each service provider
they interact with. Similar to the above, they use QoS-based trust and this is based on availability,
response time, reliability and throughput.

3.4.3. Social Networks

Social networking is the use of internet-based communications to connect with friends and
families. Social networking sites (SNS) are now part of our daily life with increasing penetration into
platforms for computer mediated communication [62]. Facebook and Twitter are successful examples
of such. Today SNS are not only a platform for making new connections, but people go to SNS to find
information. Recently, these features of SNS have been abused by malicious agents who pose as new
connections or malicious agent who post wrong information. This is the basis for what is called “fake
news”. Because these are open and dynamic, agents can join the network at any time without any
form of validation or verification. Therefore, the good agents are tasked to find a way of evaluating
new agents and evaluating information source on SNS. Also here, trust has shown to be an excellent
way to mitigate such challenges [40].

As social media has become a significant source of information, there are raising challenges of wide
propagation of cyber frauds which leverage fake information sources. Such unverified information
sources on social media can have significant adverse effects [56]. The research work in [56] proposes a
multi-criteria and adaptive trustworthiness calculation mechanism for information sources. They use
trust as a way to evaluate the goodness of the information sources. Their score of trust is based on
social interactions of the social network nodes and defines four parameters: identity-based trust,
behavior-based trust, relation-based trust, and feedback-based trust factors.

Golbeck et al. [63] proposes an approach that combines provenance with trust in social networks
for semantic web content filtering. They describe an algorithm for inferring trust relationships using
provenance information and trust annotations in semantic web-based social networks. They argue
that trust scores can be used to sort, rank, aggregate and filter information presented by social network
users. Their implementation is based on social interactions of social nodes.
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Figure 6. Components of a trust model within IoT.

3.4.4. P2P Networks

In a P2P network, the “peers” are computer systems which are connected to each other in a
network. The peers share their own resources, and these are accessed directly without the need for an
intermediary [64]. Therefore, for an efficient resource sharing environment, peers act both as service
consumer and provider. Due to this open and anonymous nature comes with challenges that any
open dynamic environment faces, for example, the so-called free-riders and the tragedy of commons.
Peers must evaluate the quality of the shared resources somehow, as some of it may be malicious.
In this area, trust has also been reported [65] to help peers decide on the best peers to interact with and
hence the best resource pools.

4. Secure Data Sharing with Trust

The merits of sharing data across multiple domains of IoT have been discussed in this article,
and by other authors [66], and how we can ensure that such shared data retains its quality using trust.
Unless such quality evaluation solutions are secure, the quality assessment is in vain. Several authors
detail the need for secure data sharing in various application areas; Feldman et al. [67] describes
the need for such in public health, Geoghegan et al. [68] discusses the same for cloud services.
Security, therefore, becomes an integral part of such a holistic end-to-end system. Although several
state-of-the-art solutions for security exist in IoT, the use of blockchain has been suggested as on
optimal one [69]. However, these also face challenges regarding ensuring that data retains its quality.
Also, current data quality metrics are not tailored for such security frameworks. This section shows how
trust is well suited for an end-to-end data quality assessment model, and how security solutions such as
blockchain are also well suited to securing the propagative nature of trust through the big-data model.

4.1. Secure Data Sharing in IoT

Practical data quality assessment should be end-to-end, from when data is generated to data use.
The challenges with the current DQDs is that they are instantaneous, they require a gold reference and
other challenges as highlighted above. Trust, on the other hand, offers us opportunities that can be
harnessed to craft optimized end-to-end data quality assessment solutions. However, this alone does
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not guarantee that the shared data will remain of the advertised quality as this can be manipulated
along the data pipeline. IoT is characterized with open systems where security is a big concern.
This means that even if a data source advertises a certain data quality, there is a need to ensure and
guarantee that this will remain the same throughout the data pipeline. Solutions such as the use of
blockchain might be coupled with data quality assessment models built with trust to offer a holistic
end-to-end solution.

Blockchain was majorly known as the backbone of cryptocurrencies, to be exact, bitcoin.
Nakamoto et al. [70] first proposed blockchain in 2008. In simple terms, blockchain can be considered
to be a list of transactions in a public ledger. This became popular because of its vast advantages,
for example, decentralization, persistency anonymity and auditability. It is because of such reasons
that blockchain is widely used in many areas such as finances, security, and IoT.

Blockchain has been applied in several IoT application domains to guarantee that data retains
its privacy, and reaches the intended end user. Makhdoom et al. [71] proposed PrivySharing,
a blockchain-based framework for privacy preservation and secure data sharing in smart cities.
The proposed solution divides the blockchain into multiple channels where each channel processes
data from a specific domain, for example, smart city, smart home. Interactions with the blockchain
network is secured with dual security in the form of an API Key and OAuth 2.0. Liu et al. [72] presents
a blockchain enabled data collection and sharing for industrial IoT with deep reinforcement learning.
Their solution uses deep reinforcement learning to help each mobile terminal to sense nearby points
of interest to achieve maximum data collection amount, geographic fairness, and minimum energy
consumption and blockchain for secure data sharing among mobile terminals.

The overall goal in the above solutions and all other such solutions is to guarantee the privacy of
the shared data and to provide a secure conduit for sharing such data. This is based on the assumption
that the data meets the quality requirements of the intended end user. However, for heterogeneous
data sources, is not always the case. Figure 7, illustrates how we propose that trust can be integrated
with blockchain for secure data sharing. The full arrows indicate steps currently considered for secure
data sharing. This involves generating the data, encrypting it at the source, secure data transmission
over a blockchain network and finally data consumption by the end user.

Sensing Encryption Blockchain Network

Secure data sharing

Trust Metric (TM)

(1)

Data pre-processing Data processing Data use
TM TM

End user

(2)

Figure 7. Flow diagram of secure data sharing with integration of trust metric.

The process above, however, has the following challenges: trust-less data sharing among various
applications. This is because data quality assessment is carried out at the source, and security is
enabled on the sharing conduit. The need for quality assessment between data cycle stages is not
considered. In all applications, they assume that all end users have the same data quality needs.
However, as seen before each application domain in IoT define data quality differently. In Figure 7,
the dotted arrows show how a trust metric can be integrated into secure data sharing solutions based
on blockchain (1) and IoT in general (2), for an end-to-end data quality assessment solutions. In such a
holistic system, a trust metric (TM) would help to establish the visibility of data quality throughout
the data pipeline as show in the figure. Therefore, the integration of trust becomes vital for secure
end-to-end data sharing.
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4.2. Opportunities Trust Brings to Data-Shared IoT

Although trust models have been widely used as a measure of quality in computer science and
other areas as the literature above suggests, the question is whether these same properties of trust
can be used as a measure of data quality within shared IoT to mitigate the challenges highlighted in
Section 2.3. These opportunities are underpinned in the following properties of trust:

• Trust is personalizable: Trust, in its nature, is subjective. Any actor over time can develop their
own trust score from the same process depending on the use-case and importance they attach
to, or evaluate the out of, the process. This would then allow each data agent/consumer to
re-customize its trust metric by assigning different weights to the features of the metric.

As highlighted in Section 2.3, each application has a unique description of data quality; this
would mean that we can define one generic trust model that can be adjusted differently for each
application and use-case. This can be achieved in several ways, for example, a data consumer
can define their own weights to the model, or they can choose different parameters to the model.
In other words, each data consumer defines what data quality is to them.

• Trust is dynamic: Trust can increase or decrease with new experiences (usage or interactions).
This would allow a data stream/data provider to define a generic metric which provides an
innovative way to allow it to build trust over time. This can achieve the following benefits: (1) the
evaluation of a data source is not based on an instantaneous metric. It takes into account both
past and current events. (2) In application area such as autonomous vehicles, the time between
getting the shared data and acting on it is very minimal. However, with a trust-based approach,
once a data source has attained a certain level of trust, data quality assessments processes can be
run during off-peak times.

This is the same property of trust that used in [1] to define an experience score to evaluate data
quality without a gold standard using trust. They compare their results to a known metric R2

(statistical measure of dependence between variables) and they conclude that this property of
trust can be used to create a metric that can be used in cases without a gold standard.

• Trust is propagative: Once a data source has attained a certain level of trust, we can exploit two
factors of that trust: (1) if the quality needs of the application changes, for example, data source
moved into a new use-case, i.e., agri-tech data source moving from disease prediction to product
delivery chain, where we can infer a certain level of trust without the need to redefine a new
metric. (2) if we have a new data source with the same properties, we can infer a certain level of
trust without the need to redefine a new metric.

This property has been successfully used to propagate trust between nodes and agent. The same
property can be used to propagate a trust score across the different stages of the big-data cycle so
as to have a single score at the end the is representative of the stages.

5. Open Challenges and Future Directions

The literature surveyed in this paper shows how data quality has been assessed using DQDs
and how trust models have been used as a measure of quality in areas such as multi-agent systems,
web services and information sources on the Internet. It is clear that some challenges still exist in the
use of DQDs that trust models can address. This section summaries some of these challenges and
future research directions.

• End-to-end data quality assessment: How do we define a data quality assessment framework
where all the data quality factors present in the data cycle are represented? Taleb et al. [14]
recognizes the need to assess data quality onset (data inception stage) and throughout all the
stages of the big-data model. Currently, DQDs are defined for specific stages of the big-data
model. For example, data processing is not considered to affect data quality.
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Factors that affect data quality in shared IoT exist throughout the big-data cycle. For example,
during data generation, data quality may be affect by sensor fault, or environmental factors,
during data transfer and pre-processing, network outages may impact data quality, and factors
such as privacy preservation processing affect data quality during storage and use. There is a
need to evaluate data quality at each stage, store such scores or add them as metadata, combine
them into a single metric that can be advertised to data consumers in real time.

Understanding data quality manifestations at each stage helps us not only to solve data quality
challenges but could also inform the usability of tool used at such stages. For example, data
quality score at the data generation stage could be used to automatically recalibrate sensors
(decrease in quality score over time could be correlated with calibration errors), or data quality
scores during modeling can be used to tune automatically tune machine learning models.
Challenge 1: Develop a framework to intrinsically assess data quality in shared IoT data
systems from data inception to data use. Calculating quality, storing, processing the quality,
and advertising the quality.
RQ1: How can we calculate data quality at each stage of the IoT chain and combine these different
scores into a single metric that can be used to represent data quality in the overall chain
RQ2: How can we define an efficient data structure that can store and advertise data quality to
the end-user application given that IoT applications are mostly resource-constrained applications.
RQ3: How can we define an open framework where we can securely pass and advertise data
quality scores to guarantee that data is only transferred to authorized partners.

• The feedback loop between various data collection phases: Data quality assessment is not an
isolated calculation between source and consumer, but is affected by all stages and processes in
the big-data model chain. The need for end-to-end data assessment is presented above. How the
effect of each stage is calculated and represented in the DQD context where no gold-standard
reference is available remains a challenge. Result-driven study or comparison is used to calculate
or heuristically determine if certain processing or data presents sufficient quality to be used in a
given application, i.e., If the application is a prediction model, the accuracy of the model provides
proof that the data and data processing is fit for purpose, or otherwise. Furthermore, if better
prediction is achieved with one data set over another, this dataset presents higher quality data
for the given application. This is equally so if one process, over another, in the data model chain
achieves better end result predictions. These insights can be made if the result of the application
is measurable, is measured, and is made available to the previous stages in the data model chain.
Such feedback is useful for consumers and third-party data service providers. Data consumers of
similar applications can build trust and develop applicable data characteristics to curate quality
data within the stared data pool. Third-party data service providers can learn the needs of a
given application space to develop more beneficial services. This presents a challenge within the
framework for data quality management.
Challenge 2: Develop a mechanism for feedback of longitudinal result-driven quality standards
on used data and processes and apply such learning to the data.
RQ4: How may an application result be characterized within the DQD framework?
RQ5: Portioning of the feedback result to data or intermediate stages of processing, i.e., Is the
result driven by quality of the data or quality imparted through intermediate stages in the data
model chain.

• Highly mobile and time-sensitive applications (transport, health): In domain areas such as
autonomous vehicles, communications devices are very mobile, and applications should take
data assessment actions in real time. As these devices change the working environments, so does
the resulting applications of the shared data. For example, consider a smart car moving point
from x1 to point xn. At point x2, the smart might share its data with a smart city application
whose goal is to determine congestion in the city. However, at point x5, it might share its data
with another smart car for a collision avoidance application. To estimate data quality, we would
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have to define new DQDs as each application has different data quality needs, and data quality is
highly subjective. This is a complex and time-consuming process.
Challenge 3: Develop an assessment framework where a change in data properties does not
require us to define new DQDs and to represent data quality in a general manner throughout the
big-data model yet allow subjective handling.
RQ6: How might data quality be represented in a general manner throughout the big-data model
yet allow subjective handling.

6. Conclusions

This article discussed data-shared IoT and shared data pools. We highlighted the importance of
sharing quality data across the various domains of IoT while explaining the advantages of this.
For example, sharing of data leads to the development of new applications. This leads to the
generation of data with diverse properties, moreover, each application has a unique description
of data quality. The article then introduced DQDs. These provide an acceptable and standardized
framework to measure data quality. We discussed the challenges these face to measure data quality
within data-shared IoT. For example, the need for a gold standard, they are instantaneous, and they
are only applicable to specific stages of the big-data cycle. They also suffer from trade-off challenges,
and they also have limited applicability.

The article then introduced a new perspective to data quality assessment that is based on trust.
We defined trust from two perspectives: one was based on user and system trust, and the other
was based on online interactions were the trust score is a result of direct and indirect interactions
between entities. We highlighted the properties of trust: propagative, dynamic, subjective and
context-dependent. For each property, we showed how it can be harnessed for data quality assessment
within data-shared IoT. Using a taxonomical representation, we explained the components of a
trust model including metric, source, algorithm, architecture and propagation. For each component,
we showed where such has been used in areas such as internet information sources, multi-agent
systems, social media to measure quality of service.

Finally, the article discusses the opportunities that trust brings as an alternative way of assessing
data quality within data-shared IoT. We explain how the properties of trust, including trust being
personalizable, trust being dynamic and trust being propagative can be used to assess data quality.
Lastly, for a secure end-to-end data quality assessment framework, we argue that technologies such
as blockchain only are not sufficient, but such technologies can complement trust-based data quality
assessment frameworks.
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